Development of Novel Micellar-Enhanced High-Throughput Microwell Spectrofluorimetric Method for Quantification of Lorlatinib: Application to In Vitro Drug Release and Analysis of Urine Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Strategy for Method Development
2.2. Optimization of Experimental Conditions
2.2.1. The Impact of Type and Volume of Surfactant
2.2.2. The Impact of pH
2.2.3. Effect of Diluent
2.2.4. Effect of Time
2.3. Method Validation
2.3.1. Linearity and Sensitivity
2.3.2. Accuracy and Precision
2.3.3. Robustness
2.3.4. Specificity
2.4. Applications of the Proposed MW-SFL Method
2.4.1. Analysis of Lorbrena® Tablets and Content Uniformity Testing
2.4.2. In Vitro Drug Release of Lorbrena® Tablets
2.4.3. Analysis of Urine Samples
2.5. Greenness Assessment
3. Materials and methods
3.1. Apparatus
3.2. Reagents and Materials
3.3. Preparation of Standard and Sample Solutions
3.3.1. Standard Solutions
3.3.2. Tablet Sample Solution
3.3.3. Human Urine Samples
3.4. Optimization of Conditions
3.5. Recommended Procedures
3.6. In Vitro Dissolution Testing for Lorbrena® Tablets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Chiang, A.C.; Herbst, R.S. Lung Cancer: New Understandings and Therapies; Springer Nature: New York, NY, USA, 2021. [Google Scholar]
- American Cancer Society. Radiation Therapy for Non-Small Cell Lung Cancer. Available online: https://www.cancer.org/cancer/types/lung-cancer/treating-non-small-cell/radiation-therapy.html (accessed on 24 August 2023).
- Tan, W.; Harris, J.E.; Huq, S. Non-Small Cell Lung Cancer. Available online: http://emedicine.medscape.com/article/279960-overview (accessed on 29 May 2023).
- NSCLC Meta-Analyses Collaborative Group. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: A systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J. Clin. Oncol. 2008, 26, 4617–4625. [Google Scholar] [CrossRef] [PubMed]
- Non-Small Cell Lung Cancer Collaborative Group. Chemotherapy and supportive care versus supportive care alone for advanced non-small cell lung cancer. Cochrane Database Syst. Rev. 2010, 5, CD007309. [Google Scholar] [CrossRef]
- Cohen, M.H.; Williams, G.A.; Sridhara, R.; McGuinn, W.D., Jr.; Morse, D.; Abraham, S.; Rahman, A.; Liang, C.; Lostritto, R.; Baird, A.; et al. United States Food and Drug Administration drug approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin. Cancer Res. 2004, 10, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Cohen, M.; Sridhara, R.; Chen, Y.F.; Williams, G.M.; Duan, J.; Gobburu, J.; Booth, B.; Benson, K.; Leighton, J.; et al. Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. Clin. Cancer Res. 2005, 11, 6414–6421. [Google Scholar] [CrossRef]
- Paulus, V.; Pana-Katatali, H.; Perol, M.; Paget-Bailly, S.; Trinquart, L.; Perol, D.; Calais, F.; Bonnetain, F.; Westeel, V. Maintenance therapy for advanced non-small cell lung cancer (NSCLC). Cochrane Database Syst Rev. 2019, 2019, CD011631. [Google Scholar] [CrossRef]
- Winslow, R.; Loftus, P. Advances Come in War on Cancer. WSJ. Available online: https://www.wsj.com/articles/SB10001424052748704002104575291103764336126 (accessed on 29 May 2023).
- Pfizer. Pfizer Oncology to Present New Clinical Data from Ten Molecules across Multiple Tumor Types. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer_oncology_to_present_new_clinical_data_from_ten_molecules_across_multiple_tumor_types (accessed on 29 May 2023).
- Basit, S.; Ashraf, Z.; Lee, K.; Latif, M. First macrocyclic 3rd-generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. Eur. J. Med. Chem. 2017, 134, 348–356. [Google Scholar] [CrossRef]
- Awad, M.M.; Shaw, A.T. ALK inhibitors in non-small cell lung cancer: Crizotinib and beyond. Clin. Adv. Hematol. Oncol. 2014, 12, 429–439. [Google Scholar]
- U.S. Food & Drug Administration. FDA Approves Lorlatinib for Metastatic ALK-Positive NSCLC. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lorlatinib-metastatic-alk-positive-nsclc (accessed on 29 May 2023).
- European Medicines Agency. Lorviqua: Lorlatinib. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/lorviqua (accessed on 29 May 2023).
- Lorbrena® (Lorlatinib) Tablets, for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/210868s004lbl.pdf (accessed on 29 May 2023).
