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Abstract: Carvacryl acetate (CA) is a monoterpene obtained from carvacrol, which exhibits anti-
inflammatory activity. However, its low solubility in aqueous media limits its application and
bioavailability. Herein, we aimed to develop a carvacryl acetate nanoemulsion (CANE) and assess
its anti-inflammatory potential in preclinical trials. The optimized nanoemulsion was produced by
ultrasound, and stability parameters were characterized for 90 days using dynamic light scattering
after hydrophilic–lipophilic balance (HLB) assessment. To evaluate anti-inflammatory activity, a com-
plete Freund’s adjuvant-induced inflammation model was established. Paw edema was measured,
and local interleukin (IL)-1β levels were quantified using ELISA. Toxicity was assessed based on
behavioral changes and biochemical assays. The optimized nanoemulsion contained 3% CA, 9%
surfactants (HLB 9), and 88% water and exhibited good stability over 90 days, with no signs of toxicity.
The release study revealed that CANE followed zero-order kinetics. Dose–response curves for CA
were generated for intraperitoneal and oral administration, demonstrating anti-inflammatory effects
by both routes; however, efficacy was lower when administered orally. Furthermore, CANE showed
improved anti-inflammatory activity when compared with free oil, particularly when administered
orally. Moreover, daily treatment with CANE did not induce behavioral or biochemical alterations.
Overall, these findings indicate that nanoemulsification can enhance the anti-inflammatory properties
of CA by oral administration.

Keywords: anti-inflammatory effect; carvacrol derivative; carvacryl acetate; essential oil; oral
administration; nanoemulsion

1. Introduction

It is well-established that chronic inflammatory diseases are one of the most significant
causes of mortality worldwide, and a considerable proportion of adult deaths are related to
diseases exhibiting inflammatory patterns, such as heart disease, stroke, cancer, diabetes
mellitus, chronic kidney disease, and neurodegenerative conditions, according to the
latest Global Health Metrics (GBD 2020) [1]. Pharmacological therapies for inflammatory
diseases include nonsteroidal and steroidal anti-inflammatory drugs. However, in addition
to controlling inflammation, chronic use of these drugs can cause foregut symptoms, peptic
ulcers, small bowel enteropathy, and metabolic and endocrine disorders [2–6].

Current research endeavors are focused on developing new drugs with improved
safety profiles and novel solutions. Medicinal chemistry has been widely applied as a
strategy for drug development, including the use of semisynthesis of natural sources [7–9].
Carvacrol is a phenolic monoterpene found in the aerial parts of plants of the genus
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Origanum, with anti-inflammatory properties [10–12]. However, it has relatively high tox-
icity compared to other esters and phenols [13]. Carvacryl acetate (CA), a semisynthetic
monoterpenic ester derived from carvacrol with properties similar to its precursors and
less toxicity, exhibits anti-inflammatory activity by reducing cytokine levels, neutrophil
migration, and anti-nociceptive activity [13,14]. The oral lethal dose (LT50) of CA exceeds
2000 mg/kg in mice, thus exhibiting preclinical safety when compared with its precur-
sor carvacrol and other monoterpenes [15,16]. The safety and efficacy of CA, compared
with the significant side effects and low efficacy of the anti-inflammatory drugs currently
available on the market, make it an excellent candidate with which to develop a new
anti-inflammatory medicine. Despite its observed therapeutic activity, CA is a lipophilic
molecule, which affects its bioavailability and pharmacological effect in vivo. Nanoemulsi-
fication can be a strategy to overcome this limitation and increase the bioavailability of CA
by oral administration.

Nanoemulsion is a type of system commonly used to increase the solubility, bioavail-
ability, and sustained release of essential oils. Nanoemulsions are colloidal dispersions of
two immiscible liquids stabilized using surfactants [17–21]. Nanoemulsions are often used
to increase chemical and physical stability, minimize organoleptic changes, and improve
the biological activity of essential oils [10,22,23]. This system exhibits small droplet sizes,
improving the solubility of hydrophobic drugs such as CA. Orally administered nanoemul-
sions can afford an increased drug dissolution rate, along with enhanced systemic solubility
and bioavailability [24]. Another advantage of nanoemulsions is their drug release profile
and absorption in the gastrointestinal tract [25].

Nanoemulsions have been developed and employed to assess the improved anti-
inflammatory activity of other oils, including the precursor of CA, carvacrol [10,21,26].
However, nanosystems containing CA are yet to be developed to establish in vivo anti-
inflammatory activity.

Previously, our group demonstrated that the nanoemulsification process improves the
anthelmintic activity of CA via oral administration using a model of mice infected with
Schistosoma mansoni [27]. In the present work, the influence of the mixture of surfactants on
the stability of the CA nanoemulsion (CANE) was studied. The optimized nanoemulsion
was used to evaluate its potential to improve the pharmacological properties of CA in
an inflammation model. Further, toxicological studies were carried out in mice after oral
administration of CA and CANE to assess their toxicological profile.

