Mechanisms of Linezolid Resistance in Mycobacteria
Abstract
:1. Introduction
1.1. Drug Resistance in Mycobacteria
1.2. Linezolid
1.2.1. Mechanism of Action
1.2.2. Spectrum of Activity
1.2.3. Clinical Use
1.3. Linezolid Resistance in Mycobacteria
2. Mechanisms of Linezolid Resistance in Mycobacteria
2.1. Ribosomal Mechanisms
2.1.1. Mutations in rplC
2.1.2. Mutations in 23S rRNA (rrl)
2.1.3. tsnR Loss of Function
2.2. Non-Ribosomal Mechanisms
2.2.1. Efflux
2.2.2. Mutations in fadD32
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIC | Minimum inhibitory concentration |
MTB | Mycobacterium tuberculosis |
NTM | Non-tuberculous mycobacteria |
MDR-TB | Multidrug-resistant tuberculosis |
PTC | Peptidyltransferase centre |
TB | Tuberculosis |
XDR-TB | Extensively drug-resistant tuberculosis |
WHO | World Health Organisation |
References
- Lee, M.-R.; Sheng, W.-H.; Hung, C.-C.; Yu, C.-J.; Lee, L.-N.; Hsueh, P.-R. Mycobacterium Abscessus Complex Infections in Humans. Emerg. Infect. Dis. 2015, 21, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Gygli, S.M.; Borrell, S.; Trauner, A.; Gagneux, S. Antimicrobial Resistance in Mycobacterium Tuberculosis: Mechanistic and Evolutionary Perspectives. FEMS Microbiol. Rev. 2017, 41, 354–373. [Google Scholar] [CrossRef]
- Saxena, S.; Spaink, H.P.; Forn-Cuní, G. Drug Resistance in Nontuberculous Mycobacteria: Mechanisms and Models. Biology 2021, 10, 96. [Google Scholar] [CrossRef]
- Rudra, P.; Hurst-Hess, K.; Lappierre, P.; Ghosha, P. High Levels of Intrinsic Tetracycline Resistance in Mycobacterium Abscessus Are Conferred by a Tetracycline-Modifying Monooxygenase. Antimicrob. Agents Chemother. 2018, 62, e00119-18. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.E.A.; von Groll, A.; Martin, A.; Palomino, J.C. Efflux as a Mechanism for Drug Resistance in Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 2011, 63, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Palomino, J.C.; Martin, A. Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics 2014, 3, 317. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.F.; Tan, J.L.; Zin, T.; Yap, S.F.; Ngeow, Y.F. A Mutation in Anti-Sigma Factor MAB_3542c May Be Responsible for Tigecycline Resistance in Mycobacterium abscessus. J. Med. Microbiol. 2018, 67, 1676–1681. [Google Scholar] [CrossRef] [PubMed]
- Aw, K.M.; Ng, H.F.; Lee, C.L.; Zin, T.; Ngeow, Y.F. RshA Mutations Contributing to Tigecycline Resistance in Mycobacteroides abscessus. J. Med. Microbiol. 2022, 71, 001547. [Google Scholar] [CrossRef]
- Lee, C.L.; Ng, H.F.; Ngeow, Y.F.; Thaw, Z. A Stop-Gain Mutation in Sigma Factor SigH (MAB_3543c) May Be Associated with Tigecycline Resistance in Mycobacteroides abscessus. J. Med. Microbiol. 2021, 70, 001378. [Google Scholar] [CrossRef]
- Ng, H.F.; Ngeow, Y.F. Genetic Determinants of Tigecycline Resistance in Mycobacteroides abscessus. Antibiotics 2022, 11, 572. [Google Scholar] [CrossRef]
- Monego, F.; Duarte, R.S.; Biondo, A.W. GyrA and GyrB Gene Mutation in Ciprofloxacin-Resistant Mycobacterium Massiliense Clinical Isolates from Southern Brazil. Microb. Drug Resist. 2012, 18, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.F.; Ngeow, Y.F.; Yap, S.F.; Zin, T.; Tan, J.L. Tigecycline Resistance May Be Associated with Dysregulated Response to Stress in Mycobacterium abscessus. Int. J. Med. Microbiol. 2020, 310, 151380. [Google Scholar] [CrossRef] [PubMed]
- Kochi, A.; Vareldzis, B.; Styblo, K. Multidrug-Resistant Tuberculosis and Its Control. Res. Microbiol. 1993, 144, 104–110. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Global Tubercolosis Report 2022; World Health Organisation: Geneva, Switzerland, 2022. [Google Scholar]
- Shah, N.S.; Wright, A.; Bai, G.-H.; Barrera, L.; Boulahbal, F.; Martín-Casabona, N.; Drobniewski, F.; Gilpin, C.; Havelková, M.; Lepe, R.; et al. Worldwide Emergence of Extensively Drug-Resistant Tuberculosis. Emerg. Infect. Dis. 2007, 13, 380–387. [Google Scholar] [CrossRef] [PubMed]
- WHO Announces Updated Definitions of Extensively Drug-Resistant Tuberculosis. Available online: https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis (accessed on 23 March 2023).
