Study of Oncolytic Virus Preservation and Formulation
Abstract
:1. Introduction
2. Types of Oncolytic Virus
3. Viral Degradation Factors
4. Chemical Factors
4.1. pH
4.2. Surface Adsorption
4.3. Thermal Stress
4.4. Oxidation and Other Factors
5. Physical Factors
Freeze–Thaw Damage
6. Types of Stabilizers
6.1. Buffers
6.2. Penetrant and Cryoprotectant
6.3. Surfactant
6.4. Free Radical Scavenger
6.5. Bulking Agent
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial. Nat. Med. 2022, 28, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Melcher, A.; Harrington, K.; Vile, R. Oncolytic virotherapy as immunotherapy. Science 2021, 374, 1325–1326. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, M.; Huang, Y. Oncolytic therapy and gene therapy for cancer: Recent advances in antitumor effects of Newcastle disease virus. Discov. Med. 2020, 30, 39–48. [Google Scholar] [PubMed]
- Ungerechts, G.; Bossow, S.; Leuchs, B.; Holm, P.S.; Rommelaere, J.; Coffey, M.; Coffin, R.; Bell, J.; Nettelbeck, D.M. Moving oncolytic viruses into the clinic: Clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol. Ther. Methods Clin. Dev. 2016, 3, 16018. [Google Scholar] [CrossRef] [Green Version]
- Design and Analysis of Shedding Studies for Virus or Bacteria-Based Gene Therapy and Oncolytic. 5. Products. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/imlygic (accessed on 30 May 2023).
- Abla, K.K.; Mehanna, M.M. Freeze-drying: A flourishing strategy to fabricate stable pharmaceutical and biological products. Int. J. Pharm. 2022, 628, 122233. [Google Scholar] [CrossRef]
- Sonje, J.; Thakral, S.; Krueger, S.; Suryanarayanan, R. Reversible Self-Association in Lactate Dehydrogenase during Freeze-Thaw in Buffered Solutions Using Neutron Scattering. Mol. Pharm. 2021, 18, 4459–4474. [Google Scholar] [CrossRef]
- Joshi, P.U.; Meingast, C.L.; Xu, X.; Holstein, M.; Feroz, H.; Ranjan, S.; Ghose, S.; Li, Z.J.; Heldt, C.L. Virus inactivation at moderately low pH varies with virus and buffer properties. Biotechnol. J. 2022, 17, e2100320. [Google Scholar] [CrossRef]
- Rexroad, J.; Evans, R.K.; Middaugh, C.R. Effect of pH and ionic strength on the physical stability of adenovirus type 5. J. Pharm. Sci. 2006, 95, 237–247. [Google Scholar] [CrossRef]
- Kayser, V.; Françon, A.; Pinton, H.; Saluzzo, J.F.; Trout, B.L. Rational design of rabies vaccine formulation for enhanced stability. Turk. J. Med. Sci. 2017, 47, 987–995. [Google Scholar] [CrossRef]
- Srivastava, A.; Mallela, K.M.G.; Deorkar, N.; Brophy, G. Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors. J. Pharm. Sci. 2021, 110, 2609–2624. [Google Scholar] [CrossRef]
- Cook, M.; Chauhan, A. Clinical Application of Oncolytic Viruses: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 7505. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Ismail, R.; Puzanov, I. Intratumoral Immunotherapy-Update 2019. Oncologist 2020, 25, e423–e438. [Google Scholar] [CrossRef] [PubMed]
- Moehler, M.; Heo, J.; Lee, H.C.; Tak, W.Y.; Chao, Y.; Paik, S.W.; Yim, H.J.; Byun, K.S.; Baron, A.; Ungerechts, G.; et al. Vaccinia-based oncolytic immunotherapy Pexastimogene Devacirepvec in patients with advanced hepatocellular carcinoma after sorafenib failure: A randomized multicenter Phase IIb trial (TRAVERSE). Oncoimmunology 2019, 8, 1615817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deininger, S.; Törzsök, P.; Mitterberger, M.; Pallauf, M.; Oswald, D.; Deininger, C.; Lusuardi, L. From Interferon to Checkpoint Inhibition Therapy-A Systematic Review of New Immune-Modulating Agents in Bacillus Calmette-Guérin (BCG) Refractory Non-Muscle-Invasive Bladder Cancer (NMIBC). Cancers 2022, 14, 694. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, S.; Fukuhara, H.; Todo, T. Oncolytic virus therapy in Japan: Progress in clinical trials and future perspectives. Jpn. J. Clin. Oncol. 2019, 49, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Carson, S.D.; Hafenstein, S.; Lee, H. MOPS and coxsackievirus B3 stability. Virology 2017, 501, 183–187. [Google Scholar] [CrossRef]