2. Results and Discussion
2.1. Spectroscopic Data of CA

The CA appeared as a yellow oil with 76% yield, TLC (9:1 hexane/EtOAc), Rf = 0.75;
1H-NMR (500 MHz, CDCl3) δH 7.17 (d, J = 10.0 Hz, 1H, H-6), 7.04 (dd, J = 10.0 Hz, 2.0 Hz,
1H, H-3), 6.89 (d, J = 2.0, 1H, H-4), 2.91 (hept, J = 8.5 Hz, 1H, H-7), 2.33 (s, 3H, H-10), 2.16 (s,
3H, H-9), 1.26 (d, J = 8.5 Hz, 6H, H-8). 13C NMR (125 MHz, CDCl3, δ ppm): 169.4 (C-10),
149.4 (C-1), 148.1 (C-5), 131.0 (C-3), 127.2 (C-2), 124.2 (C-4), 119.8 (C-6), 33.6 (C-7), 24.0 (C-8),
20.9 (C-11), 15.9 (C-9).

In the 1H NMR spectra, it was observed that hydrogen atoms 3 and 4 in the aromatic
ring exhibited coupling constants of 8.0 Hz, indicating coupling between ortho hydrogens.
Hydrogen atom 6 showed a doublet with coupling constant (J) of 1.6 Hz, suggesting
coupling with H-4. While the H-7 showed a septet (J = 6.8 Hz), indicating coupling with H-8
(dublet, J = 6.8 Hz). Hydrogens 9 and 11 were observed as singlets. In the 13C NMR spectra,
the chemical shifts revealed a signal close to δ C 169.38 ppm assigned to the carbonyl carbon
(C-10), a signal around δ C 149.37 ppm assigned to aromatic carbon 1, and a signal at δ C
148.15 ppm attributed to aromatic carbon 5. Additionally, signals at approximately δ C
130.92 ppm, δ C 127.24 ppm, 124.28 ppm, and δ C 119.84 ppm were assigned to carbons 3, 2,
4, and 6 of the aromatic ring, respectively. The other signals were from the more protected
methyl and methine carbons (See Supplementary Material). These data confirm that the
compound obtained was CA [28].
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2.2. Effect of HLB Values

In the present study, we developed a nanoemulsion containing CA to circumvent
the limitations of lipophilic compounds. The selection and proportion of surfactants are
critical steps in developing nanoemulsions. Selected surfactants must afford an HLB
approximating that of the oil fraction.

The micro-emultocrit technique, a short-term stability analysis, is a simple and rapid
strategy to determine the HLB of essential oils and establish ideal proportions of surfactants.
This technique shows a good correlation with long-term stability assays using a very small
sample volume [29,30]. The methodology consists of producing a batch of emulsions with
varying surfactant proportions and applying a high gravitational force to the systems,
where the HLB value of the most stable emulsion—the small creaming index (CI)—is
considered the required HLB of the oil.

High-HLB surfactants form more stable oil-in-water nanoemulsions than low-HLB
surfactants. Water-in-oil nanoemulsions of natural oils have critical HLB values between
8 and 15 [31]. In this study, we formulated eight nanoemulsions by sonication using a
mixture of surfactants containing Tween 80 and Span 80 presenting HLB values ranging
between 8 and 15. This rational limitation in the HLB range studied saved costs and time
as it reduced the number of experiments [32]. Tween 80 and Span 80 were chosen due their
safety and biocompatibility and are described in the literature as suitable for preparing
nanoemulsions via the sonication method [33]. Short-term stability results are shown in
Figure 1.
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Figure 1. Analysis of creaming index (CI%) for the formulations containing carvacryl acetate (CA):
short-term stability study performed using the micro-emultocrit technique on days (D) 1 (black
column) and 35 (gray column).

The CI was used to evaluate the nanoemulsion stability. This index reflects the stability
of the system, indirectly demonstrating the destabilization of droplets owing to creaming
on the surface. The CI values are listed in Table 1. The lowest CI values were obtained on
D1 and D35 between formulations and were related to formulation 7 (F7), corresponding
to the surfactant mixture that afforded the HLB value of 9 required for CA.

2.3. Preparation and Characterization of CA Oil-Loaded Nanoemulsion

Based on the critical HLB study, we obtained a nanoemulsion containing a mixture of
surfactants, with an HLB value approximating that required by CA. After that, 13 formula-
tions were prepared, varying the amounts of surfactants (HLB 9) (3–18%) and CA (3–18%).
The formulation that presented the smallest values of mean size and PDI and did not show
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phase separation after 7 days with the minimum quantity of surfactants was selected. The
optimized nanoemulsion (CANE) consisted of 3% CA, 9% surfactants, and 88% water.

Table 1. Analysis of creaming index (%) for the short-term stability study.

