Evaluation of Sex Differences in Preclinical Pharmacology Research: How Far Is Left to Go?
Abstract
:1. Therapeutic Agent Development Is a Significant Challenge
2. Methods of Research
3. Gender-Specific Pharmacokinetics and Pharmacodynamics
4. The Current Standard Practice of Pharmacological Preclinical Research
5. Why the Sex Bias Exists (and It Is Very Robust)
6. Excursus on Preclinical Pharmacology Research: Sex Disaggregated Data or Not?
Ref # | First Author | Year | Journal | Topic |
---|---|---|---|---|
[38] | Song, D. | 2018 | Pharmaceutical Research | Inflammation |
[102] | Jaster, A.M. | 2022 | Neuroscience Letters | Psychiatry |
[103] | Craft, R.M. | 2013 | Life Sciences | Cannabinoid |
[104] | McGregor, I.S. | 2007 | British Journal of Pharmacology | Cannabinoid |
[105] | Cooper, Z.D. | 2018 | Neuropsychopharmacology | Cannabinoid |
[106] | Wiley, J.L. | 2017 | Drug and Alcohol Dependence | Cannabinoid |
[107] | Craft, R.M. | 2013 | Pain | Cannabinoid |
[108] | Winsauer, P.J. | 2012 | Pharmacology, Biochemistry and Behavior | Cannabinoid |
[109] | Wiley, J.L. | 2011 | Behavioural Pharmacology | Cannabinoid |
[110] | Wiley, J.L. | 2021 | Progress in Neuro-Psychopharmacology & Biological Psychiatry | Cannabinoid |
[111] | Blake, D.R. | 2006 | Rheumatology (Oxford) | Cannabinoid |
[112] | Johnson, J.R. | 2013 | Journal of Pain and Symptom Management | Cannabinoid |
[113] | Nahin, R.L. | 2012 | The Journal of Pain | Pain |
[114] | Riley, J.L. | 1998 | Pain | Pain |
[115] | Aubrun, F. | 2005 | Anesthesiology | Analgesia |
[116] | LaFleur, R.A. | 2018 | Neuroreport | Cannabinoid |
[117] | Kopruszinski, C.M. | 2021 | Cellular and Molecular Neurobiology | Analgesia |
[118] | Pacini, G. | 2013 | Journal of Diabetes Research | Endocrinology |
[119] | Nyavor, Y. | 2019 | Cell and Tissue Research | Endocrinology |
[120] | Kaikaew, K. | 2019 | Endocrinology | Endocrinology |
[121] | Pettersson, U.S. | 2012 | PLoS One | Endocrinology |
[122] | Rebolledo-Solleiro, D. | 2018 | Physiology and Behavior | Endocrinology |
[123] | Bartke, A. | 1973 | Endocrinology | Endocrinology |
[124] | Beery, A.K. | 2018 | Current Opinion in Behavioral Sciences | Endocrinology |
[125] | Kennard, M.R. | 2022 | Diabetes, Obesity and Metabolism | Endocrinology |
[129] | Sachs, S. | 2021 | Diabetes, Obesity and Metabolism | Endocrinology |
[130] | Kremer, J.J. | 2015 | Journal of Pharmacological and Toxicological Methods | Cardiology |
[131] | Bourdi, M. | 2020 | Regulatory Toxicology and Pharmacology | Cancer |
[132] | Ewertz, M. | 2015 | Acta Oncologica | Cancer |
[133] | Kotaka, M. | 2020 | Cancer Chemotherapy and Pharmacology | Cancer |
[134] | Minami, T. | 2020 | European Journal of Pharmacology | Cancer |
[135] | Earp, J.C. | 2009 | Pharmaceutical Research | Rheumatology |
[136] | Dubois, D.C. | 2008 | Journal of Pharmacology and Experimental Therapeutics | Rheumatology |
[137] | Earp, J.C. | 2008 | Journal of Pharmacology and Experimental Therapeutics | Rheumatology |
[138] | Fletcher, C.V. | 2014 | Proceedings of the National Academy of Sciences | Antiretroviral drugs |
[139] | Thompson, C.G. | 2015 | Antimicrobial Agents and Chemotherapy | Antiretroviral drugs |
[140] | Cottrell, M.L. | 2016 | The Journal of Infectious Diseases | Antiretroviral drugs |
[141] | Dimopoulos, Y. | 2017 | Current HIV/AIDS Reports | Antiretroviral drugs |
[142] | Burgunder, E. | 2019 | Journal of Pharmacology and Experimental Therapeutics | Antiretroviral drugs |