- Han, X.Y.; Seo, Y.H.; Sizer, K.C.; Schoberle, T.; May, G.S.; Spencer, J.S.; Li, W.; Nair, R.G. A New Mycobacterium Species Causing Diffuse Lepromatous Leprosy. Am. J. Clin. Pathol. 2008, 130, 856–864. [Google Scholar] [CrossRef]
- Vera-Cabrera, L.; Escalante-Fuentes, W.G.; Gomez-Flores, M.; Ocampo-Candiani, J.; Busso, P.; Singh, P.; Cole, S.T. Case of Diffuse Lepromatous Leprosy Associated with “Mycobacterium lepromatosis”. J. Clin. Microbiol. 2011, 49, 4366. [Google Scholar] [CrossRef]
- Han, X.Y.; Sizer, K.C.; Thompson, E.J.; Kabanja, J.; Li, J.; Hu, P.; Gómez-Valero, L.; Silva, F.J. Comparative Sequence Analysis of Mycobacterium Leprae and the New Leprosy-Causing Mycobacterium lepromatosis. J. Bacteriol. 2009, 191, 6067. [Google Scholar] [CrossRef]
- Aubry, A.; Sammarco Rosa, P.; Chauffour, A.; Fletcher, M.L.; Cambau, E.; Avanzi, C. Drug Resistance in Leprosy: An Update Following 70 Years of Chemotherapy. Infect. Dis. Now. 2022, 52, 243–251. [Google Scholar] [CrossRef]
- Worobec, S. Current Approaches and Future Directions in the Treatment of Leprosy. Res. Rep. Trop. Med. 2012, 3, 79–91. [Google Scholar] [CrossRef]
- Burgos, J.; De La Cruz, E.; Paredes, R.; Andaya, C.R.; Gelber, R.H. The Activity of Several Newer Antimicrobials against Logarithmically Multiplying M. Leprae in Mice. Lepr. Rev. 2011, 82, 253–258. [Google Scholar] [CrossRef]
- Wallace, R.J.; Dukart, G.; Brown-Elliott, B.A.; Griffith, D.E.; Scerpella, E.G.; Marshall, B. Clinical Experience in 52 Patients with Tigecycline-Containing Regimens for Salvage Treatment of Mycobacterium Abscessus and Mycobacterium Chelonae Infections. J. Antimicrob. Chemother. 2014, 69, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Sim, Y.S.; Park, H.Y.; Jeon, K.; Suh, G.Y.; Kwon, O.J.; Koh, W.-J. Standardized Combination Antibiotic Treatment of Mycobacterium Avium Complex Lung Disease. Yonsei Med. J. 2010, 51, 888. [Google Scholar] [CrossRef] [PubMed]
- Mirsaeidi, M.; Farshidpour, M.; Allen, M.B.; Ebrahimi, G.; Falkinham, J.O. Highlight on Advances in Nontuberculous Mycobacterial Disease in North America. BioMed. Res. Int. 2014, 2014, 919474. [Google Scholar] [CrossRef] [PubMed]
- Moellering, R.C. Linezolid: The First Oxazolidinone Antimicrobial. Ann. Intern. Med. 2003, 138, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Swaney, S.M.; Aoki, H.; Ganoza, M.C.; Shinabarger, D.L. The Oxazolidinone Linezolid Inhibits Initiation of Protein Synthesis in Bacteria. Antimicrob. Agents Chemother. 1998, 42, 3251. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Kanyo, Z.F.; Wang, D.; Franceschi, F.J.; Moore, P.B.; Steitz, T.A.; Duffy, E.M. Crystal Structure of the Oxazolidinone Antibiotic Linezolid Bound to the 50S Ribosomal Subunit. J. Med. Chem. 2008, 51, 3353–3356. [Google Scholar] [CrossRef]
