In Vitro Evaluation of Drug–Drug Interaction Potential of Epetraborole, a Novel Bacterial Leucyl-tRNA Synthetase Inhibitor
Abstract
:1. Introduction
2. Results
2.1. EBO Permeability in Caco-2 Cell Monolayer
2.2. Transporter Substrate
2.3. Transporter Inhibition
2.4. CYP Induction
2.5. CYP Inhibition
3. Discussion
4. Materials and Methods
4.1. In Vitro Effect of EBO and M3 on Efflux and Uptake Transporters
4.2. In Vitro Evaluation of the Substrate Potential of EBO and M3 for MDR1 (P-Glycoprotein; P-gp) or BCRP (Breast Cancer Protein Resistant Protein)
4.3. In Vitro Evaluation of the Substrate Potential of EBO and M3 for, OATP1B1, OATP1B3, OAT1, OAT3, OCT2, MATE1, or MATE2K-FDA 2020
4.4. In Vitro Inhibition Potential (IC50) Assessment of EBO and M3 as an Inhibitor of Efflux Transporters P-gp and BCRP
4.5. In Vitro Inhibition Potential (IC50) Assessment of EBO and M3 as Inhibitors of Uptake Transporters
4.6. Potential CYP Induction by EBO and M3
4.7. Inhibitory Potential of EBO on Human Hepatic Microsomal Cytochrome P450
4.8. Direct and Time-Dependent Inhibitory Potential of M3 on Human Hepatic Microsomal Cytochrome P450
4.9. Time-Dependent Inhibitory Potential of EBO on Human Hepatic Microsomal CYP3A and CYP2D6
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, V.; Crépin, T.; Palencia, A.; Cusack, S.; Akama, T.; Baker, S.J.; Bu, W.; Feng, L.; Freund, Y.R.; Liu, L.; et al. Discovery of a Novel Class of Boron-Based Antibacterials with Activity against Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2013, 57, 1394–1403. [Google Scholar] [CrossRef]
- De, K. Epetraborole, a Novel Bacterial Leucyl-TRNA Synthetase Inhibitor, Demonstrates Potent Efficacy and Improves Efficacy of Standard of Care Regimen against Mycobacterium avium Complex in a Chronic Mouse Lung Infection Model; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Ganapathy, U.S.; Gengenbacher, M.; Dick, T. Epetraborole Is Active against Mycobacterium abscessus. Antimicrob. Agents Chemother. 2021, 65, e01156-21. [Google Scholar] [CrossRef]
- Kim, T.; Hanh, B.-T.-B.; Heo, B.; Quang, N.; Park, Y.; Shin, J.; Jeon, S.; Park, J.-W.; Samby, K.; Jang, J. A Screening of the MMV Pandemic Response Box Reveals Epetraborole as A New Potent Inhibitor against Mycobacterium abscessus. Int. J. Mol. Sci. 2021, 22, 5936. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.R.; Lupien, A.; Kalthoff, E.; Hamela, C.; Taylor, L.; Munro, K.A.; Schmeing, T.M.; Kremer, L.; Behr, M.A. Efficacy of Epetraborole against Mycobacterium abscessus Is Increased with Norvaline. PLoS Pathog. 2021, 17, e1009965. [Google Scholar] [CrossRef]
- Prevots, D.R.; Marras, T.K. Epidemiology of Human Pulmonary Infection with Nontuberculous Mycobacteria A Review. Clin. Chest. Med. 2015, 36, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline: Executive Summary. Clin. Infect. Dis. 2020, 71, ciaa241. [Google Scholar] [CrossRef] [PubMed]