- Chakravarthi, K.K.; Himabindu, K. RP-HPLC method development and validation for the determination of lorlatinib in bulk and its pharmaceutical formulation. Int. J. Res. Publ. Rev. 2021, 2, 958–963. [Google Scholar]
- Spatari, C.; Li, W.; Schinkel, A.H.; Ragno, G.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Bioanalytical assay for the quantification of the ALK inhibitor lorlatinib in mouse plasma using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2018, 1083, 204–208. [Google Scholar] [CrossRef]
- Chen, W.; Shi, Y.; Qi, S.; Zhou, H.; Li, C.; Jin, D.; Li, G. Pharmacokinetic study and tissue distribution of lorlatinib in mouse serum and tissue samples by liquid chromatography-mass spectrometry. J. Anal. Methods Chem. 2019, 2019, 7574369. [Google Scholar] [CrossRef]
- Sparidans, R.W.; Li, W.; Schinkel, A.H.; Schellens, J.H.M.; Beijnen, J.H. Bioanalytical liquid chromatography-tandem mass spectrometric assay for the quantification of the ALK inhibitors alectinib, brigatinib and lorlatinib in plasma and mouse tissue homogenates. J. Pharm. Biomed. Anal. 2018, 161, 136–143. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, S.P.; de Bruijn, P.; Koolen, S.L.W.; Dingemans, A.C.; Mathijssen, R.H.J.; Veerman, G.D.M. Quantitation of osimertinib, alectinib and lorlatinib in human cerebrospinal fluid by UPLC-MS/MS. J. Pharm. Biomed. Anal. 2023, 225, 115233. [Google Scholar] [CrossRef]
- Li, W.; Perpinioti, N.; Schinkel, A.H.; Beijnen, J.H.; Sparidans, R.W. Bioanalytical assay for the new-generation ROS1/TRK/ALK inhibitor repotrectinib in mouse plasma and tissue homogenate using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 2020, 1144, 122098–122108. [Google Scholar] [CrossRef] [PubMed]
- Darwish, H.W.; Darwish, I.A.; Ali, A.M.; Almutairi, H.S. Charge transfer complex of lorlatinib with chloranilic acid: Characterization and application to the development of a novel 96-microwell spectrophotometric assay with high throughput. Molecules 2023, 28, 3852. [Google Scholar] [CrossRef] [PubMed]
- Al-Hossaini, A.M.; Darwish, I.A.; Darwish, H.W. Novel High-throughput microwell spectrophotometric assay for one-step determination of lorlatinib, a novel potent drug for the treatment of anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer. Medicina 2023, 59, 756. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.J. High throughput analysis enables high throughput experimentation in pharmaceutical process research. React. Chem. Eng. 2019, 4, 1895–1911. [Google Scholar] [CrossRef]
- Ali, M.F.B.; Atia, N.N. Sensitive spectrofluorimetric methods for determination of sitagliptin phosphate, dipeptidyl pepti-dase-4 inhibitor, in pharmaceutical tablets and spiked human urine. Curr. Pharm. Anal. 2018, 14, 483–490. [Google Scholar]
- Syamittra, B.; Parasuraman, S.; Yeng, W.Y.; Ping, W.Y.; Thujithra, J.; Kumar, J.; Dhanaraj, S.A. A review on adverse health effects of laboratory volatile solvents. Int. J. Clin. Ther. Diagn. 2014, 2, 59–63. [Google Scholar]
- Almutairi, H.S.; Alanazi, M.M.; Darwish, I.A.; Bakheit, A.H.; Alshehri, M.M.; Darwish, H.W. Development of novel microwell-based spectrofluorimetry and high-performance liquid chromatography with fluorescence detection methods and high throughput for quantitation of alectinib in bulk powder and urine samples. Medicina 2023, 59, 441. [Google Scholar] [CrossRef]
- Al-Hossaini, A.M.; Darwish, H.W.; Sayed, A.Y.; Khalil, N.Y.; Al-Salahi, R.; Darwish, I.A. Development and validation of a novel microwell-based fluorimetric method assisted with fluorescence plate reader for high-throughput determination of duvelisib: Application to the analysis of capsules and plasma samples. Appl. Sci. 2022, 12, 10460. [Google Scholar] [CrossRef]
- Khalil, N.Y.; Darwish, I.A.; Alanazi, M.; Hamidaddin, M.A. Development of 96-microwell plate assay with fluorescence reader and HPLC method with fluorescence detection for high-throughput analysis of linifanib in its bulk and dosage forms. Curr. Pharm. Anal. 2021, 17, 285–292. [Google Scholar] [CrossRef]
- ChemAxon. Marvin, version 21.19.0; ChemAxon Ltd.: Budapest, Hungary, 2021; Available online: http://www.chemaxon.com (accessed on 12 July 2023).