- Tsai, K.; Stojković, V.; Lee, D.J.; Young, I.D.; Szal, T.; Klepacki, D.; Vázquez-Laslop, N.; Mankin, A.S.; Fraser, J.S.; Fujimori, D.G. Structural Basis for Context-Specific Inhibition of Translation by Oxazolidinone Antibiotics. Nat. Struct. Mol. Biol. 2022, 29, 162–171. [Google Scholar] [CrossRef]
- Henwood, C.J. Susceptibility of Gram-Positive Cocci from 25 UK Hospitals to Antimicrobial Agents Including Linezolid. J. Antimicrob. Chemother. 2000, 46, 931–940. [Google Scholar] [CrossRef]
- Behra-Miellet, J.; Calvet, L.; Dubreuil, L. Activity of Linezolid against Anaerobic Bacteria. Int. J. Antimicrob. Agents 2003, 22, 28–34. [Google Scholar] [CrossRef]
- Bialvaei, A.Z.; Rahbar, M.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. Linezolid: A Promising Option in the Treatment of Gram-Positives. J. Antimicrob. Chemother. 2017, 72, 354–364. [Google Scholar] [CrossRef]
- Schumacher, A.; Trittler, R.; Bohnert, J.A.; Kümmerer, K.; Pagès, J.M.; Kern, W.V. Intracellular Accumulation of Linezolid in Escherichia Coli, Citrobacter Freundii and Enterobacter Aerogenes: Role of Enhanced Efflux Pump Activity and Inactivation. J. Antimicrob. Chemother. 2007, 59, 1261–1264. [Google Scholar] [CrossRef] [PubMed]
- Guzel Kaya, G.; Medaglia, S.; Candela-Noguera, V.; Tormo-Mas, M.Á.; Marcos, M.D.; Aznar, E.; Deveci, H.; Martínez-Máñez, R. Antibacterial Activity of Linezolid against Gram-Negative Bacteria: Utilization of ε-Poly-l-Lysine Capped Silica Xerogel as an Activating Carrier. Pharmaceutics 2020, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.J.; Brown-Elliott, B.A.; Ward, S.C.; Crist, C.J.; Mann, L.B.; Wilson, R.W. Activities of Linezolid against Rapidly Growing Mycobacteria. Antimicrob. Agents Chemother. 2001, 45, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Chetchotisakd, P.; Anunnatsiri, S. Linezolid in the Treatment of Disseminated Nontuberculous Mycobacterial Infection in Anti-Interferon-Gamma Autoantibody-Positive Patients. Southeast Asian J. Trop. Med. Public Health 2014, 45, 1125–1131. [Google Scholar]
- Zhang, X.; Falagas, M.E.; Vardakas, K.Z.; Wang, R.; Qin, R.; Wang, J.; Liu, Y. Systematic Review and Meta-Analysis of the Efficacy and Safety of Therapy with Linezolid Containing Regimens in the Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis. J. Thorac. Dis. 2015, 7, 603–615. [Google Scholar]
- Rapid Communication: Key Changes to the Treatment of Drug-Resistant Tuberculosis. Available online: https://www.who.int/publications/i/item/WHO-UCN-TB-2022-2 (accessed on 23 March 2023).