Formulation HLB Value
Creaming Index (%) Macroscopic Aspect

D1 D35

F1 15 0.90 2.17 M + CR
F2 14 0.83 1.56 M + CR
F3 13 0.92 1.21 M + CR
F4 12 1.13 1.02 M + CR
F5 11 2.00 1.78 M + CR
F6 10 0.86 2.00 M + CR
F7 9 0.00 0.00 M
F8 8 0.89 2.38 M + CR

F, formulation; D, day; HLB, hydrophilic–lipophilic balance; M, milky aspect; CR, creaming.

Nanoemulsions are thermodynamically unstable systems that can undergo structural
changes during storage, such as creaming, coalescence, flocculation, Ostwald ripening, or
phase separation [22,34]. To assess the stability of the formulated nanoemulsion, CANEs
were evaluated over a 90-day period, and parameters such as droplet size, PDI, zeta
potential, and pH were assessed (Table 2).

Table 2. Stability parameters: mean droplet diameter, zeta potential, polydispersity index, and pH of
carvacryl acetate nanoemulsion (CANE) over 90 days.

Parameters of
Stability/Day of

Analysis

Mean Droplet
Diameter (nm)

Polydispersity
Index

Zeta Potential
(mV) pH

D1 93.39 ± 1.10 0.30 ± 0.03 −28.06 ± 0.96 4.17 ± 0.02
D7 98.88 ± 0.48 0.27 ± 0.01 −51.53 ± 1.67 4.16 ± 0.01
D15 99.83 ± 1.04 0.27 ± 0.01 −50.06 ± 1.55 4.19 ± 0.02
D30 98.99 ± 0.53 0.27 ± 0.03 −49.50 ± 2.35 4.01 ± 0.04
D60 105.90 ± 3.31 0.30 ± 0.04 −44.90 ± 3.06 4.00 ± 0.03
D90 101.50 ± 0.75 0.28 ± 0.01 −55.70 ± 1.28 4.05 ± 0.01

CANE exhibited an average droplet size of 101.50 ± 0.75 nm 90 days after preparation,
with small variations on day 1. The time and potency used in high energy methods
influence the nanoemulsion droplet sizes [35]. Ultrasonication was employed in the present
study. This is a technique that applies disruptive forces to the system, causing turbulence,
cavitation, and the breaking of larger oil droplets into smaller droplets [36]. The distribution
of energy adequate to break the droplets on a nanometer scale is essential to produce a
formulation with small size. This increases the surface area for surfactant adsorption,
preventing the reaggregation of oil droplets. Preserving the droplet size over time is
associated with good system stability. Some studies presenting stable nanoemulsions
have employed Ostwald ripening inhibitors to avoid the gradual increase in droplets or
other destabilization processes. In the present study, unlike other essential oil-containing
nanoemulsions, CANE did not employ Oswald ripening inhibitors, such as medium-chain
triglycerides, in the oil phase [10,37,38]. The proportion of surfactants with a critical
HLB by CV allowed the development of a stable nanoemulsion, with 100% of the oil
phase corresponding to the bioactive component. In some reports assessing carvacrol
(CA precursor), stable nanoemulsions were produced without using Ostwald ripening
inhibitors in the oil phase, based on surfactants with the critical HLB [23,39].

In addition, we evaluated PDI as another stability parameter. CANE showed PDI
values ≤ 0.3 over 90 days. Notably, PDI shows the degree of uniformity of droplet size
distribution within the system [40]. A gradual increase in the PDI value may indicate that
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the nanoemulsion has undergone destabilization, and the droplets in the system then ag-
gregate to form larger droplets. This phenomenon was not observed in the present stability
study. CANE had a PDI of 0.28 ± 0.01 at D90. Nanoemulsions with PDI values ≤ 0.3 and
droplet sizes below 200 nm can be considered monodisperse systems [24]. The PDI value is
associated with the method of preparation, the type of surfactant used, and the viscosity of
the system. Tween 80 was previously described as a good stabilizer for carvacrol and other
natural oil nanoemulsions [18,31].

Droplet size preservation and low variation in PDI may have been influenced by the
adsorption kinetics of the surfactant mixture during formulation [41]. The use of surfactant
mixtures can promote a synergistic effect in the interfacial region between the oil and water,
improving the stability of nanoemulsions compared to the use of a single surfactant. The
difference in headgroup size between Tween 80 and Span 80 can promote this synergistic
effect between them, thus enhancing the stability of CANE [31,32].

CANE presented a zeta potential of −28 mV at D1. After the first day of analysis,
the values of zeta potential were close to −50 mV (Table 2). Zeta potential can serve as a
partial indicator of system stability. It should be noted that markedly positive or negative
values (above +30 mV or below −30 mV) may be preferable for promoting system stability,
given the repulsion between droplets [42]. This increase in the negativity of zeta potential
between the first analysis and others can be explained by the method of production used in
this work. The sonication process can affect the components of the nanoemulsion, inducing
the release of ions into the system. This release of ions can be present in the interfacial layer,
inducing changes in the zeta potential of the system and justifying the differences found
between the different days of analysis. This behavior can be observed in other studies with
nanoemulsions, in which after the first moment of analysis the zeta potential values varied,
differing from the values of the first day [43–45]. Moreover, this change does not reflect the
stability of the CANE, considering that there was no substantial increase in droplet size,
PDI variation, or macroscopic changes (Figure 2).
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The negative zeta potential values and small variation in pH values (close to 4) con-
firmed the superior stability of the nanoemulsion. In addition to its good physicochemical
stability, CANE also preserved the oil content close to the initial concentrations, and showed
an encapsulation efficiency of 97.77%, corresponding to a drug content of 29.3 mg/mL
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of CA. A nanosystem with a high encapsulation efficiency compared with other drug
delivery systems used to encapsulate carvacrol or carvacryl acetate [23,46,47] was obtained
in this study. This could be explained by the choice of the system, since nanoemulsions are
efficient nanosystems with which to encapsulate hydrophobic molecules, as well as by the
optimization of the mixture of surfactants (with the critical HLB of CA).