7. Why There Is the Need to Include Female Models
8. What Risks May Arise from Continuing Female Exclusion from Experimental Design
9. What about Transgender Models?
10. Take Home Message
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tamimi, N.A.; Ellis, P. Drug development: From concept to marketing! Nephron Clin. Pract. 2009, 113, c125–c131. [Google Scholar] [CrossRef] [PubMed]
- Polson, A.G.; Fuji, R.N. The successes and limitations of preclinical studies in predicting the pharmacodynamics and safety of cell-surface-targeted biological agents in patients. Br. J. Pharmacol. 2012, 166, 1600–1602. [Google Scholar] [CrossRef] [PubMed]
- Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature 2014, 509, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Sharman, Z.; Vissandjée, B.; Stewart, D.E. Does a change in health research funding policy related to the integration of sex and gender have an impact? PLoS ONE 2014, 9, e99900. [Google Scholar] [CrossRef]
- Kim, J.Y.; Min, K.; Paik, H.Y.; Lee, S.K. Sex omission and male bias are still widespread in cell experiments. Am. J. Physiol. Cell Physiol. 2021, 320, C742–C749. [Google Scholar] [CrossRef]
- Haverfield, J.; Tannenbaum, C. A 10-year longitudinal evaluation of science policy interventions to promote sex and gender in health research. Health Res. Policy Syst. 2021, 19, 94. [Google Scholar] [CrossRef]
- Karp, N.A.; Reavey, N. Sex bias in preclinical research and an exploration of how to change the status quo. Br. J. Pharmacol. 2019, 176, 4107–4118. [Google Scholar] [CrossRef]
- Docherty, J.R.; Stanford, S.C.; Panattieri, R.A.; Alexander, S.P.H.; Cirino, G.; George, C.H.; Hoyer, D.; Izzo, A.A.; Ji, Y.; Lilley, E.; et al. Sex: A change in our guidelines to authors to ensure that this is no longer an ignored experimental variable. Br. J. Pharmacol. 2019, 176, 4081–4086. [Google Scholar] [CrossRef]
- Gogos, A.; Langmead, C.; Sullivan, J.C.; Lawrence, A.J. The importance of sex differences in pharmacology research. Br. J. Pharmacol. 2019, 176, 4087–4089. [Google Scholar] [CrossRef]
- Beierle, I.; Meibohm, B.; Derendorf, H. Gender differences in pharmacokinetics and pharmacodynamics. Int. J. Clin. Pharmacol. Ther. 1999, 37, 529–547. [Google Scholar]
- Bies, R.R.; Bigos, K.L.; Pollock, B.G. Gender differences in the pharmacokinetics and pharmacodynamics of antidepressants. J. Gend. Specif. Med. 2003, 6, 12–20. [Google Scholar] [PubMed]
- Bigos, K.L.; Pollock, B.G.; Stankevich, B.A.; Bies, R.R. Sex differences in the pharmacokinetics and pharmacodynamics of antidepressants: An updated review. Gend. Med. 2009, 6, 522–543. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L. Confounding factors for sex differences in pharmacokinetics and pharmacodynamics: Focus on dosing regimen, dosage form, and formulation. Clin. Pharmacol. Ther. 2005, 78, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, K.; Potter, W.Z. Gender differences in pharmacokinetics and pharmacodynamics of psychotropics: Focus on women. Psychopharmacol. Bull. 1991, 27, 417–426. [Google Scholar] [PubMed]
- Dawkins, K.; Rudorfer, M.V.; Potter, W.Z. Comments on gender differences in pharmacokinetics and pharmacodynamics. Am. J. Psychiatry 1993, 150, 678–679. [Google Scholar] [CrossRef]
- Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex differences in pharmacokinetics and pharmacodynamics. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 499–523. [Google Scholar] [CrossRef]
- Marazziti, D.; Baroni, S.; Picchetti, M.; Piccinni, A.; Carlini, M.; Vatteroni, E.; Falaschi, V.; Lombardi, A.; Dell’Osso, L. Pharmacokinetics and pharmacodynamics of psychotropic drugs: Effect of sex. CNS Spectr. 2013, 18, 118–127. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V. Sex and gender differences in pharmacotherapy. Bundesgesundh. Gesundh. Gesundh. 2014, 57, 1067–1073. [Google Scholar] [CrossRef]
- Zucker, I.; Prendergast, B.J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex Differ. 2020, 11, 32. [Google Scholar] [CrossRef]
- Fletcher, C.V.; Acosta, E.P.; Strykowski, J.M. Gender differences in human pharmacokinetics and pharmacodynamics. J. Adolesc. Health 1994, 15, 619–629. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I. Sex Impact on Biomarkers, Pharmacokinetics and Pharmacodynamics. Curr. Med. Chem. 2017, 24, 2561–2575. [Google Scholar] [CrossRef] [PubMed]
- Frost, C.E.; Song, Y.; Shenker, A.; Wang, J.; Barrett, Y.C.; Schuster, A.; Harris, S.I.; LaCreta, F. Effects of age and sex on the single-dose pharmacokinetics and pharmacodynamics of apixaban. Clin. Pharmacokinet. 2015, 54, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.D. Gender differences in pharmacological response. Int. Rev. Neurobiol. 2008, 83, 1–10. [Google Scholar] [CrossRef]
- Anthony, M.; Berg, M.J. Biologic and molecular mechanisms for sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics: Part II. J. Womens Health Gend. Based Med. 2002, 11, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Flores Pérez, J.; Juárez Olguín, H.; Flores Pérez, C.; Pérez Guillé, G.; Guillé Pérez, A.; Camacho Vieyra, A.; Toledo López, A.; Carrasco Portugal, M.; Lares Asseff, I. Effects of gender and phase of the menstrual cycle on the kinetics of ranitidine in healthy volunteers. Chronobiol. Int. 2003, 20, 485–494. [Google Scholar]
