Carboxymethylated Gums and Derivatization: Strategies and Significance in Drug Delivery and Tissue Engineering
Abstract
:1. Introduction
2. Derivatives of Carboxymethylated Gums (CMGs)
2.1. Graft Copolymerization
2.1.1. Graft Copolymerization Initiated by Free Radicals
2.1.2. Radiation-Initiated Graft Copolymerization
2.1.3. Photo-Induced Graft Copolymerization
2.2. Cross-Linking
2.2.1. Covalent Cross-Linking
2.2.2. Ionic Cross-Linking
2.2.3. Dual Cross-Linking
2.3. Conjugation
2.4. Polyelectrolyte Complexation (PECs)
2.5. Esterification
3. Applications of Derivatized Carboxymethylated Gums
3.1. Carrier for Drug Delivery
3.1.1. Oral Drug Delivery
3.1.2. Ocular Delivery
3.1.3. Transdermal Delivery
3.1.4. Vaccine Delivery
3.1.5. Enzyme Encapsulation
3.2. As a Gene/Vaccine Delivery Vehicle
3.3. Therapeutic Applications
3.4. Tissue Engineering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalei, G.; Das, S. Carboxymethyl guar gum: A review of synthesis, properties and versatile applications. Eur. Polym. J. 2022, 176, 111433. [Google Scholar] [CrossRef]
- Patel, J.; Maji, B.; Moorthy, N.S.H.N.; Maiti, S. Xanthan gum derivatives: Review of synthesis, properties and diverse applications. RSC Adv. 2020, 10, 27103–27136. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, K.; Dutta, P.; Giri, T.K. Al3+/Ca2+ cross-linked hydrogel matrix tablet of etherified tara gum for sustained delivery of tramadol hydrochloride in gastrointestinal milieu. Int. J. Biol. Macromol. 2023, 232, 123448. [Google Scholar] [CrossRef] [PubMed]
- Khushbu; Warkar, S.G. Potential applications and various aspects of polyfunctional macromolecule- carboxymethyl tamarind kernel gum. Eur. Polym. J. 2020, 140, 110042. [Google Scholar] [CrossRef]
- Rai, N.; Bal, T.; Swain, S. In vitro evaluations of biodegradable polyacrylamide grafted moringa bark gum graft copolymer (MOG-g-PAAM) as biomedical and controlled drug delivery device synthesized by microwave accelerated free radical synthesis. Indian J. Pharm. Educ. Res. 2020, 54, 385–396. [Google Scholar] [CrossRef]
- Ofoedu, C.E.; You, L.; Osuji, C.M.; Iwouno, J.O.; Kabuo, N.O.; Ojukwu, M.; Agunwah, I.M.; Chacha, J.S.; Muobike, O.P.; Agunbiade, A.O.; et al. Hydrogen peroxide effects on natural sourced polysacchrides: Free radical formation/production, degradation process, and reaction mechanism—A critical synopsis. Foods 2021, 10, 699. [Google Scholar] [CrossRef]
- Alban, S.; Franz, G. Characterization of the anticoagulant actions of a semisynthetic curdlan sulfate. Thromb. Res. 2000, 99, 377–388. [Google Scholar] [CrossRef]
- Hirsh, J.; Levine, M.N. Low molecular weight Heparin. Blood 1992, 79, 1–17. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Modification of sterculia gum with methacrylic acid to prepare a novel drug delivery system. Int. J. Biol. Macromol. 2008, 43, 142–150. [Google Scholar] [CrossRef]
- Singh, M.; Raorane, C.J.; Alka; Shastri, D.; Raj, V.; Kim, S.-C.; Tuteja, M. Recent Progress on Modified Gum Katira Polysaccharides and Their Various Potential Applications. Polymers 2022, 14, 3648. [Google Scholar] [CrossRef]
- Aanisah, N.; Wardhana, Y.W.; Chaerunisaa, A.Y.; Budiman, A. Review on Modification of Glucomannan as an Excipient in Solid Dosage Forms. Polymers 2022, 14, 2550. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’ko, N.G.; Kuchina, Y.A. Intermolecular Interactions in the Formation of Polysaccharide-Gelatin Complexes: A Spectroscopic Study. Polymers 2022, 14, 2777. [Google Scholar] [CrossRef]