- Kumru, O.S.; Joshi, S.B.; Thapa, P.; Pheasey, N.; Bullock, P.S.; Bashiri, H.; Siska, C.S.; Kerwin, B.A.; He, F.; Volkin, D.B.; et al. Characterization of an oncolytic herpes simplex virus drug candidate. J. Pharm. Sci. 2015, 104, 485–494. [Google Scholar] [CrossRef]
- Croyle, M.A.; Cheng, X.; Wilson, J.M. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther. 2001, 8, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Pandharipande, P.; Bhowmik, T.; Singh, N. Considerations for Buffering Agent Selection for Frozen rAAV2 Mediated Gene Therapy Products. J. Pharm. Sci. 2021, 110, 3535–3539. [Google Scholar] [CrossRef]
- Tedeschi, G.; Mangiagalli, M.; Chmielewska, S.; Lotti, M.; Natalello, A.; Brocca, S. Aggregation properties of a disordered protein are tunable by pH and depend on its net charge per residue. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2543–2550. [Google Scholar] [CrossRef] [PubMed]
- Wiethoff, C.M.; Wodrich, H.; Gerace, L.; Nemerow, G.R. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J. Virol. 2005, 79, 1992–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, W.; Xing, Z.; Song, Y.; Huang, C.; Xu, X.; Ghose, S.; Li, Z.J. Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification. MAbs 2019, 11, 1479–1491. [Google Scholar] [CrossRef] [PubMed]
- Schlehuber, L.D.; McFadyen, I.J.; Shu, Y.; Carignan, J.; Duprex, W.P.; Forsyth, W.R.; Ho, J.H.; Kitsos, C.M.; Lee, G.Y.; Levinson, D.A.; et al. Towards ambient temperature-stable vaccines: The identification of thermally stabilizing liquid formulations for measles virus using an innovative high-throughput infectivity assay. Vaccine 2011, 29, 5031–5039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shtykova, E.V.; Petoukhov, M.V.; Dadinova, L.A.; Fedorova, N.V.; Tashkin, V.Y.; Timofeeva, T.A.; Ksenofontov, A.L.; Loshkarev, N.A.; Baratova, L.A.; Jeffries, C.M.; et al. Correction for Shtykova et al., “Solution Structure, Self-Assembly, and Membrane Interactions of the Matrix Protein from Newcastle Disease Virus at Neutral and Acidic pH”. J. Virol. 2021, 95, e0058021. [Google Scholar] [CrossRef]
- Pérez-Illana, M.; Martín-González, N.; Hernando-Pérez, M.; Condezo, G.N.; Gallardo, J.; Menéndez, M.; Martín, C.S.; de Pablo, P.J. Acidification induces condensation of the adenovirus core. Acta Biomater. 2021, 135, 534–542. [Google Scholar] [CrossRef]
- Madavaraju, K.; Koganti, R.; Volety, I.; Yadavalli, T.; Shukla, D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front. Cell. Infect. Microbiol. 2020, 10, 617578. [Google Scholar] [CrossRef]
- Cui, Y.; Peng, R.; Song, H.; Tong, Z.; Qu, X.; Liu, S.; Zhao, X.; Chai, Y.; Wang, P.; Gao, G.F.; et al. Molecular basis of Coxsackievirus A10 entry using the two-in-one attachment and uncoating receptor KRM1. Proc. Natl. Acad. Sci. USA 2020, 117, 18711–18718. [Google Scholar] [CrossRef]
- Nyberg-Hoffman, C.; Aguilar-Cordova, E. Instability of adenoviral vectors during transport and its implication for clinical studies. Nat. Med. 1999, 5, 955–957. [Google Scholar] [CrossRef]
- Rexroad, J.; Martin, T.T.; McNeilly, D.; Godwin, S.; Middaugh, C.R. Thermal stability of adenovirus type 2 as a function of pH. J. Pharm. Sci. 2006, 95, 1469–1479. [Google Scholar] [CrossRef]
- Seth, P.; Willingham, M.C.; Pastan, I. Binding of adenovirus and its external proteins to Triton X-114. Dependence on pH. J. Biol. Chem. 1985, 260, 14431–14434. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Joshi, S.B.; Moore, D.D.; Shinogle, H.E.; Ohtake, S.; Lechuga-Ballesteros, D.; Martin, R.A.; Truong-Le, V.L.; Middaugh, C.R. Using spectroscopic and microscopic methods to probe the structural stability of human adenovirus type 4. Hum. Vaccin. 2010, 6, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Weed, D.J.; Pritchard, S.M.; Gonzalez, F.; Aguilar, H.C.; Nicola, A.V. Mildly Acidic pH Triggers an Irreversible Conformational Change in the Fusion Domain of Herpes Simplex Virus 1 Glycoprotein B and Inactivation of Viral Entry. J. Virol. 2017, 91, e02123-16. [Google Scholar] [CrossRef] [Green Version]