2.4. Anti-Inflammatory Activity
2.4.1. Anti-Inflammatory Profile of Intraperitoneally Administered CANE

In the present study, the anti-inflammatory effect of CANE was investigated in a
mouse model of CFA-induced paw inflammation. CFA consists of heat-killed mycobacteria
suspended in a mineral oil vehicle that produces chronic inflammation, often used to
study the anti-inflammatory properties of novel compounds during drug discovery [48].
Following subcutaneous injection of CFA, mice developed gradually increasing paw edema
that peaked after 24 h (Figure 3).
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Figure 3. Effect of intraperitoneal carvacryl acetate nanoemulsion on CFA-induced paw edema.
Different doses of carvacryl acetate nanoemulsion (CANE: 25, 50, and 100 mg/kg), free carvacryl
acetate (CA: 100 mg/kg), blank nanoemulsion (CTRL, control group), or dexamethasone (Dexa;
2 mg/kg, reference drug) were administered intraperitoneally 40 min prior to CFA (time zero). The
abscissa axis represents the time after CFA administration, while the ordinate axis represents the
change in paw volume in mm3. Data are expressed the as mean ± standard deviation of six animals
per group. * Statistical significance compared to the control group (p < 0.05), as determined by the
two-way ANOVA test, followed by the Bonferroni post-test. CFA, complete Freund’s adjuvant.

Intraperitoneal administration of free CA (100 mg/kg) induced an anti-edematogenic
effect 1–7 h after CFA-induced paw inflammation (p < 0.05; Figure 4). Intraperitoneally
administered CANEs (25, 50, and 100 mg/kg) induced a dose-dependent anti-edematogenic
effect, lasting for up to 48 h after CFA administration (p < 0.05). The anti-inflammatory
efficacy of CANE, as evidenced by the magnitude of the maximum effect, was similar to that
afforded by free CA; however, the duration of this effect was prolonged, increasing from
7 h to 48 h. Importantly, CANE exhibited a longer-lasting anti-inflammatory effect than the
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gold standard drug dexamethasone (2 mg/kg). Nanoemulsions are colloidal systems that
entrap and protect the lipophilic bioactive components of mixtures [25]. The preservation of
CA droplets might favor the stability of the oil, increasing its bioavailability and enhancing
its absorption across cells [49]. These factors may be associated with the ability of CANE
to achieve superior anti-edematogenic activity gradually, compared with free oil and
dexamethasone. The capacity of nanoemulsions to enhance the anti-inflammatory activity
of lipophilic drugs via intraperitoneal injection has been previously reported [50–52].
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Figure 4. Effect of oral carvacryl acetate nanoemulsion on CFA-induced paw edema. Different
doses of carvacryl acetate nanoemulsion (CANE; 50, 100, and 200 mg/kg), free carvacryl acetate
(CA, 200 mg/kg), blank nanoemulsion (CTRL, control group), or dexamethasone (Dexa; 2 mg/kg,
reference drug) were orally administered 1 h prior to the CFA injection (time zero). The abscissa
axis represents the time after CFA administration, while the ordinate axis represents the change in
paw volume in mm3. Data are expressed as the mean ± standard deviation of six animals per group.
* Statistical significance compared to the control group (p < 0.05), as determined by the two-way
ANOVA test, followed by the Bonferroni post-test. CFA, complete Freund’s adjuvant.

2.4.2. Anti-Inflammatory Profile of Orally Administered CANE

The oral route is considered the most common and convenient route for drug admin-
istration. Oral routes have some advantages in terms of drug administration, affording
patient adherence to administration [53]. Therefore, the effects of oral administration
of CANE were evaluated and compared with the effect of CA and the gold standard,
dexamethasone (Figure 4).