- Franconi, F.; Brunelleschi, S.; Steardo, L.; Cuomo, V. Gender differences in drug responses. Pharmacol. Res. 2007, 55, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Carru, C.; Spoletini, I.; Malorni, W.; Vella, S.; Mercuro, G.; Deidda, M.; Rosano, G. A GENS-based approach to cardiovascular pharmacology: Impact on metabolism, pharmacokinetics and pharmacodynamics. Ther. Deliv. 2011, 2, 1437–1453. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Harmatz, J.S.; von Moltke, L.L.; Wright, C.E.; Shader, R.I. Age and gender effects on the pharmacokinetics and pharmacodynamics of triazolam, a cytochrome P450 3A substrate. Clin. Pharmacol. Ther. 2004, 76, 467–479. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Harmatz, J.S.; Singh, N.N.; Steinberg, F.; Roth, T.; Moline, M.L.; Harris, S.C.; Kapil, R.P. Gender differences in pharmacokinetics and pharmacodynamics of zolpidem following sublingual administration. J. Clin. Pharmacol. 2014, 54, 282–290. [Google Scholar] [CrossRef]
- Gupta, S.K.; Atkinson, L.; Tu, T.; Longstreth, J.A. Age and gender related changes in stereoselective pharmacokinetics and pharmacodynamics of verapamil and norverapamil. Br. J. Clin. Pharmacol. 1995, 40, 325–331. [Google Scholar] [CrossRef]
- Harris, R.Z.; Benet, L.Z.; Schwartz, J.B. Gender effects in pharmacokinetics and pharmacodynamics. Drugs 1995, 50, 222–239. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.L.; Samant, S.; Lesko, L.J.; Schmidt, S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin. Pharmacokinet. 2015, 54, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Krecic-Shepard, M.E.; Barnas, C.R.; Slimko, J.; Jones, M.P.; Schwartz, J.B. Gender-specific effects on verapamil pharmacokinetics and pharmacodynamics in humans. J. Clin. Pharmacol. 2000, 40, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Han, K.S.; Lee, M.G. Gender differences in pharmacokinetics and pharmacodynamics of azosemide in rats. Biopharm. Drug Dispos. 1999, 20, 225–229. [Google Scholar] [CrossRef]
- Luzier, A.B.; Killian, A.; Wilton, J.H.; Wilson, M.F.; Forrest, A.; Kazierad, D.J. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin. Pharmacol. Ther. 1999, 66, 594–601. [Google Scholar] [CrossRef]
- Patrick, K.S.; Straughn, A.B.; Minhinnett, R.R.; Yeatts, S.D.; Herrin, A.E.; DeVane, C.L.; Malcolm, R.; Janis, G.C.; Markowitz, J.S. Influence of ethanol and gender on methylphenidate pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 2007, 81, 346–353. [Google Scholar] [CrossRef]
- Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef]
- Song, D.; DuBois, D.C.; Almon, R.R.; Jusko, W.J. Modeling Sex Differences in Anti-inflammatory Effects of Dexamethasone in Arthritic Rats. Pharm. Res. 2018, 35, 203. [Google Scholar] [CrossRef]
- Swan, S.K.; Hursting, M.J. The pharmacokinetics and pharmacodynamics of argatroban: Effects of age, gender, and hepatic or renal dysfunction. Pharmacotherapy 2000, 20, 318–329. [Google Scholar] [CrossRef]
- Tamargo, J.; Rosano, G.; Walther, T.; Duarte, J.; Niessner, A.; Kaski, J.C.; Ceconi, C.; Drexel, H.; Kjeldsen, K.; Savarese, G.; et al. Gender differences in the effects of cardiovascular drugs. Eur. Heart J. Cardiovasc. Pharmacother. 2017, 3, 163–182. [Google Scholar] [CrossRef]
- Thürmann, P.A.; Hompesch, B.C. Influence of gender on the pharmacokinetics and pharmacodynamics of drugs. Int. J. Clin. Pharmacol. Ther. 1998, 36, 586–590. [Google Scholar] [PubMed]
- Ueno, K.; Sato, H. Sex-related differences in pharmacokinetics and pharmacodynamics of anti-hypertensive drugs. Hypertens. Res. 2012, 35, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Vachharajani, N.N.; Raymond, R.H.; Shyu, W.C.; Stouffer, B.C.; Boulton, D.W. The effects of age and gender on the pharmacokinetics and pharmacodynamics in healthy subjects of the plasminogen activator, lanoteplase. Br. J. Clin. Pharmacol. 2011, 72, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Yonkers, K.A.; Kando, J.C.; Cole, J.O.; Blumenthal, S. Gender differences in pharmacokinetics and pharmacodynamics of psychotropic medication. Am. J. Psychiatry 1992, 149, 587–595. [Google Scholar] [CrossRef]
- Yoon, S.; Jeong, S.; Jung, E.; Kim, K.S.; Jeon, I.; Lee, Y.; Cho, J.Y.; Oh, W.Y.; Chung, J.Y. Effect of CYP3A4 metabolism on sex differences in the pharmacokinetics and pharmacodynamics of zolpidem. Sci. Rep. 2021, 11, 19150. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Carru, C.; Malorni, W.; Vella, S.; Mercuro, G. The effect of sex/gender on cardiovascular pharmacology. Curr. Pharm. Des. 2011, 17, 1095–1107. [Google Scholar] [CrossRef]
- Anderson, G.D. Pregnancy-induced changes in pharmacokinetics: A mechanistic-based approach. Clin. Pharmacokinet. 2005, 44, 989–1008. [Google Scholar] [CrossRef]
- Spoletini, I.; Vitale, C.; Malorni, W.; Rosano, G.M. Sex differences in drug effects: Interaction with sex hormones in adult life. In Sex and Gender Differences in Pharmacology; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 2014, pp. 91–105. [Google Scholar] [CrossRef]
- Moyer, A.M.; Matey, E.T.; Miller, V.M. Individualized medicine: Sex, hormones, genetics, and adverse drug reactions. Pharmacol. Res. Perspect. 2019, 7, e00541. [Google Scholar] [CrossRef]
- Mitchell, S.C.; Smith, R.L.; Waring, R.H. The menstrual cycle and drug metabolism. Curr. Drug Metab. 2009, 10, 499–507. [Google Scholar] [CrossRef]
- Figueiredo, M.G.; Gagliano-Jucá, T.; Basaria, S. Male Reproduction and Aging. Endocrinol. Metab. Clin. N. Am. 2023, 52, 211–228. [Google Scholar] [CrossRef]
- Wu, F.C.; Tajar, A.; Pye, S.R.; Silman, A.J.; Finn, J.D.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.; Forti, G.; Giwercman, A.; et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: The European Male Aging Study. J. Clin. Endocrinol. Metab. 2008, 93, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Bawor, M.; Bami, H.; Dennis, B.B.; Plater, C.; Worster, A.; Varenbut, M.; Daiter, J.; Marsh, D.C.; Steiner, M.; Anglin, R.; et al. Testosterone suppression in opioid users: A systematic review and meta-analysis. Drug Alcohol Depend. 2015, 149, 1–9. [Google Scholar] [CrossRef] [PubMed]