- Fumagalli, M.J.; Capato, C.F.; de Castro-Jorge, L.A.; de Souza, W.M.; Arruda, E.; Figueiredo, L.T.M. Stability of SARS-CoV-2 and other airborne viruses under different stress conditions. Arch. Virol. 2022, 167, 183–187. [Google Scholar] [CrossRef]
- Evans, R.K.; Nawrocki, D.K.; Isopi, L.A.; Williams, D.M.; Casimiro, D.R.; Chin, S.; Chen, M.; Zhu, D.-M.; Shiver, J.W.; Volkin, D.B. Development of stable liquid formulations for adenovirus-based vaccines. J. Pharm. Sci. 2004, 93, 2458–2475. [Google Scholar] [CrossRef] [PubMed]
- Armanious, A.; Aeppli, M.; Jacak, R.; Refardt, D.; Sigstam, T.; Kohn, T.; Sander, M. Viruses at Solid-Water Interfaces: A Systematic Assessment of Interactions Driving Adsorption. Env. Environ. Sci. Technol. 2016, 50, 732–743. [Google Scholar] [CrossRef]
- Bastin, G.; Gantzer, C.; Sautrey, G. New method to quantify hydrophobicity of non-enveloped virions in aqueous media by capillary zone electrophoresis. Virology 2022, 568, 23–30. [Google Scholar] [CrossRef]
- Armanious, A.; Mezzenga, R. A Roadmap for Building Waterborne Virus Traps. JACS Au 2022, 2, 2205–2221. [Google Scholar] [CrossRef]
- Meister, S.; Prunotto, A.; Dal Peraro, M.; Kohn, T. Salt Enhances the Thermostability of Enteroviruses by Stabilizing Capsid Protein Interfaces. J. Virol. 2020, 94, e02176-19. [Google Scholar] [CrossRef]
- Chi, E.Y.; Krishnan, S.; Randolph, T.W.; Carpenter, J.F. Physical stability of proteins in aqueous solution: Mechanism and driving forces in nonnative protein aggregation. Pharm. Res. 2003, 20, 1325–1336. [Google Scholar] [CrossRef]
- Clénet, D.; Vinit, T.; Soulet, D.; Maillet, C.; Guinet-Morlot, F.; Saulnier, A. Biophysical virus particle specific characterization to sharpen the definition of virus stability. Eur. J. Pharm. Biopharm. 2018, 132, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, M.; Andreozzi, P.; Paulose, J.; D’Alicarnasso, M.; Cagno, V.; Donalisio, M.; Civra, A.; Broeckel, R.M.; Haese, N.; Silva, P.J.; et al. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat. Commun. 2016, 7, 13520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui-Le, L.; Brogan, A.P.S.; Hallett, J.P. Solvent-free liquid avidin as a step toward cold chain elimination. Biotechnol. Bioeng. 2021, 118, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, A.; Zarraga, I.E.; Demeule, B. Characterization of Polysorbate Ester Fractions and Implications in Protein Drug Product Stability. Mol. Pharm. 2020, 17, 2345–2353. [Google Scholar] [CrossRef] [PubMed]
- Powell, T.; Knight, M.J.; O’Hara, J.; Burkitt, W. Discovery of a Photoinduced Histidine-Histidine Cross-Link in an IgG4 Antibody. J. Am. Soc. Mass. Spectrom. 2020, 31, 1233–1240. [Google Scholar] [CrossRef]
- Wu, Y.; Levons, J.; Narang, A.S.; Raghavan, K.; Rao, V.M. Reactive impurities in excipients: Profiling, identification and mitigation of drug-excipient incompatibility. AAPS PharmSciTech. 2011, 12, 1248–1263. [Google Scholar] [CrossRef] [Green Version]
- Katz, J.S.; Nolin, A.; Yezer, B.A.; Jordan, S. Dynamic Properties of Novel Excipient Suggest Mechanism for Improved Performance in Liquid Stabilization of Protein Biologics. Mol. Pharm. 2019, 16, 282–291. [Google Scholar] [CrossRef]
- Lee, H.J.; McAuley, A.; Schilke, K.F.; McGuire, J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv. Drug. Deliv. Rev. 2011, 63, 1160–1171. [Google Scholar] [CrossRef]
- Caliaro, O.; Marti, A.; Ruprecht, N.; Leisi, R.; Subramanian, S.; Hafenstein, S.; Ros, C. Parvovirus B19 Uncoating Occurs in the Cytoplasm without Capsid Disassembly and It Is Facilitated by Depletion of Capsid-Associated Divalent Cations. Viruses 2019, 11, 430. [Google Scholar] [CrossRef] [Green Version]
- Deck, L.T.; Ochsenbein, D.R.; Mazzotti, M. Stochastic ice nucleation governs the freezing process of biopharmaceuticals in vials. Int. J. Pharm. 2022, 625, 122051. [Google Scholar] [CrossRef]
- Seifert, I.; Bregolin, A.; Fissore, D.; Friess, W. Method development and analysis of the water content of the maximally freeze concentrated solution suitable for protein lyophilisation. Eur. J. Pharm. Biopharm. 2020, 153, 36–42. [Google Scholar] [CrossRef]