- Xu, Y.; Ji Wu, Y.; Sun, P.; Zhang, F.; Linhardt, R.J.; Zhang, A. Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action. Int. J. Biol. Macromol. 2019, 132, 970–977. [Google Scholar] [CrossRef]
- Li, S.; Xiong, Q.; Lai, X.; Li, X.; Wan, M.; Zhang, J.; Yan, Y.; Cao, M.; Lu, L.; Guan, J.; et al. Molecular Modification of Polysaccharides and Resulting Bioactivities. Compr. Rev. Food Sci. Food Saf. 2016, 15, 237–250. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, J.; Raj, V.; Kumar, P. A Review on the Modification of Polysaccharide Through Graft Copolymerization for Various Potential Applications. Open Med. Chem. J. 2017, 11, 109–126. [Google Scholar] [CrossRef]
- Chakka, V.P.; Zhou, T. Carboxymethylation of polysaccharides: Synthesis and bioactivities. Int. J. Biol. Macromol. 2020, 165, 2425–2431. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Yao, Z.; Zhao, M.; Qi, H. Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. Int. J. Biol. Macromol. 2013, 58, 225–230. [Google Scholar] [CrossRef]
- Qiu, S.; Chen, J.; Chen, X.; Fan, Q.; Zhang, C.; Wang, D.; Li, X.; Chen, X.; Liu, C.; Gao, Z.; et al. Optimization of selenylation conditions for lycium barbarum polysaccharide based on antioxidant activity. Carbohydr. Polym. 2014, 103, 148–153. [Google Scholar] [CrossRef]
- Ye, M.; Yuan, R.Y.; He, Y.L.; Du, Z.Z.; Ma, X.J. Phosphorylation and anti-tumor activity of exopolysaccharide from Lachnum YM120. Carbohydr. Polym. 2013, 97, 690–694. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Wang, Y.; Nie, S.; Li, C.; Xie, M. Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chem. 2014, 156, 279–288. [Google Scholar] [CrossRef]
- Li, X.L.; Xiao, J.J.; Zha, X.Q.; Pan, L.H.; Asghar, M.N.; Luo, J.P. Structural identification and sulfated modification of an antiglycation Dendrobium huoshanense polysaccharide. Carbohydr. Polym. 2014, 106, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Wan, Z.J.; Shi, L.; Lu, X.X. Preparation and antiherpetic activities of chemically modified polysaccharides from Polygonatum cyrtonema Hua. Carbohydr. Polym. 2011, 83, 737–742. [Google Scholar] [CrossRef]
- Fan, J.M.; Zhang, J.S.; Tang, Q.J.; Liu, Y.F.; Zhang, A.Q.; Pan, Y.J. Structural elucidation of a neutral fucogalactan from the mycelium of Coprinus comatus. Carbohydr. Res. 2006, 341, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhang, J.; Lv, Z.; Ye, L.; Yang, Y.; Tang, Q. Chemical modification of an acidic polysaccharide (TAPA1) from Tremella aurantialba and potential biological activities. Food Chem. 2014, 143, 336–340. [Google Scholar] [CrossRef]
- De Nooy, A.E.J.; Rori, V.; Masci, G.; Dentini, M.; Crescenzi, V. Synthesis and prelimiary characterisation of charged derivatives and hydrogels from scleroglucan. Carbohydr. Res. 2000, 324, 116–126. [Google Scholar] [CrossRef]
- Abhishek, R.; Ahuja, M. Evaluation of carboxymethyl moringa gum as nanometric carrier. Carbohydr. Polym. 2017, 174, 896–903. [Google Scholar]
- Badwaik, H.R.; Al Hoque, A.; Kumari, L.; Sakure, K.; Baghel, M.; Giri, T.K. Moringa gum and its modified form as a potential green polymer used in biomedical field. Carbohydr. Polym. 2020, 249, 116893. [Google Scholar] [CrossRef]