- Pasipanodya, J.G.; Ogbonna, D.; Deshpande, D.; Srivastava, S.; Gumbo, T. Meta-Analyses and the Evidence Base for Microbial Outcomes in the Treatment of Pulmonary Mycobacterium avium–Intracellulare Complex Disease. J. Antimicrob. Chemother. 2017, 72, i3–i19. [Google Scholar] [CrossRef] [PubMed]
- Haworth, C.; Banks, J.; Capstick, T.; Group, B.T.S.N.G.D. British Thoracic Society Guidelines for the Management of Non-Tuberculous Mycobacterial Pulmonary Disease (NTM-PD). Thorax 2017, 72, ii1–ii64. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Clarke, D.; Long, J.; Chanda, S.; Krause, K.M.; Easom, E.; Talbot, G.; Rubino, C.M.; Molga, A. 1727. Phase 1b Dose-Ranging Study Demonstrates Tolerability and Pharmacokinetics (PK) of Oral Epetraborole at the Predicted Therapeutic Dosage for Mycobacterium avium Complex (MAC) Lung Disease. Open Forum Infect. Dis. 2022, 9, ofac492.1357. [Google Scholar] [CrossRef]
- Meumann, E.M.; Limmathurotsakul, D.; Dunachie, S.J.; Wiersinga, W.J.; Currie, B.J. Burkholderia pseudomallei and Melioidosis. Nat. Rev. Microbiol. 2023, 1–15. [Google Scholar] [CrossRef]
- White, N.J.; Chaowagul, W.; Wuthiekanun, V.; DANCE, D.A.B.; Wattanagoon, Y.; Pitakwatchara, N. Halving of Mortality of Severe Melioidosis by Ceftazidime. Lancet 1989, 334, 697–701. [Google Scholar] [CrossRef]
- Sauerwein, R.W.; Lammers, J.-W.; Horrevorts, A.M. Ceftazidime Monotherapy for Pulmonary Melioidosis in a Traveler Returning from Thailand. Chest 1992, 101, 555–557. [Google Scholar] [CrossRef]
- Cheng, A.C.; Fisher, D.A.; Anstey, N.M.; Stephens, D.P.; Jacups, S.P.; Currie, B.J. Outcomes of Patients with Melioidosis Treated with Meropenem. Antimicrob. Agents Chemother. 2004, 48, 1763–1765. [Google Scholar] [CrossRef] [PubMed]
- Limmathurotsakul, D.; Wongratanacheewin, S.; Teerawattanasook, N.; Wongsuvan, G.; Chaisuksant, S.; Chetchotisakd, P.; Chaowagul, W.; Day, N.P.J.; Peacock, S.J. Increasing Incidence of Human Melioidosis in Northeast Thailand. Am. J. Tropical. Med. Hyg. 2010, 82, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- FDA. In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions. FDA Guid. 2020, 1, 1. [Google Scholar]
- Bowers, G.D.; Tenero, D.; Patel, P.; Huynh, P.; Sigafoos, J.; O’Mara, K.; Young, G.C.; Dumont, E.; Cunningham, E.; Kurtinecz, M.; et al. Disposition and metabolism of GSK2251052 in humans: A novel boron-containing antibiotic. Drug Metab. Dispos. 2013, 41, 1070–1081. [Google Scholar] [CrossRef]
- Niemi, M.; Backman, J.T.; Fromm, M.F.; Neuvonen, P.J.; Kivistö, K.T. Pharmacokinetic Interactions with Rifampicin. Clin. Pharmacokinet. 2003, 42, 819–850. [Google Scholar] [CrossRef]
- Seithel, A.; Eberl, S.; Singer, K.; Auge, D.; Heinkele, G.; Wolf, N.B.; Dörje, F.; Fromm, M.F.; König, J. The Influence of Macrolide Antibiotics on the Uptake of Organic Anions and Drugs Mediated by OATP1B1 and OATP1B3. Drug. Metab. Dispos. 2007, 35, 779–786. [Google Scholar] [CrossRef]