- Thakral, S.; Sonje, J.; Munjal, B.; Suryanarayanan, R. Stabilizers and their interaction with formulation components in frozen and freeze-dried protein formulations. Adv. Drug. Deliv. Rev. 2021, 173, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bluemel, O.; Anuschek, M.; Buecheler, J.W.; Hoelzl, G.; Bechtold-Peters, K.; Friess, W. The effect of mAb and excipient cryoconcentration on long-term frozen storage stability-Part 1: Higher molecular weight species and subvisible particle formation. Int. J. Pharm. X 2022, 4, 100108. [Google Scholar] [CrossRef] [PubMed]
- Kadji, F.M.N.; Kotani, K.; Tsukamoto, H.; Hiraoka, Y.; Hagiwara, K. Stability of enveloped and nonenveloped viruses in hydrolyzed gelatin liquid formulation. Virol. J. 2022, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Sonje, J.; Chisholm, C.F.; Suryanarayanan, R. Frozen storage of proteins: Use of mannitol to generate a homogenous freeze-concentrate. Int. J. Pharm. 2023, 630, 121995. [Google Scholar] [CrossRef]
- Zhai, S.; Hansen, R.K.; Taylor, R.; Skepper, J.N.; Sanches, R.; Slater, N.K. Effect of freezing rates and excipients on the infectivity of a live viral vaccine during lyophilization. Biotechnol. Prog. 2004, 20, 1113–1120. [Google Scholar] [CrossRef]
- Hauptmann, A.; Hoelzl, G.; Loerting, T. Distribution of Protein Content and Number of Aggregates in Monoclonal Antibody Formulation After Large-Scale Freezing. AAPS PharmSciTech. 2019, 20, 72. [Google Scholar] [CrossRef] [Green Version]
- Kasper, J.C.; Friess, W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur. J. Pharm. Biopharm. 2011, 78, 248–263. [Google Scholar] [CrossRef]
- Minatovicz, B.; Sansare, S.; Mehta, T.; Bogner, R.H.; Chaudhuri, B. Large-Scale Freeze-Thaw of Protein Solutions: Study of the Relative Contributions of Freeze-Concentration and Ice Surface Area on Stability of Lactate Dehydrogenase. J. Pharm. Sci. 2023, 112, 482–491. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, Q.; Chen, T.; Zhang, Y.; Yuan, W.; Xu, J.; Zhang, X. Freeze-Drying Formulations Increased the Adenovirus and Poxvirus Vaccine Storage Times and Antigen Stabilities. Virol. Sin. 2021, 36, 365–372. [Google Scholar] [CrossRef]
- Berg, A.; Wright, D.; Dulal, P.; Stedman, A.; Fedosyuk, S.; Francis, M.J.; Charleston, B.; Warimwe, G.M.; Douglas, A.D. Stability of Chimpanzee Adenovirus Vectored Vaccines (ChAdOx1 and ChAdOx2) in Liquid and Lyophilised Formulations. Vaccines 2021, 9, 1249. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhou, X. Freeze-Drying of Proteins. Methods Mol. Biol. 2021, 2180, 683–702. [Google Scholar] [PubMed]
- Thorat, A.A.; Suryanarayanan, R. Characterization of Phosphate Buffered Saline (PBS) in Frozen State and after Freeze-Drying. Pharm. Res. 2019, 36, 98. [Google Scholar] [CrossRef]
- Ukidve, A.; Rembert, K.B.; Vanipenta, R.; Dorion, P.; Lafarguette, P.; McCoy, T.; Saluja, A.; Suryanarayanan, R.; Patke, S. Succinate Buffer in Biologics Products: Real-world Formulation Considerations, Processing Risks and Mitigation Strategies. J. Pharm. Sci. 2023, 112, 138–147. [Google Scholar] [CrossRef]
- Sundaramurthi, P.; Suryanarayanan, R. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: Relevance to frozen state stabilization. J. Phys. Chem. B 2011, 115, 7154–7164. [Google Scholar] [CrossRef] [PubMed]
- Krausková, Ľ.; Procházková, J.; Klašková, M.; Filipová, L.; Chaloupková, R.; Malý, S.; Damborský, J.; Heger, D. Suppression of protein inactivation during freezing by minimizing pH changes using ionic cryoprotectants. Int. J. Pharm. 2016, 509, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Imrichová, K.; Veselý, L.; Gasser, T.M.; Loerting, T.; Neděla, V.; Heger, D. Vitrification and increase of basicity in between ice I(h) crystals in rapidly frozen dilute NaCl aqueous solutions. J. Chem. Phys. 2019, 151, 014503. [Google Scholar] [CrossRef] [Green Version]