- de Vries, F.; Bruin, M.; Lobatto, D.J.; Dekkers, O.M.; Schoones, J.W.; van Furth, W.R.; Pereira, A.M.; Karavitaki, N.; Biermasz, N.R.; Zamanipoor Najafabadi, A.H. Opioids and Their Endocrine Effects: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2020, 105, 1020–1029. [Google Scholar] [CrossRef]
- Zhou, J.; Argikar, U.A.; Remmel, R.P. Functional analysis of UGT1A4(P24T) and UGT1A4(L48V) variant enzymes. Pharmacogenomics 2011, 12, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Kharasch, E.D.; Mautz, D.; Senn, T.; Lentz, G.; Cox, K. Menstrual cycle variability in midazolam pharmacokinetics. J. Clin. Pharmacol. 1999, 39, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.K.; Laboy-Goral, L.; Scott, N.; Morse, T.; Apseloff, G. Pharmacokinetics and safety of oral eletriptan during different phases of the menstrual cycle in healthy volunteers. J. Clin. Pharmacol. 2001, 41, 1339–1344. [Google Scholar] [CrossRef]
- Beery, A.K.; Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 2011, 35, 565–572. [Google Scholar] [CrossRef]
- Prendergast, B.J.; Onishi, K.G.; Zucker, I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Yoon, D.Y.; Mansukhani, N.A.; Stubbs, V.C.; Helenowski, I.B.; Woodruff, T.K.; Kibbe, M.R. Sex bias exists in basic science and translational surgical research. Surgery 2014, 156, 508–516. [Google Scholar] [CrossRef]
- Taylor, K.E.; Vallejo-Giraldo, C.; Schaible, N.S.; Zakeri, R.; Miller, V.M. Reporting of sex as a variable in cardiovascular studies using cultured cells. Biol. Sex Differ. 2011, 2, 11. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Ponamgi, S.P.; Shrivastava, S.; Sundaragiri, P.R.; Miller, V.M. Reporting of sex as a variable in cardiovascular studies using cultured cells: A systematic review. FASEB J. 2020, 34, 8778–8786. [Google Scholar] [CrossRef] [PubMed]
- Maselli, A.; Matarrese, P.; Straface, E.; Canu, S.; Franconi, F.; Malorni, W. Cell sex: A new look at cell fate studies. FASEB J. 2009, 23, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Angiolillo, D.J.; Cushman, M.; Sabatine, M.S.; Bray, P.F.; Smyth, S.S.; Dauerman, H.L.; French, P.A.; Becker, R.C. Platelet biology and response to antiplatelet therapy in women: Implications for the development and use of antiplatelet pharmacotherapies for cardiovascular disease. J. Am. Coll. Cardiol. 2012, 59, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V. Sex and gender differences in health. Science & Society Series on Sex and Science. EMBO Rep. 2012, 13, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Legato, M.J. Gender-specific medicine in the genomic era. Clin. Sci. 2016, 130, 1–7. [Google Scholar] [CrossRef]
- Li, J.; Ma, Z.; Jiang, R.W.; Wu, B. Hormone-related pharmacokinetic variations associated with anti-breast cancer drugs. Expert Opin. Drug Metab. Toxicol. 2013, 9, 1085–1095. [Google Scholar] [CrossRef]
- Damoiseaux, V.A.; Proost, J.H.; Jiawan, V.C.; Melgert, B.N. Sex differences in the pharmacokinetics of antidepressants: Influence of female sex hormones and oral contraceptives. Clin. Pharmacokinet. 2014, 53, 509–519. [Google Scholar] [CrossRef]
- Romano, S.N.; Gorelick, D.A. Crosstalk between nuclear and G protein-coupled estrogen receptors. Gen. Comp. Endocrinol. 2018, 261, 190–197. [Google Scholar] [CrossRef]
- Hernandez, J.P.; Mota, L.C.; Huang, W.; Moore, D.D.; Baldwin, W.S. Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR). Toxicology 2009, 256, 53–64. [Google Scholar] [CrossRef]
- Nugent, B.M.; McCarthy, M.M. Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology 2011, 93, 150–158. [Google Scholar] [CrossRef]
- Trout, K.K.; Rickels, M.R.; Schutta, M.H.; Petrova, M.; Freeman, E.W.; Tkacs, N.C.; Teff, K.L. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: A pilot study. Diabetes Technol. Ther. 2007, 9, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Bilik, D.; McEwen, L.N.; Brown, M.B.; Pomeroy, N.E.; Kim, C.; Asao, K.; Crosson, J.C.; Duru, O.K.; Ferrara, A.; Hsiao, V.C.; et al. Thiazolidinediones and fractures: Evidence from translating research into action for diabetes. J. Clin. Endocrinol. Metab. 2010, 95, 4560–4565. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Raparelli, V.; Regitz-Zagrosek, V. Sex and gender landscape in pharmacology. Pharmacol. Res. 2017, 123, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Cvitanović Tomaš, T.; Urlep, Ž.; Moškon, M.; Mraz, M.; Rozman, D. Computational Model: Sexual Aspects in Hepatic Metabolism and Abnormalities. Front. Physiol. 2018, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Rozman, D.; Belič, A. SteatoNet: The first integrated human metabolic model with multi-layered regulation to investigate liver-associated pathologies. PLoS Comput. Biol. 2014, 10, e1003993. [Google Scholar] [CrossRef]
- Thiele, I.; Sahoo, S.; Heinken, A.; Hertel, J.; Heirendt, L.; Aurich, M.K.; Fleming, R.M. Personalized whole-body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 2020, 16, e8982. [Google Scholar] [CrossRef]
- Nokkala, S.; Grozeva, S.; Kuznetsova, V.; Maryanska-Nadachowska, A. The origin of the achiasmatic XY sex chromosome system in Cacopsylla peregrina (Frst.) (Psylloidea, Homoptera). Genetica 2003, 119, 327–332. [Google Scholar] [CrossRef]
- Nokkala, S.; Kuznetsova, V.; Maryańska-Nadachowska, A. Achiasmate segregation of a B chromosome from the X chromosome in two species of psyllids (Psylloidea, Homoptera). Genetica 2000, 108, 181–189. [Google Scholar] [CrossRef]
- Fraïsse, C.; Picard, M.A.L.; Vicoso, B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 2017, 8, 1486. [Google Scholar] [CrossRef]