- Leung, R.; Shah, D.O. Dynamic properties of micellar solutions: I. Effects of short-chain alcohols and polymers on micellar stability. J. Colloid Interface Sci. 1986, 113, 484–499. [Google Scholar] [CrossRef]
- Ding, X.; Han, N.; Wang, J.; Sun, Y.; Ruan, G. Effects of organic solvents on the structures of micellar nanocrystals. RSC Adv. 2017, 7, 16131–16138. [Google Scholar] [CrossRef]
- Nazemi, T.; Sadeghi, R. Effect of polar organic solvents on the surface adsorption and micelle formation of surface active ionic liquid 1-dodecyl-3-methylimidazolium bromide in aqueous solutions and comparison with the traditional cationic surfactant dodecyltrimethylammonium bromide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 462, 271–279. [Google Scholar]
- Miller, J.N.; Miller, J.C. Calibration Methods in Instrumental Analysis: Regression and Correlation, Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education: Harlow, UK, 2010; p. 110. [Google Scholar]
- International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH guideline M10 on Bioanalytical Method Validation EMA/CHMP/ICH/172948/2019, Step 2b, Draft Version. 2019. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m10-bioanalytical-method-validation-step-2b_en.pdf (accessed on 12 July 2023).
- Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green analytical procedure index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-analytical greenness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- FDA, U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry Dissolution Testing of Immediate Release Solid Oral Dosage Forms. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_210868.pdf (accessed on 3 May 2023).
Parameter | Value |
---|---|
Wavelength; λex/λem (nm) | 310/405 |
Linearity range (ng mL−1) | 60–1600 |
Intercept (a) | 73.10 |
Slope (b) | 6.30 |
Correlation coefficient (r) | 0.9994 |
Standard deviation of intercept (Sa) | ±35.40 |
Standard deviation of slope (Sb) | ±0.0453 |
Limit of detection (ng mL−1) | 19 |
Limit of quantification (ng mL−1) | 56 |
Amount Taken (ng mL−1) | % Found | % RSD |
---|---|---|
Intraday | ||
150 | 99.98 ± 0.42 | 0.42 |
800 | 100.25 ± 1.56 | 1.56 |
1500 | 101.34 ± 1.24 | 1.24 |
Interday | ||
150 | 99.02 ± 1.32 | 1.33 |
800 | 101.62 ± 1.42 | 1.42 |
1500 | 102.46 ± 1.35 | 1.35 |
Practical Paramete | Recovery (% ± SD) a |
---|---|
No variation b | 99.92 ± 0.85 |
pH variation | |
1.8 | 99.81 ± 1.31 |
2.2 | 98.24 ± 2.04 |
Buffer volume (µL) | |
38 | 98.19 ± 1.19 |
42 | 101.86 ± 1.44 |
Bulk Powder | Tablets | Urine | ||||||
---|---|---|---|---|---|---|---|---|
Taken Conc. (ng mL−1) | Found Conc. (ng mL−1) | Recovery (%) | Added Conc. (ng mL−1) | Found Conc. (ng mL−1) | Recovery (%) | Added Conc. (ng mL−1) | Found Conc. (ng mL−1) | Recovery (%) |
60 | 59.95 | 99.92 | 60 | 59.36 | 98.94 | 60 | 61.62 | 102.70 |
100 | 99.47 | 99.47 | 100 | 99.47 | 99.47 | 75 | 72.30 | 96.40 |
200 | 199.73 | 99.87 | 200 | 198.01 | 99.00 | 100 | 101.35 | 101.35 |
Mean | 99.75 | Mean | 99.14 | Mean | 100.15 | |||
±SD | 0.25 | ±SD | 0.29 | ±SD | 3.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hossaini, A.M.; Darwish, H.W.; Bakheit, A.H.; Darwish, I.A. Development of Novel Micellar-Enhanced High-Throughput Microwell Spectrofluorimetric Method for Quantification of Lorlatinib: Application to In Vitro Drug Release and Analysis of Urine Samples. Pharmaceuticals 2023, 16, 1260. https://doi.org/10.3390/ph16091260
Al-Hossaini AM, Darwish HW, Bakheit AH, Darwish IA. Development of Novel Micellar-Enhanced High-Throughput Microwell Spectrofluorimetric Method for Quantification of Lorlatinib: Application to In Vitro Drug Release and Analysis of Urine Samples. Pharmaceuticals. 2023; 16(9):1260. https://doi.org/10.3390/ph16091260
Chicago/Turabian StyleAl-Hossaini, Abdullah M., Hany W. Darwish, Ahmed H. Bakheit, and Ibrahim A. Darwish. 2023. "Development of Novel Micellar-Enhanced High-Throughput Microwell Spectrofluorimetric Method for Quantification of Lorlatinib: Application to In Vitro Drug Release and Analysis of Urine Samples" Pharmaceuticals 16, no. 9: 1260. https://doi.org/10.3390/ph16091260
APA StyleAl-Hossaini, A. M., Darwish, H. W., Bakheit, A. H., & Darwish, I. A. (2023). Development of Novel Micellar-Enhanced High-Throughput Microwell Spectrofluorimetric Method for Quantification of Lorlatinib: Application to In Vitro Drug Release and Analysis of Urine Samples. Pharmaceuticals, 16(9), 1260. https://doi.org/10.3390/ph16091260