- Burt, H.J.; Galetin, A.; Houston, J.B. IC50-Based Approaches as an Alternative Method for Assessment of Time-Dependent Inhibition of CYP3A4. Xenobiotica 2010, 40, 331–343. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jang, H.; Lee, J.-Y.; Kwon, K.; Oh, S.J.; Kim, S.K. Inhibition of Cytochrome P450 by Ethambutol in Human Liver Microsomes. Toxicol. Lett. 2014, 229, 33–40. [Google Scholar] [CrossRef]
- Pan, X.; Wang, L.; Gründemann, D.; Sweet, D.H. Interaction of Ethambutol with Human Organic Cation Transporters of the SLC22 Family Indicates Potential for Drug-Drug Interactions during Antituberculosis Therapy. Antimicrob. Agents Chemother. 2013, 57, 5053–5059. [Google Scholar] [CrossRef]
- Dong, J.; Liu, Y.; Li, L.; Ding, Y.; Qian, J.; Jiao, Z. Interactions between Meropenem and Renal Drug Transporters. Curr. Drug. Metab. 2022, 23, 423–431. [Google Scholar] [CrossRef]
- Fujita, T.; Urban, T.J.; Leabman, M.K.; Fujita, K.; Giacomini, K.M. Transport of Drugs in the Kidney by the Human Organic Cation Transporter, OCT2 and Its Genetic Variants. J. Pharm. Sci. 2006, 95, 25–36. [Google Scholar] [CrossRef]
- Tenero, D.; Bowers, G.; Rodvold, K.A.; Patel, A.; Kurtinecz, M.; Dumont, E.; Tomayko, J.; Patel, P. Intrapulmonary Pharmacokinetics of GSK2251052 in Healthy Volunteers. Antimicrob. Agents Chemother. 2013, 57, 3334–3339. [Google Scholar] [CrossRef] [PubMed]
- CT.gov NCT05327803—Study of Epetraborole in Patients with Treatment-Refractory MAC Lung Disease. Available online: https://clinicaltrials.gov/study/NCT05327803?intr=epetraborole&rank=4 (accessed on 8 November 2023).
- Artursson, P.; Karlsson, J. Correlation between Oral Drug Absorption in Humans and Apparent Drug Permeability Coefficients in Human Intestinal Epithelial (Caco-2) Cells. Biochem. Biophys. Res. Commun. 1991, 175, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Balimane, P.V.; Han, Y.-H.; Chong, S. Current Industrial Practices of Assessing Permeability and P-Glycoprotein Interaction. AAPS J. 2006, 8, E1–E13. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.; Hirst, B.H.; Simmons, N.L. Drug Absorption Limited by P-Glycoprotein-Mediated Secretory Drug Transport in Human Intestinal Epithelial Caco-2 Cell Layers. Pharm. Res. 1993, 10, 743–749. [Google Scholar] [CrossRef]
- Rautio, J.; Humphreys, J.E.; Webster, L.O.; Balakrishnan, A.; Keogh, J.P.; Kunta, J.R.; Serabjit-Singh, C.J.; Polli, J.W. In Vitro P-Glycoprotein Inhibition Assays for Assessment of Clinical Drug Interaction Potential of New Drug Candidates: A Recommendation for Probe Substrates. Drug. Metab. Dispos. 2006, 34, 786–792. [Google Scholar] [CrossRef]
- Van Breemen, R.B.; Li, Y. Caco-2 Cell Permeability Assays to Measure Drug Absorption. Expert Opin. Drug Metab. Toxicol. 2005, 1, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, A.; Kenny, J.R.; Grime, K. Automated Assessment of Time-Dependent Inhibition of Human Cytochrome P450 Enzymes Using Liquid Chromatography-Tandem Mass Spectrometry Analysis. Drug. Metab. Dispos. 2005, 33, 1637–1647. [Google Scholar] [CrossRef]