Oral administration of CANE induced anti-edematogenic effects at all tested doses
(50, 100, and 200 mg/kg; p < 0.05). At 200 mg/kg, CANE exhibited an anti-edematogenic
effect starting 1 h after the CFA stimulus, which lasted for up to 24 h. In contrast, the
anti-inflammatory effect mediated by free CA was significant (p < 0.05) only at 7 h, in-
dicating that the nanoemulsion increased the time course of action of CA. Furthermore,
oral administration of CA at doses <200 mg/kg did not induce anti-edematogenic effects,
highlighting that the nanoemulsion improved the therapeutic dose range of CA when
administered via the oral route. The efficacy of oral CANE was inferior to that of dex-
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amethasone, although the duration of action was similar. Oral drug administration has
several advantages; however, some challenges need to be overcome. Local factors, such
as pH, mucus thickness, drug residence time, and microbiota, can influence the integrity
and absorption of drugs in the gastrointestinal tract [53,54]. Stomach acidic conditions
are the first and largest challenge encountered by oral drug formulations. Treatment with
CANE (200 mg/kg) may prolong biological activity owing to the advantages afforded
by nanoemulsion systems. First, the nanoemulsion preserves large amounts of CA along
the gastrointestinal tract. Second, the formulated nanoemulsion increased the solubility
of CA. Third, the nanoemulsion could increase the contact surface and thus enhance CA
absorption. Finally, the prepared nanoemulsion facilitated modified CA release at the site
of action. The ability of nanoemulsions to protect drugs against premature degradation,
decrease hepatic first-pass metabolism, increase the interfacial area owing to droplet size,
enhance the bioavailability of the molecule, and improve mucosal permeability has been
previously established [55]. Moreover, previous studies have demonstrated the ability of
nanoemulsions to prolong the anti-inflammatory activity of orally administered oils [21,56].

2.4.3. Effect of CANE on the Local Production of the Pro-Inflammatory Cytokine IL-1β

To corroborate the anti-inflammatory properties of CANE, we examined the modula-
tory effect of this nanoemulsion on the production of IL-1β, a primary pro-inflammatory
cytokine, in the CFA model (Figure 5). Cytokine quantification was performed by harvest-
ing the paw skin of mice from different experimental groups 7 h after CFA administration
when both CANE and CA exerted anti-edematogenic effects. Oral treatment with CANE
or CA at 200 mg/kg, 1 h before CFA injection, significantly reduced (p < 0.05) IL-1β lev-
els in the inflamed paw, exhibiting efficacy similar to that of dexamethasone (2 mg/kg
intraperitoneal) administered in a maximum-effect protocol. Consistent with the present
data, CA has been shown to inhibit IL-1β and prostaglandin production [13,14]. IL-1β is a
primary pro-inflammatory cytokine produced and released by different cell types, known
to be involved in the development of signs and symptoms of inflammation [57]. After
CFA administration, mice in the control group showed increased local levels of IL-1β, in
line with previous reports, suggesting the key role of this cytokine in CFA-induced inflam-
mation [58–60]. IL-1β can stimulate an inflammatory cascade, increasing cell recruitment,
fever, vascular permeability, and prostaglandin production [61]. IL-1β interacts directly
with the endothelium of blood vessels, increasing vascular permeability, which is involved
in the genesis of edema. Furthermore, IL-1β induces the initiation of cyclooxygenase type
2 (COX-2) and inducible nitric oxide synthase (iNOS), leading to greater production of
prostaglandin-E2 (PGE2) and nitric oxide (NO), which are also mediators of edema forma-
tion [62]. Considering that CANE and CA treatments reduced IL-1β levels in the inflamed
paw, the inhibition of this cytokine may be responsible for the anti-edematogenic effect of
these compounds. Indeed, the decrease in CFA-induced paw edema can be associated with
carvacrol (CA precursor)-induced suppressed IL-1β production [61,63].

2.5. Systemic Toxicity

Repeated administration of anti-inflammatory drugs may lead to the development of
serious side effects, such as gastrointestinal ulcers and renal disorders [64]. Furthermore,
hepatotoxicity is one of the main causes of interruption in the drug development process or
withdrawal after marketing [65]. Therefore, we next assessed the effects of daily CA and
CANE administration on systemic metabolism by examining behavioral and serum bio-
chemical parameters. Mice were orally administered CA (200 mg/kg), CANE (200 mg/kg),
or vehicle for seven consecutive days. No clinically relevant changes in general behavior
were observed during this period, with no deaths recorded. Body weight, as well as food
and water intake, did not significantly differ between the groups.
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duction of interleukin (IL)-1β in the CFA-induced inflammation model. The ordinate axis represents
IL-1β levels in mouse paw skin 7 h after intraplantar CFA administration. IL-1β levels, determined
by ELISA, are expressed as picograms of cytokine per milligram of protein. CANE (200 mg/kg),
CA (200 mg/kg), or blank nanoemulsion (CTRL, control group) were orally administered 1 h before
CFA injection. Mice in the naïve group did not undergo experimental manipulation. Dexamethasone
(Dexa; 2 mg/kg/intraperitoneal, 40 min before CFA) was administered in a maximum-effect protocol
as the gold standard drug. Data are expressed as the mean ± standard deviation of six mice per
group. # Statistical significance compared with the naïve group (p < 0.05); ** Statistical significance
compared with the control group (p < 0.01), as determined by the 1-way ANOVA test, followed by
the Tukey test. CFA, complete Freund’s adjuvant.