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef]
- Bolhuis, M.S.; Van Der Laan, T.; Kosterink, J.G.W.; Van Der Werf, T.S.; Van Soolingen, D.; Alffenaar, J.W.C. In Vitro Synergy between Linezolid and Clarithromycin against Mycobacterium tuberculosis. Eur. Respir. J. 2014, 44, 808–811. [Google Scholar] [CrossRef]
- Zhao, W.; Zheng, M.; Wang, B.; Mu, X.; Li, P.; Fu, L.; Liu, S.; Guo, Z. Interactions of Linezolid and Second-Line Anti-Tuberculosis Agents against Multidrug-Resistant Mycobacterium Tuberculosis in Vitro and in Vivo. Int. J. Infect. Dis. 2016, 52, 23–28. [Google Scholar] [CrossRef]
- Williams, K.N.; Brickner, S.J.; Stover, C.K.; Zhu, T.; Ogden, A.; Tasneen, R.; Tyagi, S.; Grosset, J.H.; Nuermberger, E.L. Addition of PNU-100480 to First-Line Drugs Shortens the Time Needed to Cure Murine Tuberculosis. Am. J. Respir. Crit. Care Med. 2009, 180, 371–376. [Google Scholar] [CrossRef]
- Richter, E.; Rüsch-Gerdes, S.; Hillemann, D. First Linezolid-Resistant Clinical Isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2007, 51, 1534–1536. [Google Scholar] [CrossRef]
- Azimi, T.; Khoshnood, S.; Asadi, A.; Heidary, M.; Mahmoudi, H.; Kaviar, V.H.; Hallajzadeh, M.; Nasiri, M.J. Linezolid Resistance in Multidrug-Resistant Mycobacterium Tuberculosis: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 3080. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, S.; Louw, G.; Ramangoaela, L.; Barber, G.; Hayes, C.; Omar, S.V.; Maartens, G.; Barry, C.; Song, T.; Meintjes, G. Linezolid Resistance in Patients with Drug-Resistant TB and Treatment Failure in South Africa. J. Antimicrob. Chemother. 2019, 74, 2377. [Google Scholar] [CrossRef] [PubMed]
- Tornheim, J.A.; Intini, E.; Gupta, A.; Udwadia, Z.F. Clinical Features Associated with Linezolid Resistance among Multidrug Resistant Tuberculosis Patients at a Tertiary Care Hospital in Mumbai, India. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 20, 100175. [Google Scholar] [CrossRef]
- Ushtanit, A.; Mikhailova, Y.; Lyubimova, A.; Makarova, M.; Safonova, S.; Filippov, A.; Borisov, S.; Zimenkov, D. Genetic Profile of Linezolid-Resistant M. Tuberculosis Clinical Strains from Moscow. Antibiotics 2021, 10, 1243. [Google Scholar] [CrossRef]
- Broda, A.; Jebbari, H.; Beaton, K.; Mitchell, S.; Drobniewski, F. Comparative Drug Resistance of Mycobacterium Abscessus and M. Chelonae Isolates from Patients with and without Cystic Fibrosis in the United Kingdom. J. Clin. Microbiol. 2013, 51, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Xu, L.; Zou, Y.; Li, B.; Guo, Q.; Zhang, Y.; Zhan, M.; Xu, B.; Yu, F.; Zhang, Z.; et al. Molecular Analysis of Linezolid-Resistant Clinical Isolates of Mycobacterium abscessus. Antimicrob. Agents Chemother. 2019, 63, e01842-18. [Google Scholar] [CrossRef]
- Yang, S.-C.; Hsueh, P.-R.; Lai, H.-C.; Teng, L.-J.; Huang, L.-M.; Chen, J.-M.; Wang, S.-K.; Shie, D.-C.; Ho, S.-W.; Luh, K.-T. High Prevalence of Antimicrobial Resistance in Rapidly Growing Mycobacteria in Taiwan. Antimicrob. Agents Chemother. 2003, 47, 1958–1962. [Google Scholar] [CrossRef]