- Verraest, D.L.; Peters, J.A.; Batelaan, J.G.; Van Bekkum, H. Carboxymethylation of inulin. Carbohydr. Res. 1995, 271, 101–112. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, T.; Wei, H.; Zhang, M.; Zou, Y.; Mao, V.; Wu, X. Carboxymethylation of polysaccharides from Auricularia auricula and their antioxidant activities in vitro. Int. J. Biol. Macromol. 2011, 49, 1124–1130. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, G.; Li, J.; Surhio, M.M.; Ye, M. Structure characterization, modifi cation through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp. Process Biochem. 2018, 72, 177–187. [Google Scholar] [CrossRef]
- Rana, V.; Rai, P.; Tiwary, A.K.; Singh, R.S.; Kennedy, J.F.; Knill, C.J. Modified gums: Approaches and applications in drug delivery. Carbohydr. Polym. 2011, 83, 1031–1047. [Google Scholar] [CrossRef]
- Devi, G.; Kaur, M.; Nagpal, M.; Sharma, A.; Puri, V.; Dhingra, G.A.; Arora, M. Advanced dosage form design: Role of modified natural gums. Asian J. Chem. 2021, 33, 1–9. [Google Scholar] [CrossRef]
- Murthy, H.N. Chemical Constituents and Applications of Gums, Resins, and Latexes of Plant Origin. Ref. Ser. Phytochem. 2022, 1, 3–23. [Google Scholar]
- Sharma, D.; Sharma, P. Synergistic studies of Cassia tora gum with xanthan and guar gum: Carboxymethyl synthesis of cassia gum-xanthan synergistic blend and characterization. Carbohydr. Res. 2023, 523, 108723. [Google Scholar] [CrossRef]
- Tanwar, M.; Gupta, R.K.; Rani, A. Natural gums and their derivatives based hydrogels: In biomedical, environment, agriculture, and food industry. Crit. Rev. Biotechnol. 2023; online ahead of print. [Google Scholar]
- Mocanu, G.; Mihaï, D.; Dulong, V.; Picton, L.; Le, D. New anionic crosslinked multi-responsive pullulan hydrogels. Carbohydr. Polym. 2012, 87, 1440–1446. [Google Scholar] [CrossRef]
- Gupta, A.P.; Verma, D.K. Preparation and characterization of carboxymethyl guar gum nanoparticles. Int. J. Biol. Macromol. 2014, 68, 247–250. [Google Scholar] [CrossRef]
- Giri, T.K.; Choudhary, C.; Alexander, A.; Ajazuddin, A.; Badwaik, H.; Tripathy, M.; Tripathi, D.K. Sustained release of diltiazem hydrochloride from cross-linked biodegradable IPN hydrogel beads of pectin and modified xanthan gum. Indian J. Pharm. Sci. 2013, 75, 619–627. [Google Scholar]
- Randhawa, R.; Bassi, P.; Kaur, G. In vitro, in vivo evaluation of inter polymer complexes between carboxymethyl fenugreek gum and chitosan or carboxymethyl guar gum and chitosan for colon delivery of tamoxifen. Asian Pac. J. Trop. Dis. 2012, 2, S202–S207. [Google Scholar] [CrossRef]
- Singh, V.; Kumar, P. Carboxymethyl tamarind gum-silica nanohybrids for effective immobilization of amylase. J. Mol. Catal. B Enzym. 2011, 70, 67–73. [Google Scholar] [CrossRef]
- Zhu, G.; Sheng, L.; Tong, Q. Preparation and characterization of carboxymethyl-gellan and pullulan blend films. Food Hydrocoll. 2014, 35, 341–347. [Google Scholar] [CrossRef]