Urea and creatinine are commonly used as markers of renal function, playing an
important role in assessing the risk and safety of new drugs and medications [66]. In CA-
or CANE-treated mice, the values obtained for urea and creatinine serum levels did not
differ from those of control or naïve mice. Moreover, liver function, assessed through
liver enzyme (ALT and AST) levels, was not altered by treatments compared to controls
(Table 3). Therefore, treatment with CA or CANE did not alter parameters indicative of
liver or kidney toxicity, suggesting a favorable preclinical toxicological profile. These results
indicate that daily oral treatment with CA or CANE did not induce systemic, renal, or
hepatic toxicity, which was expected, given that CA has an LD50 > 2000 mg/kg [15,16].

Table 3. Effects of daily oral treatment with carvacryl acetate or carvacryl acetate nanoemulsion on
murine serum biochemical markers.

Parameters Naïve BNE CA CANE

ALT (UI/L) 71.66 ± 11.21 70.50 ± 11.41 69.66 ± 8.23 68.00 ± 7.43
AST (UI/L) 98.33 ± 10.52 99.00 ± 12.53 102.16 ± 8.42 101.50 ± 8.32

Urea (mg/dL) 52.33 ± 5.16 50.00 ± 3.22 50.33 ± 5.27 49.33 ± 4.55
Creatinine (mg/dL) 0.38 ± 0.07 0.38 ± 0.05 0.37 ± 0.03 0.37 ± 0.05

Mice were treated daily with a single oral dose of carvacryl acetate (CA; 200 mg/kg),
carvacryl acetate nanoemulsion (CANE; 200 mg/kg), or blank nanoemulsion (BNE; control
group) for 7 consecutive days. The naïve group underwent no experimental manipulation.
Alanine transaminase (ALT), aspartate transaminase (AST), urea, and creatinine levels were
determined. Data values are expressed as the mean ± standard deviation (SD) of six mice
per group. ANOVA with Tukey’s post hoc test.



Pharmaceuticals 2024, 17, 17 10 of 16

3. Materials and Methods
3.1. Materials

Sorbitan monostearate 80 (Span 80®), dexamethasone, and complete Freund’s adjuvant
(CFA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Polysorbate 80 (Tween
80®) was provided by Vetec Química Fina Ltd. (Rio de Janeiro, Brazil). Mygliol 812® was
acquired from Sasol (Marl, Germany). The ELISA kit for interleukin (IL)-1β was acquired
from R&D Systems (Minneapolis, MN, USA). Diagnostic kits for biochemical analyses were
acquired from Labtest Diagnóstica (Lagoa Santa, Brazil). Sodium phosphate monobasic
and dibasic (components of sodium phosphate buffer) were purchased from Sigma-Aldrich
Co. (São Paulo, Brazil).

3.2. Synthesis and Characterization of CA

CA (98% purity) was obtained by acetylation of carvacrol as previously described [67].
Briefly, in a flask coupled to a condenser, carvacrol (5 g, 0.033 mol), pyridine (7.5 mL),
and acetic anhydride (12.5 mL) were added. Then, the mixture was subjected to magnetic
stirring and put under constant reflux for 24 h. The reaction mixture was poured into
ice water (60 mL) and the product was extracted with chloroform (60 mL, three times)
using a separatory funnel. The organic phase was treated with saturated copper sulfate
(60 mL, three times), washed with water (60 mL, three times), and dried with anhydrous
Na2SO4. After evaporation of the solvent under reduced pressure, the obtained product
was subjected to column chromatography with silica gel using a mixture of hexane/ethyl
acetate (95:5) as a mobile phase.

All procedures were followed by thin-layer chromatography (TLC). The visualization
of the plates occurred through exposure to an ultraviolet irradiation lamp with a wavelength
of 254 nm, through a MINERALIGHT device (model UVGL-58).

The product (Figure 6) obtained was characterized by Hydrogen Nuclear Magnetic
Resonance (1H NMR) and Thirteen Carbon Nuclear Magnetic Resonance (13C NMR) spec-
troscopy. The spectra were obtained using VARIAN-SYSTEM equipment operating at
500 MHz (1H) and 125 MHz (13C).
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3.3. Hydrophilic–Lipophilic Balance (HLB) Assay
3.3.1. Preparation of Nanoemulsions for HLB Analysis

To develop a stable nanoemulsion containing CA, it was necessary to discover the
critical HLB value required by the oil.

To develop tests for establishing the required HLB, we created a spreadsheet, includ-
ing a mix of two surfactants: lipophilic (Span 80®, HLB = 4.3) and hydrophilic (Tween
80®, HLB = 15) (Supplementary Materials). Based on the proportion of surfactants used,
8 nanoemulsions were formulated, with HLB values ranging from 8 to 15.
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After establishing the spreadsheet with surfactant proportions, nanoemulsions were
prepared with different surfactant proportions, according to the spreadsheet, and subjected
to four cycles of homogenization in a sonication apparatus (model QR200, Ultronique,
São Paulo, Brazil) for 1 min at 300 W in an ice bath, subsequently followed by an ultrasonic
bath for 1 min. The oil-in-water emulsion was composed of 5% (w/w) CA, 2% (w/w) mixed
surfactants, and 93% (w/w) water.