- Tu, H.Z.; Lee, H.S.; Chen, Y.S.; Lee, S.S.J. High Rates of Antimicrobial Resistance in Rapidly Growing Mycobacterial Infections in Taiwan. Pathogens 2022, 11, 969. [Google Scholar] [CrossRef]
- Nambiar, R.; Tornheim, J.; Diricks, M.; De Bruyne, K.; Sadani, M.; Shetty, A.; Rodrigues, C. Linezolid Resistance in Mycobacterium Tuberculosis Isolates at a Tertiary Care Centre in Mumbai, India. Indian J. Med. Res. 2021, 154, 85. [Google Scholar] [CrossRef]
- Beckert, P.; Hillemann, D.; Kohl, T.A.; Kalinowski, J.; Richter, E.; Niemann, S.; Feuerriegel, S. RplC T460C Identified as a Dominant Mutation in Linezolid-Resistant Mycobacterium Tuberculosis Strains. Antimicrob. Agents Chemother. 2012, 56, 2743. [Google Scholar] [CrossRef]
- Ng, H.F.; Ngeow, Y.F. Mutations in Genes Encoding 23S RRNA and FadD32 May Be Associated with Linezolid Resistance in Mycobacteroides abscessus. Microb. Drug Resist. 2023, 29, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Poulton, N.C.; Chang, J.S.; Azadian, Z.A.; Dejesus, M.A.; Ruecker, N.; Zimmerman, M.D.; Eckartt, K.; Bosch, B.; Engelhart, C.; et al. A Chemical-Genetic Map of the Pathways Controlling Drug Potency in Mycobacterium tuberculosis. BioRxiv 2021. preprint. [Google Scholar] [CrossRef]
- Srivastava, S.; Magombedze, G.; Koeuth, T.; Sherman, C.; Pasipanodya, J.G.; Raj, P.; Wakeland, E.; Deshpande, D.; Gumbo, T. Linezolid Dose That Maximizes Sterilizing Effect While Minimizing Toxicity and Resistance Emergence for Tuberculosis. Antimicrob. Agents Chemother. 2017, 61, e00751-17. [Google Scholar] [CrossRef] [PubMed]
- Long, K.S.; Vester, B. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome. Antimicrob. Agents Chemother. 2012, 56, 603. [Google Scholar] [CrossRef]
- Makafe, G.G.; Cao, Y.; Tan, Y.; Julius, M.; Liu, Z.; Wang, C.; Njire, M.M.; Cai, X.; Liu, T.; Wang, B.; et al. Role of the Cys154Arg Substitution in Ribosomal Protein L3 in Oxazolidinone Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2016, 60, 3202. [Google Scholar] [CrossRef] [PubMed]
- Klitgaard, R.N.; Ntokou, E.; Nørgaard, K.; Biltoft, D.; Hansen, L.H.; Trædholm, N.M.; Kongsted, J.; Vester, B. Mutations in the Bacterial Ribosomal Protein L3 and Their Association with Antibiotic Resistance. Antimicrob. Agents Chemother. 2015, 59, 3518. [Google Scholar] [CrossRef]
- Davidovich, C.; Bashan, A.; Yonath, A. Structural Basis for Cross-Resistance to Ribosomal PTC Antibiotics. Proc. Natl. Acad. Sci. USA 2008, 105, 20665–20670. [Google Scholar] [CrossRef]
- Kadura, S.; King, N.; Nakhoul, M.; Zhu, H.; Theron, G.; Köser, C.U.; Farhat, M. Systematic Review of Mutations Associated with Resistance to the New and Repurposed Mycobacterium Tuberculosis Drugs Bedaquiline, Clofazimine, Linezolid, Delamanid and Pretomanid. J. Antimicrob. Chemother. 2020, 75, 2031–2043. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Cui, P.; Shi, W.; Shi, X.; Niu, H.; Chan, D.; Yew, W.W.; Zhang, W.; Zhang, Y. Mycobacterium Tuberculosis Mutations Associated with Reduced Susceptibility to Linezolid. Antimicrob. Agents Chemother. 2016, 60, 2542. [Google Scholar] [CrossRef]