14C-EBO (µM) | Treatment (µM) | Incubation Time (Hour) | Efflux Ratio |
---|---|---|---|
1, 10, 100 | Vehicle | 1–4 | <2 |
Cyclosporine A (10) | 1–4 | <2 | |
Verapmil (100) | 1–4 | <2 |
Transporter | EBO as an Inhibitor, IC50 (µM) | EBO as a Substrate | M3 as an Inhibitor, IC50 (µM) | M3 as a Substrate |
---|---|---|---|---|
OATP1B1 | 25% inhibition at 500 µM | No | >250 | No |
OATP1B3 | 21% inhibition at 500 µM | No | >250 | No |
OCT1 | 59% inhibition at 1000 µM | ND | >250 | ND |
OCT2 | 20% inhibition at 1000 µM | Yes | >250 | No |
OAT1 | >1000 | No | >250 | No |
OAT3 | >1000 | No | >1000 | No |
P-gp | 5651 | No | ND | No |
BCRP | 27% inhibition at 1000 µM | No | >500 | No |
MATE1 | >100 | No | >250 | No |
MATE2K | >100 | No | >250 | No |
CYP | Donor | Test Article | Apparent Emax (Fold) | Apparent EC50 (µM) | mRNA Induction Fold in Controls | |
---|---|---|---|---|---|---|
NC | PC | |||||
1A2 | GKJ | EBO (0.3–100 µM) | <2 | NA | 0.94 | 32.07 |
ZEY | <2 | NA | 0.75 | 32.54 | ||
WKF | <2 | NA | 0.71 | 49.02 | ||
2B6 | GKJ | >2.18 | >100 | 1.09 | 6.88 | |
ZEY | <2 | NA | 1.00 | 6.64 | ||
WKF | <2 | NA | 0.84 | 7.45 | ||
3A4 | GKJ | >2.93 | >100 | 0.96 | 87.53 | |
ZEY | <2 | NA | 0.98 | 78.29 | ||
WKF | >2.98 | >100 | 0.89 | 126.49 | ||
1A2 | GKJ | M3 (1–250 µM) | <2 | NA | 0.82 | 31.62 |
ZEY | <2 | NA | 0.74 | 29.34 | ||
WKF | <2 | NA | 0.94 | 56.73 | ||
2B6 | GKJ | <2 | NA | 0.87 | 6.29 | |
ZEY | <2 | NA | 0.87 | 6.86 | ||
WKF | <2 | NA | 0.91 | 9.17 | ||
3A4 | GKJ | <2 | NA | 0.66 | 84.87 | |
ZEY | <2 | NA | 0.87 | 91.32 | ||
WKF | 2.16 | 32.44 | 1.06 | 167.94 |
Enzyme/Transporter | EBO as an Inhibitor IC50 (µM) | M3 as an Inhibitor IC50 (μM) | MDI IC50 Fold Change |
---|---|---|---|
CYP1A2 | 100 (30%) | >1000 | No |
CYP2B6 | >100 | - | No |
CYP2C8 | >100 | >1000 | No |
CYP2C9 | >100 | >1000 | No |
CYP2C19 | >100 | - | No |
CYP2D6 | >100 | >1000 | No |
CYP2E1 | >100 | - | No |
CYP3A4 (Testosterone) | >100 | >1000 | No |
CYP3A4/5 (Midazolam) | >100 | >1000 | No |
CYP3A4/5 (Atorvastatin) | - | >1000 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafiee, A.; Chanda, S. In Vitro Evaluation of Drug–Drug Interaction Potential of Epetraborole, a Novel Bacterial Leucyl-tRNA Synthetase Inhibitor. Pharmaceuticals 2024, 17, 120. https://doi.org/10.3390/ph17010120
Shafiee A, Chanda S. In Vitro Evaluation of Drug–Drug Interaction Potential of Epetraborole, a Novel Bacterial Leucyl-tRNA Synthetase Inhibitor. Pharmaceuticals. 2024; 17(1):120. https://doi.org/10.3390/ph17010120
Chicago/Turabian StyleShafiee, Afshin, and Sanjay Chanda. 2024. "In Vitro Evaluation of Drug–Drug Interaction Potential of Epetraborole, a Novel Bacterial Leucyl-tRNA Synthetase Inhibitor" Pharmaceuticals 17, no. 1: 120. https://doi.org/10.3390/ph17010120
APA StyleShafiee, A., & Chanda, S. (2024). In Vitro Evaluation of Drug–Drug Interaction Potential of Epetraborole, a Novel Bacterial Leucyl-tRNA Synthetase Inhibitor. Pharmaceuticals, 17(1), 120. https://doi.org/10.3390/ph17010120