3.3.2. Micro-Emultocrit Technique

The short-term stability of prepared nanoemulsions with different HLB values was
evaluated using the micro-emultocrit technique [30]. Heparin tubes were used, in which
75% of the volume of each tube was filled with nanoemulsions and placed in a microcen-
trifuge (Quimis, model Q10.500, São Paulo, Brazil) at 11,459× g for 10 min.

The test was performed at room temperature on day 1 (D1) and day 35 (D35) of
storage. The creaming index (CI) of each formulation was evaluated after centrifugation.
The formulation exhibiting the lowest CI was identified as the required HLB value for CA.
All experiments were performed in triplicate.

3.3.3. CI

The creaming rate was experimentally determined. Equation (1) was employed to
measure this index. The CI values were obtained from the ratio of the total height of
the cream layer (CC) to the total height of the emulsion layer (CT). The CC and CT were
measured directly from a heparin-free capillary using a ruler.

%CI =
(

CC
CT

)
× 100 (1)

3.4. CANE Formulation

The CANE was prepared using 3% (w/w) of CA, 9% (w/w) of mixed surfactants
(Tween 80 and Span 80), and 88% (w/w) of water. The HLB value of the mixed surfactant
used in this study was adjusted at nine. The mixture of components was emulsified by
ultrasonication at 20 kHz (model QR200, Ultronique, São Paulo, Brazil), applying four
cycles of sonication for 1 min each at 300 W, interspersed by an ultrasonic bath for 1 min. The
sonicator was equipped with a titanium probe of 13 mm diameter. During the sonication,
an ice bath was used to prevent overheating of the components. CA was replaced with
Mygliol 812® to prepare a blank nanoemulsion (BNE).

3.5. Stability Study

Stability assessments for CANE and BNE were performed for 90 days. The formula-
tions were stored in 10 mL glass vials sealed with plastic caps and refrigerated at 4 ± 2 ◦C.
Analyses were performed on days 1, 7, 15, 30, 45, 60, and 90 after formulation. On the
day of analysis, droplet size, polydispersity index (PDI), zeta potential, pH, and macro-
scopic aspects were evaluated. The color and phase separation were examined in terms of
macroscopic aspects.

3.6. Carvacryl Acetate Content

The CA content present in the nanoemulsion was observed after analysis us-
ing UV-Vis spectroscopy (Genesys 10S UV-Vis, Thermo Fischer Scientific, Dreieich,
Germany) at 264 nm. Before analyzing the sample in the spectrometer, the formulation
was diluted in methanol (1:200) and filtered using a 0.2 µm membrane filter (Kasvi,
Brazil). The concentration of CA in the nanoemulsion was calculated using a calibration
curve ((n = 9) y = 0.003044x + 0.01369; R² = 0.9972). All measurements were performed
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in triplicate. Drug loading content and drug recovery were calculated according to
Equations (2) and (3), respectively.

Drug loading content
(mg

mL

)
=

Amount of CA in the CANE
Total amount of CANE

(2)

Drug recovery %
(w

V

)
=

(
Amount of CA in the CANE

Amount of CA added

)
× 100 (3)

3.7. pH Measurement

The pH values of CANE and BNE were measured using a multipurpose autotitrator
(model MPA-210, Tecnopon Instruments, Piracicaba, Brazil), previously calibrated with
buffer solutions of pH 4.0 and 7.0.

3.8. Animals

Male Swiss mice were obtained from the Oswald Cruz Foundation (FIOCRUZ; Sal-
vador, Bahia, Brazil) to establish the animal model. Animals (25–30 g) were housed in
temperature-controlled rooms (22–25 ◦C) under a 12:12 h light–dark cycle, with access to
water and food ad libitum until the initiation of experimentation. The experiments were
approved by the Ethics Committee for Animal Experimentation of the Federal University
of Bahia (CEUA/ICS 135/2018), and all behavioral tests were performed between 07:00
and 16:00. Groups of six animals were used for each experimental test.

3.9. Inflammatory Model

Mice were lightly anesthetized using halothane and administered a subcutaneous
injection of CFA (20 µL, 1 mg/mL; time zero) in the right plantar region [63]. CFA consisted
of 1 mg/mL heat-killed Mycobacterium tuberculosis in 85% paraffin oil and 15% mannide-
monoleate. Forty minutes prior to the CFA injection, the animals were treated with CA
(100 mg/kg), CANE (25, 50, and 100 mg/kg), or BNE (control group) via the intraperitoneal
route. In another experimental set, animals were orally treated with CA (200 mg/kg),
CANE (50, 100, and 200 mg/kg), or BNE, 1 h prior to the CFA injection. CA was dissolved
in 5% dimethyl sulfoxide (DMSO) in sterile water, whereas CANE and BNE were dispersed
in sterile water. Mice were administered dexamethasone, a gold standard drug, intraperi-
toneally (2 mg/kg) or orally (2 mg/kg), before CFA. Paw edema and local production of
IL-1β were evaluated using a plethysmometer and ELISA, respectively, as described below.