- Leclercq, S.; Thézé, J.; Chebbi, M.A.; Giraud, I.; Moumen, B.; Ernenwein, L.; Grève, P.; Gilbert, C.; Cordaux, R. Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome. Proc. Natl. Acad. Sci. USA 2016, 113, 15036–15041. [Google Scholar] [CrossRef]
- Lyon, M.F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 1961, 190, 372–373. [Google Scholar] [CrossRef]
- Furman, B.L.S.; Metzger, D.C.H.; Darolti, I.; Wright, A.E.; Sandkam, B.A.; Almeida, P.; Shu, J.J.; Mank, J.E. Sex Chromosome Evolution: So Many Exceptions to the Rules. Genome Biol. Evol. 2020, 12, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Karp, N.A.; Mason, J.; Beaudet, A.L.; Benjamini, Y.; Bower, L.; Braun, R.E.; Brown, S.D.M.; Chesler, E.J.; Dickinson, M.E.; Flenniken, A.M.; et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 2017, 8, 15475. [Google Scholar] [CrossRef] [PubMed]
- Wolbold, R.; Klein, K.; Burk, O.; Nüssler, A.K.; Neuhaus, P.; Eichelbaum, M.; Schwab, M.; Zanger, U.M. Sex is a major determinant of CYP3A4 expression in human liver. Hepatology 2003, 38, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.M.; Westerkam, W.R.; Stave, G.M. Effect of age and gender on the activity of human hepatic CYP3A. Biochem. Pharmacol. 1992, 44, 275–283. [Google Scholar] [CrossRef]
- Clodfelter, K.H.; Holloway, M.G.; Hodor, P.; Park, S.H.; Ray, W.J.; Waxman, D.J. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol. Endocrinol. 2006, 20, 1333–1351. [Google Scholar] [CrossRef]
- Clodfelter, K.H.; Miles, G.D.; Wauthier, V.; Holloway, M.G.; Zhang, X.; Hodor, P.; Ray, W.J.; Waxman, D.J. Role of STAT5a in regulation of sex-specific gene expression in female but not male mouse liver revealed by microarray analysis. Physiol. Genom. 2007, 31, 63–74. [Google Scholar] [CrossRef]
- Yang, X.; Schadt, E.E.; Wang, S.; Wang, H.; Arnold, A.P.; Ingram-Drake, L.; Drake, T.A.; Lusis, A.J. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006, 16, 995–1004. [Google Scholar] [CrossRef]
- Robertson, J.A.; Haldosén, L.A.; Wood, T.J.; Steed, M.K.; Gustafsson, J.A. Growth hormone pretranslationally regulates the sexually dimorphic expression of the prolactin receptor gene in rat liver. Mol. Endocrinol. 1990, 4, 1235–1239. [Google Scholar] [CrossRef]
- Wauthier, V.; Waxman, D.J. Sex-specific early growth hormone response genes in rat liver. Mol. Endocrinol. 2008, 22, 1962–1974. [Google Scholar] [CrossRef]
- Shapiro, B.H.; Agrawal, A.K.; Pampori, N.A. Gender differences in drug metabolism regulated by growth hormone. Int. J. Biochem. Cell Biol. 1995, 27, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Hersman, E.M.; Bumpus, N.N. A targeted proteomics approach for profiling murine cytochrome P450 expression. J. Pharmacol. Exp. Ther. 2014, 349, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Emanuele, M.A.; Wezeman, F.; Emanuele, N.V. Alcohol’s effects on female reproductive function. Alcohol Res. Health 2002, 26, 274–281. [Google Scholar] [PubMed]
- Becker, J.B.; Cha, J.H. Estrous cycle-dependent variation in amphetamine-induced behaviors and striatal dopamine release assessed with microdialysis. Behav. Brain Res. 1989, 35, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Becker, J.B. Effects of sex and estrogen on behavioral sensitization to cocaine in rats. J. Neurosci. 2003, 23, 693–699. [Google Scholar] [CrossRef]
- Hughes, R.N. Sex does matter: Comments on the prevalence of male-only investigations of drug effects on rodent behaviour. Behav. Pharmacol. 2007, 18, 583–589. [Google Scholar] [CrossRef]
- Becker, J.B.; Molenda, H.; Hummer, D.L. Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann. N. Y. Acad. Sci. 2001, 937, 172–187. [Google Scholar] [CrossRef]
- Becker, J.B.; Hu, M. Sex differences in drug abuse. Front. Neuroendocrinol. 2008, 29, 36–47. [Google Scholar] [CrossRef]
- Berry, A.; Raggi, C.; Borgi, M.; Cirulli, F. Sex-driven vulnerability in stress and drug abuse. Ann. Ist. Super. Sanita 2016, 52, 167–175. [Google Scholar] [CrossRef]
- Anker, J.J.; Carroll, M.E. Females are more vulnerable to drug abuse than males: Evidence from preclinical studies and the role of ovarian hormones. In Biological Basis of Sex Differences in Psychopharmacology; Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2011; Volume 8, pp. 73–96. [Google Scholar] [CrossRef]
- Jaster, A.M.; Younkin, J.; Cuddy, T.; de la Fuente Revenga, M.; Poklis, J.L.; Dozmorov, M.G.; González-Maeso, J. Differences across sexes on head-twitch behavior and 5-HT. Neurosci. Lett. 2022, 788, 136836. [Google Scholar] [CrossRef]
- Craft, R.M.; Marusich, J.A.; Wiley, J.L. Sex differences in cannabinoid pharmacology: A reflection of differences in the endocannabinoid system? Life Sci. 2013, 92, 476–481. [Google Scholar] [CrossRef] [PubMed]
- McGregor, I.S.; Arnold, J.C. Cannabis reward: Biased towards the fairer sex? Br. J. Pharmacol. 2007, 152, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Cooper, Z.D.; Craft, R.M. Sex-Dependent Effects of Cannabis and Cannabinoids: A Translational Perspective. Neuropsychopharmacology 2018, 43, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Wiley, J.L.; Lefever, T.W.; Marusich, J.A.; Craft, R.M. Comparison of the discriminative stimulus and response rate effects of. Drug Alcohol Depend. 2017, 172, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Craft, R.M.; Kandasamy, R.; Davis, S.M. Sex differences in anti-allodynic, anti-hyperalgesic and anti-edema effects of Δ9-tetrahydrocannabinol in the rat. Pain 2013, 154, 1709–1717. [Google Scholar] [CrossRef]