- Davies, C.; Bussiere, D.E.; Golden, B.L.; Porter, S.J.; Ramakrishnan, V.; White, S.W. Ribosomal Proteins S5 and L6: High-Resolution Crystal Structures and Roles in Protein Synthesis and Antibiotic Resistance. J. Mol. Biol. 1998, 279, 873–888. [Google Scholar] [CrossRef]
- Stelzl, U.; Spahn, C.M.T.; Nierhaus, K.H. Selecting RRNA Binding Sites for the Ribosomal Proteins L4 and L6 from Randomly Fragmented RRNA: Application of a Method Called SERF. Proc. Natl. Acad. Sci. USA 2000, 97, 4597–4602. [Google Scholar] [CrossRef] [PubMed]
- Pi, R.; Liu, Q.; Jiang, Q.; Gao, Q. Characterization of Linezolid-Resistance-Associated Mutations in Mycobacterium Tuberculosis through WGS. J. Antimicrob. Chemother. 2019, 74, 1795–1798. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Poulton, N.C.; Chang, J.S.; Azadian, Z.A.; DeJesus, M.A.; Ruecker, N.; Zimmerman, M.D.; Eckartt, K.A.; Bosch, B.; Engelhart, C.A.; et al. CRISPRi Chemical Genetics and Comparative Genomics Identify Genes Mediating Drug Potency in Mycobacterium tuberculosis. Nat. Microbiol. 2022, 7, 766–779. [Google Scholar] [CrossRef] [PubMed]
- LaMarre, J.M.; Howden, B.P.; Mankin, A.S. Inactivation of the Indigenous Methyltransferase RlmN in Staphylococcus Aureus Increases Linezolid Resistance. Antimicrob. Agents Chemother. 2011, 55, 2989. [Google Scholar] [CrossRef]
- Smith, T.M.; Jiang, Y.-F.; Shipley, P.; Floss, H.G. The Thiostrepton-Resistance-Encoding Gene in Streptomyces Laurentii Is Located within a Cluster of Ribosomal Protein Operons. Gene 1995, 164, 137–142. [Google Scholar] [CrossRef]
- Sander, P.; Belova, L.; Kidan, Y.G.; Pfister, P.; Mankin, A.S.; Böttger, E.C. Ribosomal and Non-Ribosomal Resistance to Oxazolidinones: Species-Specific Idiosyncrasy of Ribosomal Alterations. Mol. Microbiol. 2002, 46, 1295–1304. [Google Scholar] [CrossRef]
- Carroll, P.; Faray-Kele, M.C.; Parish, T. Identifying Vulnerable Pathways in Mycobacterium Tuberculosis by Using a Knockdown Approach. Appl. Environ. Microbiol. 2011, 77, 5040. [Google Scholar] [CrossRef]
- Kuhn, M.L.; Alexander, E.; Minasov, G.; Page, H.J.; Warwrzak, Z.; Shuvalova, L.; Flores, K.J.; Wilson, D.J.; Shi, C.; Aldrich, C.C.; et al. Structure of the Essential Mtb FadD32 Enzyme: A Promising Drug Target for Treating Tuberculosis. ACS Infect. Dis. 2016, 2, 579–591. [Google Scholar] [CrossRef]
- Marrakchi, H.; Lanéelle, M.-A.; Daffé, M. Mycolic Acids: Structures, Biosynthesis, and Beyond. Chem. Biol. 2014, 21, 67–85. [Google Scholar] [CrossRef]
- Ng, H.F.; Ngeow, Y.F. A Single-Gene Approach for the Subspecies Classification of Mycobacteroides abscessus. Pathog. Dis. 2020, 78, ftaa055. [Google Scholar] [CrossRef]