- Bee, J.S.; Zhang, Y.; Finkner, S.; O'Berry, K.; Kaushal, A.; Phillippi, M.K.; DePaz, R.A.; Webber, K.; Marshall, T. Mechanistic Studies and Formulation Mitigations of Adeno-associated Virus Capsid Rupture During Freezing and Thawing: Mechanisms of Freeze/Thaw Induced AAV Rupture. J. Pharm. Sci. 2022, 111, 1868–1878. [Google Scholar] [CrossRef]
- Thorat, A.A.; Munjal, B.; Geders, T.W.; Suryanarayanan, R. Freezing-induced protein aggregation—Role of pH shift and potential mitigation strategies. J. Control Release 2020, 323, 591–599. [Google Scholar] [CrossRef]
- Tan, M.; Ding, Z.; Mei, J.; Xie, J. Effect of cellobiose on the myofibrillar protein denaturation induced by pH changes during freeze-thaw cycles. Food Chem. 2022, 373, 131511. [Google Scholar] [CrossRef]
- Horowitz, E.D.; Rahman, K.S.; Bower, B.D.; Dismuke, D.J.; Falvo, M.R.; Griffith, J.D.; Harvey, S.C.; Asokan, A. Biophysical and ultrastructural characterization of adeno-associated virus capsid uncoating and genome release. J. Virol. 2013, 87, 2994–3002. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, M.; Mondal, J. Heterogeneous Impacts of Protein-Stabilizing Osmolytes on Hydrophobic Interaction. J. Phys. Chem. B 2018, 122, 6922–6930. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.S.; Krishna, S.; Khan, S.; Dar, T.A.; Khan, K.A.; Singh, L.R. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int. J. Biol. Macromol. 2021, 177, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Rydeen, A.E.; Brustad, E.M.; Pielak, G.J. Osmolytes and Protein-Protein Interactions. J. Am. Chem. Soc. 2018, 140, 7441–7444. [Google Scholar] [CrossRef]
- Olsen, S.N.; Ramløv, H.; Westh, P. Effects of osmolytes on hexokinase kinetics combined with macromolecular crowding: Test of the osmolyte compatibility hypothesis towards crowded systems. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 148, 339–345. [Google Scholar] [CrossRef]
- Kumru, O.S.; Saleh-Birdjandi, S.; Antunez, L.R.; Sayeed, E.; Robinson, D.; Worm, S.V.D.; Diemer, G.S.; Perez, W.; Caposio, P.; Früh, K.; et al. Stabilization and formulation of a recombinant Human Cytomegalovirus vector for use as a candidate HIV-1 vaccine. Vaccine 2019, 37, 6696–6706. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Shen, Z.; Zhang, C.; Yi, Y.; Zhu, K.; Xu, F.; Kong, W. Development of a Stable Liquid Formulation for Live Attenuated Influenza Vaccine. J. Pharm. Sci. 2019, 108, 2315–2322. [Google Scholar] [CrossRef]
- Cotmore, S.F.; Tattersall, P. Mutations at the base of the icosahedral five-fold cylinders of minute virus of mice induce 3’-to-5’ genome uncoating and critically impair entry functions. J. Virol. 2012, 86, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Madan, M.; Sikriwal, D.; Sharma, G.; Shukla, N.; Mandyal, A.K.; Kale, S.; Gill, D. Rational design of heat stable lyophilized rotavirus vaccine formulations. Hum. Vaccin. Immunother. 2018, 14, 2132–2141. [Google Scholar] [CrossRef]
- Ruokolainen, V.; Domanska, A.; Laajala, M.; Pelliccia, M.; Butcher, S.J.; Marjomäki, V. Extracellular Albumin and Endosomal Ions Prime Enterovirus Particles for Uncoating That Can Be Prevented by Fatty Acid Saturation. J. Virol. 2019, 93, e00599-19. [Google Scholar] [CrossRef] [Green Version]
- Majumder, A.; Basak, S.; Raha, T.; Chowdhury, S.P.; Chattopadhyay, D.; Roy, S. Effect of osmolytes and chaperone-like action of P-protein on folding of nucleocapsid protein of Chandipura virus. J. Biol. Chem. 2001, 276, 30948–30955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gencoglu, M.F.; Heldt, C.L. Enveloped virus flocculation and removal in osmolyte solutions. J. Biotechnol. 2015, 206, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Gajardo-Parra, N.F.; Akrofi-Mantey, H.O.; Ascani, M.; Cea-Klapp, E.; Garrido, J.M.; Sadowski, G.; Held, C. Osmolyte effect on enzymatic stability and reaction equilibrium of formate dehydrogenase. Phys. Chem. Chem. Phys. 2022, 24, 27930–27939. [Google Scholar] [CrossRef] [PubMed]
- Isaev, N.; Steinhoff, H.J. Protein and solutes freeze-concentration in water/glycerol mixtures revealed by pulse EPR. Eur. J. Pharm. Biopharm. 2021, 169, 44–51. [Google Scholar] [CrossRef]