- Winsauer, P.J.; Filipeanu, C.M.; Bailey, E.M.; Hulst, J.L.; Sutton, J.L. Ovarian hormones and chronic administration during adolescence modify the discriminative stimulus effects of delta-9-tetrahydrocannabinol (Δ9-THC) in adult female rats. Pharmacol. Biochem. Behav. 2012, 102, 442–449. [Google Scholar] [CrossRef]
- Wiley, J.L.; Matthew Walentiny, D.; Vann, R.E.; Baskfield, C.Y. Dissimilar cannabinoid substitution patterns in mice trained to discriminate Δ9-tetrahydrocannabinol or methanandamide from vehicle. Behav. Pharmacol. 2011, 22, 480–488. [Google Scholar] [CrossRef]
- Wiley, J.L.; Barrus, D.G.; Farquhar, C.E.; Lefever, T.W.; Gamage, T.F. Sex, species and age: Effects of rodent demographics on the pharmacology of ∆9-tetrahydrocanabinol. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 106, 110064. [Google Scholar] [CrossRef]
- Blake, D.R.; Robson, P.; Ho, M.; Jubb, R.W.; McCabe, C.S. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis. Rheumatology 2006, 45, 50–52. [Google Scholar] [CrossRef]
- Johnson, J.R.; Lossignol, D.; Burnell-Nugent, M.; Fallon, M.T. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. J. Pain Symptom Manag. 2013, 46, 207–218. [Google Scholar] [CrossRef]
- Nahin, R.L. Estimates of pain prevalence and severity in adults: United States, 2012. J. Pain 2015, 16, 769–780. [Google Scholar] [CrossRef]
- Riley, J.L.; Robinson, M.E.; Wise, E.A.; Myers, C.D.; Fillingim, R.B. Sex differences in the perception of noxious experimental stimuli: A meta-analysis. Pain 1998, 74, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Aubrun, F.; Salvi, N.; Coriat, P.; Riou, B. Sex- and age-related differences in morphine requirements for postoperative pain relief. Anesthesiology 2005, 103, 156–160. [Google Scholar] [CrossRef]
- LaFleur, R.A.; Wilson, R.P.; Morgan, D.J.; Henderson-Redmond, A.N. Sex differences in antinociceptive response to Δ9-tetrahydrocannabinol and CP 55,940 in the mouse formalin test. Neuroreport 2018, 29, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Kopruszinski, C.M.; Swiokla, J.; Lee, Y.S.; Navratilova, E.; VanderVeen, L.; Yang, M.; Liu, Y.; Miyazaki, T.; Schmidt, W.K.; Zalevsky, J.; et al. Preclinical Assessment of the Analgesic Pharmacology of NKTR-181 in Rodents. Cell Mol. Neurobiol. 2021, 41, 949–960. [Google Scholar] [CrossRef]
- Pacini, G.; Omar, B.; Ahrén, B. Methods and models for metabolic assessment in mice. J. Diabetes Res. 2013, 2013, 986906. [Google Scholar] [CrossRef] [PubMed]
- Nyavor, Y.; Estill, R.; Edwards, H.; Ogden, H.; Heideman, K.; Starks, K.; Miller, C.; May, G.; Flesch, L.; McMillan, J.; et al. Intestinal nerve cell injury occurs prior to insulin resistance in female mice ingesting a high-fat diet. Cell Tissue Res. 2019, 376, 325–340. [Google Scholar] [CrossRef]
- Kaikaew, K.; Steenbergen, J.; van Dijk, T.H.; Grefhorst, A.; Visser, J.A. Sex Difference in Corticosterone-Induced Insulin Resistance in Mice. Endocrinology 2019, 160, 2367–2387. [Google Scholar] [CrossRef]
- Pettersson, U.S.; Waldén, T.B.; Carlsson, P.O.; Jansson, L.; Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 2012, 7, e46057. [Google Scholar] [CrossRef] [PubMed]
- Rebolledo-Solleiro, D.; Fernández-Guasti, A. Influence of sex and estrous cycle on blood glucose levels, body weight gain, and depressive-like behavior in streptozotocin-induced diabetic rats. Physiol. Behav. 2018, 194, 560–567. [Google Scholar] [CrossRef]
- Bartke, A.; Steele, R.E.; Musto, N.; Caldwell, B.V. Fluctuations in plasma testosterone levels in adult male rats and mice. Endocrinology 1973, 92, 1223–1228. [Google Scholar] [CrossRef]
- Beery, A.K. Inclusion of females does not increase variability in rodent research studies. Curr. Opin. Behav. Sci. 2018, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kennard, M.R.; Nandi, M.; Chapple, S.; King, A.J. The glucose tolerance test in mice: Sex, drugs and protocol. Diabetes Obes. Metab. 2022, 24, 2241–2252. [Google Scholar] [CrossRef]
- Frias, J.P.; Bastyr, E.J.; Vignati, L.; Tschöp, M.H.; Schmitt, C.; Owen, K.; Christensen, R.H.; DiMarchi, R.D. The Sustained Effects of a Dual GIP/GLP-1 Receptor Agonist, NNC0090-2746, in Patients with Type 2 Diabetes. Cell Metab. 2017, 26, 343–352.e2. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef] [PubMed]
- Finan, B.; Ma, T.; Ottaway, N.; Müller, T.D.; Habegger, K.M.; Heppner, K.M.; Kirchner, H.; Holland, J.; Hembree, J.; Raver, C.; et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med. 2013, 5, 209ra151. [Google Scholar] [CrossRef]
- Sachs, S.; Niu, L.; Geyer, P.; Jall, S.; Kleinert, M.; Feuchtinger, A.; Stemmer, K.; Brielmeier, M.; Finan, B.; DiMarchi, R.D.; et al. Plasma proteome profiles treatment efficacy of incretin dual agonism in diet-induced obese female and male mice. Diabetes Obes. Metab. 2021, 23, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Kremer, J.J.; Bills, A.J.; Hanke, N.J.; Chen, H.; Meier, W.A.; Osinski, M.A.; Foley, C.M. Evaluation of cardiovascular changes in dogs administered three positive controls using jacketed external telemetry-blood pressure (JET-BP). J. Pharmacol. Toxicol. Methods 2015, 75, 27–37. [Google Scholar] [CrossRef]
- Bourdi, M.; Rudloff, U.; Patnaik, S.; Marugan, J.; Terse, P.S. Safety assessment of metarrestin in dogs: A clinical candidate targeting a subnuclear structure unique to metastatic cancer cells. Regul. Toxicol. Pharmacol. 2020, 116, 104716. [Google Scholar] [CrossRef]
- Ewertz, M.; Qvortrup, C.; Eckhoff, L. Chemotherapy-induced peripheral neuropathy in patients treated with taxanes and platinum derivatives. Acta Oncol. 2015, 54, 587–591. [Google Scholar] [CrossRef]