- Cafini, F.; Nguyen, L.T.T.; Higashide, M.; Román, F.; Prieto, J.; Morikawa, K. Horizontal Gene Transmission of the Cfr Gene to MRSA and Enterococcus: Role of Staphylococcus Epidermidis as a Reservoir and Alternative Pathway for the Spread of Linezolid Resistance. J. Antimicrob. Chemother. 2016, 71, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L. Antibiotic Resistance Mechanisms in M. Tuberculosis: An Update. Arch. Toxicol. 2016, 90, 1585–1604. [Google Scholar] [CrossRef] [PubMed]
- Boritsch, E.C.; Khanna, V.; Pawlik, A.; Honoré, N.; Navas, V.H.; Ma, L.; Bouchier, C.; Seemann, T.; Supply, P.; Stinear, T.P.; et al. Key Experimental Evidence of Chromosomal DNA Transfer among Selected Tuberculosis-Causing Mycobacteria. Proc. Natl. Acad. Sci. USA 2016, 113, 9876–9881. [Google Scholar] [CrossRef] [PubMed]
- Parsons, L.M.; Jankowski, C.S.; Derbyshire, K.M. Conjugal Transfer of Chromosomal DNA in Mycobacterium smegmatis. Mol. Microbiol. 1998, 28, 571–582. [Google Scholar] [CrossRef]
Reference | Source | Nation | Mycobacterial Species | Gene(s) | Mutation(s) | MIC (mg/L) |
---|---|---|---|---|---|---|
Wasserman et al., 2019 [45] | Clinical strains | South Africa | M. tuberculosis | rrl | g2814t, g2270t | 2–8 |
rplC | t460c, g546a | 4–8 | ||||
Ushtanit et al., 2021 [47] | Clinical strains | Russia | M. tuberculosis | rrl | g2270t, a2801c, g2714t | 1–4 |
rplC | t460c | 2–16 | ||||
Nambiar et al., 2021 [52] | Clinical strains | India | M. tuberculosis | rrl | g2814t | >1 |
rplC | Cys154Arg ^ | |||||
Beckert et al., 2012 [53] | Laboratory-derived mutants and clinical strains | Germany | M. tuberculosis | rplC | t460c | 4–16 |
Ye et al., 2019 [49] | Clinical strains | China | M. abscessus | rrl | g15a, t328c, g348a, c1445t, c1582a, t2138c, a2271c, c2432t, g3048a | ≥32 |
Ng and Ngeow, 2023 [54] | Laboratory-derived mutants | Malaysia | M. abscessus | fadD32 | c880t | 1 |
rrl | g2244t and g2788t * | >256 | ||||
Li et al., 2021 [55] | Clinical isolates (in silico) # | Various countries | M. tuberculosis | tsnR | Various frameshift mutations | ND |
Srivastava et al., 2017 [56] | Laboratory-derived mutants | United States | M. tuberculosis | Rv0545c, Rv0930, Rv2477 and Rv3331, Rv0890c | Various single-nucleotide variants | >3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, W.C.; Ng, H.F.; Ngeow, Y.F. Mechanisms of Linezolid Resistance in Mycobacteria. Pharmaceuticals 2023, 16, 784. https://doi.org/10.3390/ph16060784
Gan WC, Ng HF, Ngeow YF. Mechanisms of Linezolid Resistance in Mycobacteria. Pharmaceuticals. 2023; 16(6):784. https://doi.org/10.3390/ph16060784
Chicago/Turabian StyleGan, Wei Chong, Hien Fuh Ng, and Yun Fong Ngeow. 2023. "Mechanisms of Linezolid Resistance in Mycobacteria" Pharmaceuticals 16, no. 6: 784. https://doi.org/10.3390/ph16060784
APA StyleGan, W. C., Ng, H. F., & Ngeow, Y. F. (2023). Mechanisms of Linezolid Resistance in Mycobacteria. Pharmaceuticals, 16(6), 784. https://doi.org/10.3390/ph16060784