- Olgenblum, G.I.; Sapir, L.; Harries, D. Properties of Aqueous Trehalose Mixtures: Glass Transition and Hydrogen Bonding. J. Chem. Theory Comput. 2020, 16, 1249–1262. [Google Scholar] [CrossRef]
- Weber, D.; Hubbuch, J. Raman spectroscopy as a process analytical technology to investigate biopharmaceutical freeze concentration processes. Biotechnol. Bioeng. 2021, 118, 4708–4719. [Google Scholar] [CrossRef]
- Correia, R.; Meneses, L.; Richheimer, C.; Alves, P.M.; Carrondo, M.J.; Duarte, A.R.C.; Paiva, A.; Roldão, A. Improved storage of influenza HA-VLPs using a trehalose-glycerol natural deep eutectic solvent system. Vaccine 2021, 39, 3279–3286. [Google Scholar] [CrossRef]
- Hauptmann, A.; Hoelzl, G.; Loerting, T. Optical cryomicroscopy and differential scanning calorimetry of buffer solutions containing cryoprotectants. Eur. J. Pharm. Biopharm. 2021, 163, 127–140. [Google Scholar] [CrossRef]
- Wang, Q.; Shalaev, E. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors. AAPS PharmSciTech 2018, 19, 1477–1482. [Google Scholar] [CrossRef]
- Hauptmann, A.; Podgoršek, K.; Kuzman, D.; Srčič, S.; Hoelzl, G.; Loerting, T. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing. Pharm Res. 2018, 35, 101. [Google Scholar] [CrossRef] [Green Version]
- Shin, W.J.; Hara, D.; Gbormittah, F.; Chang, H.; Chang, B.S.; Jung, J.U. Development of Thermostable Lyophilized Sabin Inactivated Poliovirus Vaccine. mBio 2018, 9, e02287-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Jin, Y.; Menon, R.; Laskowich, E.; Bareford, L.; de Vilmorin, P.; Kolwyck, D.; Yeung, B.; Yi, L. Characterization of Polysorbate 80 by Liquid Chromatography-Mass Spectrometry to Understand Its Susceptibility to Degradation and Its Oxidative Degradation Pathway. J. Pharm. Sci. 2022, 111, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, M.; Blech, M.; Presser, I.; Garidel, P. Polysorbate degradation in biotherapeutic formulations: Identification and discussion of current root causes. Int. J. Pharm. 2018, 552, 422–436. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.R.; Wei, Y.; Prajapati, I.; Chakraborty, A.; Peters, B.; Kalonia, C.; Hudak, S.; Choudhary, S.; Esfandiary, R.; Dhar, P.; et al. Comparison of Polysorbate 80 Hydrolysis and Oxidation on the Aggregation of a Monoclonal Antibody. J. Pharm. Sci. 2020, 109, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Glücklich, N.; Dwivedi, M.; Carle, S.; Buske, J.; Mäder, K.; Garidel, P. An in-depth examination of fatty acid solubility limits in biotherapeutic protein formulations containing polysorbate 20 and polysorbate 80. Int. J. Pharm. 2020, 591, 119934. [Google Scholar] [CrossRef]
- Grabarek, A.D.; Bozic, U.; Rousel, J.; Menzen, T.; Kranz, W.; Wuchner, K.; Jiskoot, W.; Hawe, A. What Makes Polysorbate Functional? Impact of Polysorbate 80 Grade and Quality on IgG Stability During Mechanical Stress. J. Pharm. Sci. 2020, 109, 871–880. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, M.; Buske, J.; Haemmerling, F.; Blech, M.; Garidel, P. Acidic and alkaline hydrolysis of polysorbates under aqueous conditions: Towards understanding polysorbate degradation in biopharmaceutical formulations. Eur. J. Pharm. Sci. 2020, 144, 105211. [Google Scholar] [CrossRef]
- Brovč, E.V.; Mravljak, J.; Šink, R.; Pajk, S. Degradation of polysorbates 20 and 80 catalysed by histidine chloride buffer. Eur. J. Pharm. Biopharm. 2020, 154, 236–245. [Google Scholar] [CrossRef]
- Schmidt, A.; Koulov, A.; Huwyler, J.; Mahler, H.C.; Jahn, M. Stabilizing Polysorbate 20 and 80 Against Oxidative Degradation. J. Pharm. Sci. 2020, 109, 1924–1932. [Google Scholar] [CrossRef]
- Bollenbach, L.; Buske, J.; Mäder, K.; Garidel, P. Poloxamer 188 as surfactant in biological formulations—An alternative for polysorbate 20/80? Int. J. Pharm. 2022, 620, 121706. [Google Scholar] [CrossRef]
- Kannan, A.; Shieh, I.C.; Fuller, G.G. Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations. J. Colloid. Interface Sci. 2019, 550, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.G.; Katz, J.S.; Ma, H.; Putterman, M.; Yezer, B.A.; Petermann, O.; Reineke, T.M. Effects of Hydrophobic Tail Length Variation on Surfactant-Mediated Protein Stabilization. Mol. Pharm. 2020, 17, 4302–4311. [Google Scholar] [CrossRef] [PubMed]