- Kotaka, M.; Saito, Y.; Kato, T.; Satake, H.; Makiyama, A.; Tsuji, Y.; Shinozaki, K.; Fujiwara, T.; Mizushima, T.; Harihara, Y.; et al. A placebo-controlled, double-blind, randomized study of recombinant thrombomodulin (ART-123) to prevent oxaliplatin-induced peripheral neuropathy. Cancer Chemother. Pharmacol. 2020, 86, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Minami, T.; Takeda, M.; Sata, M.; Kato, H.; Yano, K.; Sakai, T.; Tsujita, R.; Kawasaki, K.; Ito, A. Thrombomodulin alfa prevents oxaliplatin-induced neuropathic symptoms through activation of thrombin-activatable fibrinolysis inhibitor and protein C without affecting anti-tumor activity. Eur. J. Pharmacol. 2020, 880, 173196. [Google Scholar] [CrossRef] [PubMed]
- Earp, J.C.; Dubois, D.C.; Almon, R.R.; Jusko, W.J. Quantitative dynamic models of arthritis progression in the rat. Pharm. Res. 2009, 26, 196–203. [Google Scholar] [CrossRef]
- Earp, J.C.; Dubois, D.C.; Molano, D.S.; Pyszczynski, N.A.; Keller, C.E.; Almon, R.R.; Jusko, W.J. Modeling corticosteroid effects in a rat model of rheumatoid arthritis I: Mechanistic disease progression model for the time course of collagen-induced arthritis in Lewis rats. J. Pharmacol. Exp. Ther. 2008, 326, 532–545. [Google Scholar] [CrossRef]
- Earp, J.C.; Dubois, D.C.; Molano, D.S.; Pyszczynski, N.A.; Almon, R.R.; Jusko, W.J. Modeling corticosteroid effects in a rat model of rheumatoid arthritis II: Mechanistic pharmacodynamic model for dexamethasone effects in Lewis rats with collagen-induced arthritis. J. Pharmacol. Exp. Ther. 2008, 326, 546–554. [Google Scholar] [CrossRef]
- Fletcher, C.V.; Staskus, K.; Wietgrefe, S.W.; Rothenberger, M.; Reilly, C.; Chipman, J.G.; Beilman, G.J.; Khoruts, A.; Thorkelson, A.; Schmidt, T.E.; et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. USA 2014, 111, 2307–2312. [Google Scholar] [CrossRef]
- Thompson, C.G.; Bokhart, M.T.; Sykes, C.; Adamson, L.; Fedoriw, Y.; Luciw, P.A.; Muddiman, D.C.; Kashuba, A.D.; Rosen, E.P. Mass spectrometry imaging reveals heterogeneous efavirenz distribution within putative HIV reservoirs. Antimicrob. Agents Chemother. 2015, 59, 2944–2948. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, M.L.; Yang, K.H.; Prince, H.M.; Sykes, C.; White, N.; Malone, S.; Dellon, E.S.; Madanick, R.D.; Shaheen, N.J.; Hudgens, M.G.; et al. A Translational Pharmacology Approach to Predicting Outcomes of Preexposure Prophylaxis Against HIV in Men and Women Using Tenofovir Disoproxil Fumarate With or Without Emtricitabine. J. Infect. Dis. 2016, 214, 55–64. [Google Scholar] [CrossRef]
- Dimopoulos, Y.; Moysi, E.; Petrovas, C. The Lymph Node in HIV Pathogenesis. Curr. HIV/AIDS Rep. 2017, 14, 133–140. [Google Scholar] [CrossRef]
- Burgunder, E.; Fallon, J.K.; White, N.; Schauer, A.P.; Sykes, C.; Remling-Mulder, L.; Kovarova, M.; Adamson, L.; Luciw, P.; Garcia, J.V.; et al. Antiretroviral Drug Concentrations in Lymph Nodes: A Cross-Species Comparison of the Effect of Drug Transporter Expression, Viral Infection, and Sex in Humanized Mice, Nonhuman Primates, and Humans. J. Pharmacol. Exp. Ther. 2019, 370, 360–368. [Google Scholar] [CrossRef]
- Tannenbaum, C.; Day, D.; Alliance, M. Age and sex in drug development and testing for adults. Pharmacol. Res. 2017, 121, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.J.; Andrews, N.; Ball, D.; Bellantuono, I.; Gray, J.; Hachoumi, L.; Holmes, A.; Latcham, J.; Petrie, A.; Potter, P.; et al. Does age matter? The impact of rodent age on study outcomes. Lab. Anim. 2017, 51, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Sukoff Rizzo, S.J.; McTighe, S.; McKinzie, D.L. Genetic Background and Sex: Impact on Generalizability of Research Findings in Pharmacology Studies. In Good Research Practice in Non-Clinical Pharmacology and Biomedicine; Handbook of Experimental Pharmacology; Springer: Cham, Switzerland, 2020; Volume 257, pp. 147–162. [Google Scholar] [CrossRef]
- Liu, K.A.; Mager, N.A. Women’s involvement in clinical trials: Historical perspective and future implications. Pharm. Pract. 2016, 14, 708. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.L.; Nader, N.; Chai, P.R.; Carreiro, S.; Griswold, M.K.; Boyle, K.L. Drugs and Medical Devices: Adverse Events and the Impact on Women’s Health. Clin. Ther. 2017, 39, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Buoncervello, M.; Marconi, M.; Carè, A.; Piscopo, P.; Malorni, W.; Matarrese, P. Preclinical models in the study of sex differences. Clin. Sci. 2017, 131, 449–469. [Google Scholar] [CrossRef]
- Voelkl, B.; Vogt, L.; Sena, E.S.; Würbel, H. Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol. 2018, 16, e2003693. [Google Scholar] [CrossRef]
- Sandberg, K.; Umans, J.G.; Group, G.C.C.W. Recommendations concerning the new U.S. National Institutes of Health initiative to balance the sex of cells and animals in preclinical research. FASEB J. 2015, 29, 1646–1652. [Google Scholar] [CrossRef]
- Voelkl, B.; Altman, N.S.; Forsman, A.; Forstmeier, W.; Gurevitch, J.; Jaric, I.; Karp, N.A.; Kas, M.J.; Schielzeth, H.; Van de Casteele, T.; et al. Reproducibility of animal research in light of biological variation. Nat. Rev. Neurosci. 2020, 21, 384–393. [Google Scholar] [CrossRef]
- Freedman, L.P.; Cockburn, I.M.; Simcoe, T.S. The Economics of Reproducibility in Preclinical Research. PLoS Biol. 2015, 13, e1002165. [Google Scholar] [CrossRef]
- Istituto Superiore di Sanità. Standard di Cura per la Salute di Persone Transessuali, Transgender e di Genere Non-Conforme. Available online: https://www.iss.it/identit%C3%A0-di-genere/-/asset_publisher/xqprREqYmtu7/content/standard-di-cura-per-la-salute-di-persone-transessuali-transgender-e-di-genere-non-conforme (accessed on 10 November 2022).