- Rafigh, S.M.; Vaziri Yazdi, A.; Safekordi, A.A.; Heydari Nasab, A.; Ardjmand, M.; Naderi, F.; Mozafari, H. Protein adsorption using novel carboxymethyl-curdlan microspheres. Int. J. Biol. Macromol. 2016, 87, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Das, A.; Basu, A.; Ghosh, D.; Datta, P.; Mukherjee, A. Carboxymethyl guar gum synthesis in homogeneous phase and macroporous 3D scaffolds design for tissue engineering. Carbohydr. Polym. 2018, 191, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Badwaik, H.R.; Kumari, L.; Maiti, S.; Sakure, K.; Ajazuddin; Nakhate, K.T.; Tiwari, V.; Giri, T.K. A review on challenges and issues with carboxymethylation of natural gums: The widely used excipients for conventional and novel dosage forms. Int. J. Biol. Macromol. 2022, 209, 2197–2212. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Nath, N.; Nandi, G. Synthesis, characterization and fabrication of sodium carboxymethyl-okra-gum-grafted-polymethacrylamide into sustained release tablet matrix. Int. J. Biol. Macromol. 2020, 164, 3885–3900. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xia, B.; Branham, M.; Ha, W.; Wu, H.; Peng, S.L.; Ding, L.S.; Li, B.J.; Zhang, S. Self-assembly of carboxymethyl konjac glucomannan-g-poly(ethylene glycol) and (α-cyclodextrin) to biocompatible hollow nanospheres for glucose oxidase encapsulation. Carbohydr. Polym. 2011, 86, 120–126. [Google Scholar] [CrossRef]
- Sabaa, M.W.; Mohamed, N.A.; Mohamed, R.R.; Khalil, N.M.; Abd El Latif, S.M. Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr. Polym. 2010, 79, 998–1005. [Google Scholar] [CrossRef]
- Sabaa, M.W.; Mohamed, N.A.; Mohamed, R.R.; Abd El Latif, S.M. Chemically induced graft copolymerization of 4-vinyl pyridine onto carboxymethyl chitosan. Polym. Bull. 2011, 67, 693–707. [Google Scholar] [CrossRef]
- Yadav, M.; Mishra, D.K.; Behari, K. Synthesis of partially hydrolyzed graft copolymer (H-partially carboxymethylated guar gum-g-methacrylic acid): A superabsorbing material. Carbohydr. Polym. 2011, 85, 29–36. [Google Scholar] [CrossRef]
- Tripathy, J.; Mishra, D.K.; Srivastava, A.; Mishra, M.M.; Behari, K. Synthesis of partially carboxymethylated guar gum-g-4-vinyl pyridine and study of its water swelling, metal ion sorption and flocculation behaviour. Carbohydr. Polym. 2008, 72, 462–472. [Google Scholar] [CrossRef]
- Elgamal, A.M.; Abu Elella, M.H.; Saad, G.R.; Abd El-Ghany, N.A. Synthesis, characterization and swelling behavior of high-performance antimicrobial biocompatible copolymer based on carboxymethyl xanthan. Mater. Today Commun. 2022, 33, 104209. [Google Scholar]
- Xia, B.; Ha, W.; Meng, X.W.; Govender, T.; Peng, S.L.; Ding, L.S.; Li, B.J.; Zhang, S. Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohydr. Polym. 2010, 79, 648–654. [Google Scholar] [CrossRef]
- Gupta, N.R.; Ghute, P.P.; Badiger, M.V. Synthesis and characterization of thermo-sensitive graft copolymer of carboxymethyl guar and poly(N-isopropylacrylamide). Carbohydr. Polym. 2011, 83, 74–80. [Google Scholar] [CrossRef]
- Pal, S.; Ghorai, S.; Dash, M.K.; Ghosh, S.; Udayabhanu, G. Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesised by conventional and microwave assisted method. J. Hazard. Mater. 2011, 192, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Staros, J.V.; Wright, R.W.; Swingle, D.M. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem. 1986, 156, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Soliman, E.A.; Mansour, E.S.M.E.S.; Hassan, H.A.M.; Hassan, N.A.M. Optimization of Graft Polymerization and Performance of Carboxymethyl Chitosan/Polyacrylamide Flocculants. J. Res. Dev. Chem. 2014, 2014, 351498. [Google Scholar] [CrossRef]