- Kanthe, A.D.; Carnovale, M.R.; Katz, J.S.; Jordan, S.; Krause, M.E.; Zheng, S.; Ilott, A.; Ying, W.; Bu, W.; Bera, M.K.; et al. Differential Surface Adsorption Phenomena for Conventional and Novel Surfactants Correlates with Changes in Interfacial mAb Stabilization. Mol. Pharm. 2022, 19, 3100–3113. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Yan, Z.; Zhang, L.; Sun, P. Discovery and reduction of tryptophan oxidation-induced IgG1 fragmentation in a polysorbate 80-dependent manner. Eur. J. Pharm. Biopharm. 2022, 173, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Thakral, S.; Sonje, J.; Munjal, B.; Bhatnagar, B.; Suryanarayanan, R. Mannitol as an Excipient for Lyophilized Injectable Formulations. J. Pharm. Sci. 2023, 112, 19–35. [Google Scholar] [CrossRef]
- Zuo, X.X.; Zhao, Y.H.; Zhou, M.X.; Deng, B.H.; Hu, L.G.; Lv, F.; Lu, Y.; Hou, J.-B. Live vaccine preserved at room temperature: Preparation and characterization of a freeze-dried classical swine fever virus vaccine. Vaccine 2020, 38, 8371–8378. [Google Scholar] [CrossRef]
- Kasraian, K.; Spitznagel, T.M.; Juneau, J.A.; Yim, K. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy. Pharm. Dev. Technol. 1998, 3, 233–239. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Rego, P.; Geraldes, V.; Connor, L.E.; Oswald, I.D.H.; Sztucki, M.; Shalaev, E. Mannitol Crystallization at Sub-Zero Temperatures: Time/Temperature-Resolved Synchrotron X-ray Diffraction Study and the Phase Diagram. J. Phys. Chem. Lett. 2021, 12, 1453–1460. [Google Scholar] [CrossRef]
- Sonje, J.; Thakral, S.; Suryanarayanan, R. t-Butanol Enables Dual Functionality of Mannitol: A Cryoprotectant in Frozen Systems and Bulking Agent in Freeze-Dried Formulations. Mol. Pharm. 2020, 17, 3075–3086. [Google Scholar] [CrossRef]
- Thakral, S.; Koranne, S.; Suryanarayanan, R. Intra-Vial Heterogeneity in Physical Form of Mannitol in Colyophilized Binary Systems. Pharm. Res. 2018, 35, 214. [Google Scholar] [CrossRef]
- Horn, J.; Schanda, J.; Friess, W. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates. Eur. J. Pharm. Biopharm. 2018, 127, 342–354. [Google Scholar] [CrossRef] [PubMed]
Virus Type | Aggregation of Viruses | Nucleocapsid Transition Temperature | Nucleocapsid Dissociation | Referencs |
---|---|---|---|---|
Adenovirus type 5 | Virus aggregates extensively at pH 4–5 and to a lesser extent at pH 6 | The transition temperature increases as pH 8–4 decreases | The lowered pH (pH 5) destabilizes the Ad capsid and causes protein dissociation from the capsid apex | [9,23] |
Adenovirus type 2 | Extensive virus aggregation at pH 3–4 and rapid loss of virus activity at pH5 | The transition temperature increases as pH 8–5 decreases | Weak acidic pH induces amphiphilicity of adenovirus capsid proteins and may help Ad2 escape from acidic endocytic vesicles | [31,32] |
Adenovirus type 4 | The transition temperature increases as pH 8–4 decreases | [33] | ||
Herpes simplex virus | Aggregation tendency increases at pH 5.5–6 | The transition temperature increases as pH 8–5.5 decreases | (pH 5–6) Low pH-triggered conformational changes of gB are reversible, although irreversible low-pH inactivation | [19,34] |
Measles virus | Widespread aggregation of pH 4–5 viruses | The overall transition temperature decreases as pH 8–4 decreases, Tm is 50 °C at pH 6 and 7, Tm is 47 at pH 8. | [25] | |
Coxsackie virus | More stable in acidic and neutral conditions than in alkaline conditions | Does not trigger stripping shells in both acidic and neutral environments | [29,35] | |
Newcastle disease virus | Promotion of viral matrix proteolysis under acidic conditions at pH 4 | [26] |
Buffer (Concentration) | Excipients | Storage Conditions | Process | Reference |
---|---|---|---|---|
50 mM sodium phosphate solution and potassium phosphate solution | Ionic cryoprotectants (e.g. TMACl) | 77 K | With the addition of 0.1M TMACl, the pH of the sodium phosphate solution decreased from 7.5 to 7.1 after freezing, and the pH of the potassium phosphate solution remained unchanged. | [67] |