- T’Sjoen, G.; Arcelus, J.; Gooren, L.; Klink, D.T.; Tangpricha, V. Endocrinology of Transgender Medicine. Endocr. Rev. 2019, 40, 97–117. [Google Scholar] [CrossRef]
- Pettit, S.D. ToxPoint: Health Disparities, COVID-19, and Owning Our Share. Toxicol. Sci. 2021, 179, 147–148. [Google Scholar] [CrossRef]
- Rusyn, I.; Chiu, W.A.; Wright, F.A. Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul. Toxicol. Pharmacol. 2022, 132, 105197. [Google Scholar] [CrossRef] [PubMed]
- Tassinari, R.; Cordelli, E.; Eleuteri, P.; Villani, P.; Pacchierotti, F.; Narciso, L.; Tait, S.; Valeri, M.; Martinelli, A.; Di Felice, G.; et al. Effects of sub-chronic oral exposure to pyrogenic synthetic amorphous silica (NM-203) in male and female Sprague-Dawley rats: Focus on reproductive systems. Reprod. Toxicol. 2021, 105, 17–24. [Google Scholar] [CrossRef]
- Arnold, A.P. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci. Biobehav. Rev. 2020, 119, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Burgoyne, P.S.; Arnold, A.P. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol. Sex Differ. 2016, 7, 68. [Google Scholar] [CrossRef]
- Burgoyne, P.S.; Mahadevaiah, S.K.; Perry, J.; Palmer, S.J.; Ashworth, A. The Y* rearrangement in mice: New insights into a perplexing PAR. Cytogenet. Genome Res. 1998, 80, 37–40. [Google Scholar] [CrossRef]
- De Vries, G.J.; Rissman, E.F.; Simerly, R.B.; Yang, L.Y.; Scordalakes, E.M.; Auger, C.J.; Swain, A.; Lovell-Badge, R.; Burgoyne, P.S.; Arnold, A.P. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J. Neurosci. 2002, 22, 9005–9014. [Google Scholar] [CrossRef] [PubMed]
- Eicher, E.M.; Hale, D.W.; Hunt, P.A.; Lee, B.K.; Tucker, P.K.; King, T.R.; Eppig, J.T.; Washburn, L.L. The mouse Y* chromosome involves a complex rearrangement, including interstitial positioning of the pseudoautosomal region. Cytogenet. Genome Res. 1991, 57, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Mahadevaiah, S.K.; Odorisio, T.; Elliott, D.J.; Rattigan, A.; Szot, M.; Laval, S.H.; Washburn, L.L.; McCarrey, J.R.; Cattanach, B.M.; Lovell-Badge, R.; et al. Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities. Humam Mol. Genet. 1998, 7, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.P. A general theory of sexual differentiation. J. Neurosci. Res. 2017, 95, 291–300. [Google Scholar] [CrossRef]
- Kinnear, H.M.; Hashim, P.H.; Dela Cruz, C.; Chang, F.L.; Rubenstein, G.; Nimmagadda, L.; Elangovan, V.R.; Jones, A.; Brunette, M.A.; Hannum, D.F.; et al. Presence of ovarian stromal aberrations after cessation of testosterone therapy in a transgender mouse model. Biol. Reprod. 2023, 108, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Barus, R.; Bergeron, S.; Chen, Y.; Gautier, S. Sex differences: From preclinical pharmacology to clinical pharmacology. Therapie 2023, 78, 189–194. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allegra, S.; Chiara, F.; Di Grazia, D.; Gaspari, M.; De Francia, S. Evaluation of Sex Differences in Preclinical Pharmacology Research: How Far Is Left to Go? Pharmaceuticals 2023, 16, 786. https://doi.org/10.3390/ph16060786
Allegra S, Chiara F, Di Grazia D, Gaspari M, De Francia S. Evaluation of Sex Differences in Preclinical Pharmacology Research: How Far Is Left to Go? Pharmaceuticals. 2023; 16(6):786. https://doi.org/10.3390/ph16060786
Chicago/Turabian StyleAllegra, Sarah, Francesco Chiara, Daniela Di Grazia, Marco Gaspari, and Silvia De Francia. 2023. "Evaluation of Sex Differences in Preclinical Pharmacology Research: How Far Is Left to Go?" Pharmaceuticals 16, no. 6: 786. https://doi.org/10.3390/ph16060786
APA StyleAllegra, S., Chiara, F., Di Grazia, D., Gaspari, M., & De Francia, S. (2023). Evaluation of Sex Differences in Preclinical Pharmacology Research: How Far Is Left to Go? Pharmaceuticals, 16(6), 786. https://doi.org/10.3390/ph16060786