- Badwaik, H.R.; Alexander, A.; Sakure, K. Understanding the Significance of Microwave Radiation for the Graft Copolymerization of Acrylamide on Carboxymethyl Xanthan Gum. Curr. Microw. Chem. 2019, 6, 13–22. [Google Scholar] [CrossRef]
- Sand, A.; Yadav, M.; Mishra, M.M.; Tripathy, J.; Behari, K. Studies on graft copolymerization of 2-acrylamidoglycolic acid on to partially carboxymethylated guar gum and physico-chemical properties. Carbohydr. Polym. 2011, 83, 14–21. [Google Scholar] [CrossRef]
- Shi, H.Y.; Zhang, L.M. New grafted polysaccharides based on O-carboxymethyl-O-hydroxypropyl guar gum and N-isopropylacrylamide: Synthesis and phase transition behavior in aqueous media. Carbohydr. Polym. 2007, 67, 337–342. [Google Scholar] [CrossRef]
- Gupta, N.R.; Arun Torris, A.T.; Wadgaonkar, P.P.; Rajamohanan, P.R.; Ducouret, G.; Hourdet, D.; Creton, C.; Badiger, M.V. Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers. Carbohydr. Polym. 2015, 117, 331–338. [Google Scholar] [CrossRef]
- Trivedi, J.H.; Thaker, M.D.; Trivedi, H.C. Photo-induced graft copolymerization of acrylonitrile onto sodium salt of partially carboxymethylated guar gum. J. Appl. Polym. Sci. 2015, 132, 41371. [Google Scholar] [CrossRef]
- Malik, R.; Warkar, S.G.; Saxena, R. Carboxy-methyl tamarind kernel gum based bio-hydrogel for sustainable agronomy. Mater. Today Commun. 2023, 35, 105473. [Google Scholar] [CrossRef]
- Ha, W.; Wu, H.; Wang, X.L.; Peng, S.L.; Ding, L.S.; Zhang, S.; Li, B.J. Self-aggregates of cholesterol-modified carboxymethyl konjac glucomannan conjugate: Preparation, characterization, and preliminary assessment as a carrier of etoposide. Carbohydr. Polym. 2011, 86, 513–519. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Saxena, S.K.; Sharma, S. Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate—Carboxymethyl guar gum blend beads. J. React. Funct. Polym. 2006, 66, 659–666. [Google Scholar] [CrossRef]
- Mocanu, G.; Mihai, D.; LeCerf, D.; Picton, L.; Muller, G. Synthesis of new associative gel microspheres from carboxymethyl pullulan and their interactions with lysozyme. Eur. Polym. J. 2004, 40, 283–289. [Google Scholar] [CrossRef]
- Giri, T.K.; Thakur, D.; Ajazuddin; Badwaik, H.; Tripathi, D.K. Alginate based Hydrogel as a Potential Biopolymeric Carrier for Drug Delivery and Cell Delivery Systems: Present Status and Applications. Curr. Drug Deliv. 2012, 9, 539–555. [Google Scholar] [CrossRef]
- Pezron, E.; Leibler, L.; Lafuma, F. Complex Formation in Polymer-Ion Solutions. 2. Polyelectrolyte Effects. Macromolecules 1989, 22, 2656–2662. [Google Scholar] [CrossRef]
- Mali, K.K.; Ghorpade, V.S.; Dias, R.J.; Dhawale, S.C. Synthesis and characterization of citric acid crosslinked carboxymethyl tamarind gum-polyvinyl alcohol hydrogel films. Int. J. Biol. Macromol. 2023, 236, 123969. [Google Scholar] [CrossRef]
- More, M.P.; Bhamare, M.S.; Bhavsar, C.J.; Patil, P.O.; Deshmukh, P.K. Development of novel thiolated carboxymethyl-gellan gum as potential mucoadhesive polymer: Application of DoE. Adv. Mater. Sci. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Prabaharan, M.; Gong, S. Novel thiolated carboxymethyl chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers. Carbohydr. Polym. 2008, 73, 117–125. [Google Scholar] [CrossRef]
- Badwaik, H.; Giri, T.; Nakhate, K.; Kashyap, P.; Tripathi, K.D. Xanthan Gum and Its Derivatives as a Potential Bio-polymeric Carrier for Drug Delivery System. Curr. Drug Deliv. 2013, 10, 587–600. [Google Scholar] [CrossRef]