Disodium hydrogen phosphate-potassium dihydrogen phosphate buffer | Sucrose | −20 °C | The pH decreased from 7.4 to 4.3 when sucrose was not added, and only decreased by 1.1 when sucrose was added. | [69] |
Sodium phosphate buffer | −20 °C | Buffer pH is 7.2, concentration less than 14mM, pH only about 1 pH lower | [69] | |
Phosphate buffer solution (PBS) | Seaweed sugar or mannitol | −20 °C | The pH decreased significantly (~4.3 units) when the PBS solution was frozen. The addition of as co-solvent to PBS reduced the magnitude of pH drift to ~1.7 units. | [64] |
25 mM succinic acid buffer | Sucrose | −20 °C | The increase in pH from 5.0 to 6.2 during freezing was attenuated by the addition of only 2% sucrose, while higher concentrations (4% and 8% sucrose) had a better inhibitory effect on the pH change. | [65] |
100 mM phosphate buffer solution | Fibrous disaccharides | −25 °C | The addition of fibrous disaccharides attenuated the pH drift on cooling (~1.0 unit decrease in pH), and no evidence of buffer salt crystallization or protein aggregation was observed. Decreasing the buffer concentration to 10 mM also maintained pH stability | [70] |
Surface Adsorbent | Advantages | Disadvantages |
---|---|---|
Polysorbate 20 | Nonionic surfactants are superior to ionic surfactants and have better anti-polymerization effects Polysorbate 20 does not contain any unsaturation or sites prone to autoxidation. It is economically accessible and more comprehensively studied. | Slowest adsorption rate to surfaces compared to the other three surfactants Forms faster particle formation for formulations containing PS20 compared to those containing PS80 Release of free fatty acids by enzymatic hydrolysis of PS20 |
Polysorbate 80 | Economical and easy to obtain with comprehensive research. Anti-adsorption ability is better than PS20 | The PS80 formulation was shown to contain aldehydes, ketones, hydrogen peroxide and ROOH, with oxidation preferentially occurring at the double bonds of fatty acid chains, which predisposes to autoxidation and peroxide formation. Hydrolysis to form particles |
Poloxamer 188 | P188 is slightly more effective than PS20 in preventing co-adsorption | A number of biologics are now beginning to replace polysorbate with Poloxamer 188, but there is still little research on Poloxamer 188. Its use as a parenteral excipient in protein formulations is much less extensive than that of polysorbate 20 and polysorbate 80 |
FM1000 | Easy to structure and simple synthesis steps. Its stabilization of the interface is 1–2 orders of magnitude faster than the other three surfactants, especially when exposed to stirring pressure and new interfaces FM1000 blocks a larger percentage of the interfacial area than PS80 The lower volume FM1000 surface concentration is sufficient to prevent protein adsorption to the Fewer protein particles are formed in the presence of FM1000. To achieve the same surface adsorption capacity PS concentration has to be higher | Compared to polysorbate 20 and polysorbate 80, its use as a parenteral excipient in protein formulations is much less extensive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Liu, X.; Fan, D.; Qian, Z.; Sun, X.; Wu, P.; Zhong, L. Study of Oncolytic Virus Preservation and Formulation. Pharmaceuticals 2023, 16, 843. https://doi.org/10.3390/ph16060843
Pan L, Liu X, Fan D, Qian Z, Sun X, Wu P, Zhong L. Study of Oncolytic Virus Preservation and Formulation. Pharmaceuticals. 2023; 16(6):843. https://doi.org/10.3390/ph16060843
Chicago/Turabian StylePan, Lina, Xiyu Liu, Dianfa Fan, Zhangbo Qian, Xinjun Sun, Pan Wu, and Liping Zhong. 2023. "Study of Oncolytic Virus Preservation and Formulation" Pharmaceuticals 16, no. 6: 843. https://doi.org/10.3390/ph16060843
APA StylePan, L., Liu, X., Fan, D., Qian, Z., Sun, X., Wu, P., & Zhong, L. (2023). Study of Oncolytic Virus Preservation and Formulation. Pharmaceuticals, 16(6), 843. https://doi.org/10.3390/ph16060843