3.10. Plethysmometer Test

CFA-induced edema was quantified by measuring the variation in paw volume using
a plethysmometer device (Ugo, Basile, Comerio, Italy). The volume of each paw was
measured prior to CFA administration (baseline) and 1, 3, 5, 7, 24, 48, and 72 h after CFA
administration. Volume variation was determined by differences between measured paw
volumes before and after CFA administration at pre-determined time points.

3.11. Cytokine Measurement by ELISA

Paw cytokine levels were determined as previously described [63]. Mice were treated
with CA (200 mg/kg), CANE (200 mg/kg), BNE, or dexamethasone (2 mg/kg; intraperi-
toneal) 1 h before intraplantar CFA injection. After 7 h, animals in each experimental group
were deeply anesthetized and euthanized by cervical dislocation before collection of the
paw skin. Next, the harvested sample was weighed, and for each 10 mg of tissue, 100 µL
of cytokine extraction buffer (0.4 M NaCl, 0.05% tween 20, 0.5% bovine serum albumin,
0.1 mM PMSF, 0.1 mM benzethonium chloride, 10 mM EDTA, and 20 KI aprotinin diluted
in 1× phosphate-buffered saline) was added. The harvested skin sample was immediately
ground in a ball mill (TissueLyser II, Qiagen, Germantown, MD, USA) and centrifuged at
10,000× g for 10 min at 4 ◦C. The supernatant was collected, an aliquot was used to quantify
total proteins (Bradford, 1976), and the remainder was stored in a freezer at −80 ◦C for
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subsequent cytokine quantification. Cytokine levels were quantified using mouse ELISA
immunoassay kits for IL-1β. Results are expressed as picograms of cytokines per milligram
of protein.

3.12. Toxicity Assessment

Signs of toxicity, mortality, weight, water, and feed consumption, general behavior,
and blood biochemical parameters (creatinine, urea, alanine aminotransferase [AST], and
aspartate aminotransferase [ALT] levels) were evaluated after daily treatment with CA or
CANE. Animals received a daily oral dose of CA (200 mg/kg), CANE (200 mg/kg), or
vehicle for seven consecutive days. Twenty-four hours after the completion of treatment,
the animals were anesthetized by intraperitoneally administering a combination of 5%
ketamine hydrochloride and 2% xylazine hydrochloride in equal parts. After induction
of general anesthesia, a cardiac puncture was performed, and approximately 600 µL of
total blood was collected. To establish the biochemical profile, 200 µL of blood without
anticoagulant was centrifuged at 4750× g for 10 min at room temperature to obtain serum.
Subsequently, serum was quickly collected and frozen at −70 ◦C. Biochemical analyses were
performed using spectrophotometry, a Bioplus-200 semi-automatic biochemical analyzer,
and standardized diagnostic kits (Labtest Diagnóstica) to determine the concentrations of
ALT, AST, urea, and creatinine in collected samples.

3.13. Statistical Analysis

Data are presented as the mean ± standard deviation of six animals in each group.
Comparisons between treatments were performed using one-way ANOVA, followed by
Tukey’s test or, for repeated measures, two-way ANOVA followed by Bonferroni’s test, as
deemed appropriate. All data were analyzed using GraphPad Prism version 8.0 (GraphPad,
San Diego, CA, USA). Statistical significance was set at p < 0.05.

4. Conclusions

In this study, we obtained a carvacryl acetate nanoemulsion with size close to 100 nm,
which was stable for over 90 days, using a mixture of Tween 80 and Spam 80 with a HLB of
9. CA exhibited anti-inflammatory activity via both routes of administration, although oral
efficacy was lower than that afforded by intraperitoneal administration. Moreover, CANE
improved the anti-inflammatory activity of pure CA. In addition, CA and its nanoemulsion
showed no detectable toxicity with oral daily treatment. Collectively, these results indicate
that the nanoemulsification improves the pharmacological properties of CA, reducing the
dose range required to afford an oral anti-inflammatory effect without detectable toxic
effects. Thus, the data presented in this study will serve as a basis for future research using
natural and semisynthetic oil nanoemulsions for oral delivery.
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www.mdpi.com/article/10.3390/ph17010017/s1, Figure S1. 1H NMR (400 MHz, CDCl3) spectrum
of carvacryl acetate (1). Figure S2. The extension of the 1H NMR (400 MHz, CDCl3) spectrum
of carvacryl acetate (1). Figure S3. The extension of the 1H NMR (400 MHz, CDCl3) spectrum of
carvacryl acetate (1). Figure S4. 13C NMR (100 MHz, CDCl3) spectrum of carvacryl acetate (1).
Table S1. Hydrophilic-Lipophilic Balance (HLB) Spreadsheet Design in accordance with individual
surfactant percentage.
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