- Toti, U.S.; Aminabhavi, T.M. Modified guar gum matrix tablet for controlled release of diltiazem hydrochloride. J. Control. Release. 2004, 95, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, J.; Srivastava, A.; Srivastava, A.; Behari, K. Synthesis and characterization of xanthan gum-g-N-vinyl formamide with a potassium monopersulfate/Ag(I) system. J. Appl. Polym. Sci. 2006, 101, 1637–1645. [Google Scholar] [CrossRef]
- Trivedi, J.H.; Kalia, K.; Patel, N.K.; Trivedi, H.C. Ceric-induced grafting of acrylonitrile onto sodium salt of partially carboxymethylated guar gum. Carbohydr. Polym. 2005, 60, 117–125. [Google Scholar] [CrossRef]
- Kast, C.E.; Bernkop-Schnürch, A. Thiolated polymers—Thiomers: Development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 2001, 22, 2345–2352. [Google Scholar] [CrossRef]
- Bamford, C.H.; Schofield, E. Non-classical free-radical polymerization: Degradative addition to monomer in the polymerization of 1-vinylimidazole. Polymer 1981, 22, 1227–1235. [Google Scholar] [CrossRef]
- Crini, G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 2005, 30, 38–70. [Google Scholar] [CrossRef]
- Silva, D.A.; Feitosa, J.P.A.; Maciel, J.S.; Paula, H.C.B.; de Paula, R.C.M. Characterization of crosslinked cashew gum derivatives. Carbohydr. Polym. 2006, 66, 16–26. [Google Scholar] [CrossRef]
- Bachra, Y.; Grouli, A.; Damiri, F.; Talbi, M.; Berrada, M. A Novel Superabsorbent Polymer from Crosslinked Carboxymethyl Tragacanth Gum with Glutaraldehyde: Synthesis, Characterization, and Swelling Properties. Int. J. Biomater. 2021, 2021, 5008833. [Google Scholar] [CrossRef]
- Huang, G.Q.; Cheng, L.Y.; Xiao, J.X.; Wang, S.Q.; Han, X.N. Genipin-crosslinked O-carboxymethyl chitosan-gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization. J. Biomater. Appl. 2016, 31, 193–204. [Google Scholar] [CrossRef]
- Manickam, B.; Sreedharan, R.; Elumalai, M. ‘Genipin’—The Natural Water Soluble Cross-linking Agent and Its Importance in the Modified Drug Delivery Systems: An Overview. Curr. Drug Deliv. 2014, 11, 139–145. [Google Scholar] [CrossRef]
- Huang, G.Q.; Han, X.N.; Xiao, J.X. Glutaraldehyde-crosslinked O-carboxymethyl chitosan–gum Arabic coacervates: Characteristics versus complexation acidity. J. Dispers. Sci. Technol. 2017, 38, 1607–1612. [Google Scholar] [CrossRef]
- Yang, Y.; Anvari, M.; Pan, C.H.; Chung, D. Characterisation of interactions between fish gelatin and gum arabic in aqueous solutions. Food Chem. 2012, 135, 555–561. [Google Scholar] [CrossRef]
- Maity, S.; Sa, B. Ca-carboxymethyl xanthan gum mini-matrices: Swelling, erosion and their impact on drug release mechanism. Int. J. Biol. Macromol. 2014, 68, 78–85. [Google Scholar] [CrossRef]
- Patel, J.J.; Karve, M.; Patel, V.A.; Patel, N.K. Synthesis, characterization and application of borax cross-linked carboxymethyl guar gum. Chem. Pharm. Res. 2015, 7, 628–637. [Google Scholar]
- Lam, Y.L.; Muniyandy, S.; Kamaruddin, H.; Mansor, A.; Janarthanan, P. Radiation cross-linked carboxymethyl sago pulp hydrogels loaded with ciprofloxacin: Influence of irradiation on gel fraction, entrapped drug and in vitro release. Radiat. Phys. Chem. 2015, 106, 213–222. [Google Scholar] [CrossRef]
- Bao, D.; Chen, M.; Wang, H.; Wang, J.; Liu, C.; Sun, R. Preparation and characterization of double crosslinked hydrogel films from carboxymethylchitosan and carboxymethylcellulose. Carbohydr. Polym. 2014, 110, 113–120. [Google Scholar] [CrossRef]
- Mitra, S.; Maity, S.; Sa, B. Effect of different cross-linking methods and processing parameters on drug release from hydrogel beads. Int. J. Biol. Macromol. 2015, 74, 489–497. [Google Scholar] [CrossRef]
- Muniyandy, S.; Sathasivam, T.; Veeramachineni, A.K.; Janarthanan, P. Dual cross-linked carboxymethyl sago pulp-gelatine complex coacervates for sustained drug delivery. Polymers 2015, 7, 1088–1105. [Google Scholar] [CrossRef]
- Jana, P.; Sarkar, K.; Mitra, T.; Chatterjee, A.; Gnanamani, A.; Chakraborti, G.; Kundu, P.P. Synthesis of a carboxymethylated guar gum grafted polyethyleneimine copolymer as an efficient gene delivery vehicle. RSC Adv. 2016, 6, 13730–13741. [Google Scholar] [CrossRef]
- Pinilla-Torres, A.M.; Carrión-García, P.Y.; Sánchez-Domínguez, C.N.; Gallardo-Blanco, H.; Sánchez-Domínguez, M. Modification of branched polyethyleneimine using mesquite gum for its improved hemocompatibility. Polymers 2021, 13, 2766. [Google Scholar] [CrossRef]
- Lu, S.; Li, H.; Zhang, F.; Du, N.; Hou, W. Sorption of Pb(II) on carboxymethyl chitosan-conjugated magnetite nanoparticles: Application of sorbent dosage-dependent isotherms. Colloid Polym. Sci. 2016, 294, 1369–1379. [Google Scholar] [CrossRef]
- Minkal; Ahuja, M.; Bhatt, D.C. Polyelectrolyte complex of carboxymethyl gum katira-chitosan: Preparation and characterization. Int. J. Biol. Macromol. 2018, 106, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Maciel, J.S.; Silva, D.A.; Paula, H.C.B.; De Paula, R.C.M. Chitosan/carboxymethyl cashew gum polyelectrolyte complex: Synthesis and thermal stability. Polymer 2005, 41, 2726–2733. [Google Scholar] [CrossRef]
- Du, J.; Sun, R.; Zhang, S.; Zhang, L.F.; Xiong, C.D.; Peng, Y.X. Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. I. Physicochemical characterization of the carboxymethyl konjac glucomannan-chitosan nanoparticles. Biopolymers 2005, 78, 1–8. [Google Scholar] [CrossRef]
- Kaur, G.; Jain, S.; Tiwary, A.K. Chitosan-carboxymethyl tamarind kernel powder interpolymer complexation: Investigations for colon drug delivery. Sci. Pharm. 2010, 78, 57–78. [Google Scholar] [CrossRef]
- Bera, H.; Mothe, S.; Maiti, S.; Vanga, S. Composite beads for glimepiride delivery. Int. J. Biol. Macromol. 2018, 107, 604–614. [Google Scholar] [CrossRef]
- Kumar, V.; Tiwary, A.K.; Kaur, G. Investigations on chitosan-carboxymethyl guar gum complexes interpolymer complexes for colon delivery of fluticasone. Int. J. Drug Deliv. 2010, 2, 242–250. [Google Scholar] [CrossRef]
- Kumar, A.; Ahuja, M. Carboxymethyl gum kondagogu-chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Int. J. Biol. Macromol. 2013, 62, 80–84. [Google Scholar] [CrossRef]
- Alamdarnejad, G.; Sharif, A.; Taranejoo, S.; Janmaleki, M.; Kalaee, M.R.; Dadgar, M.; Khakpour, M. Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole. J. Mater. Sci. Mater. Med. 2013, 24, 1939–1949. [Google Scholar] [CrossRef]
- Chen, N.; Zhu, P.; Du, T.; Han, K.; Wang, D.; Ye, J.; Xiao, S.; Ye, X.; Wang, Y. Preparation of Modified Konjac Glucomannan Nanoparticles and their Application as Vaccine Adjuvants to Promote Ovalbumin-Induced Immune Response in Mice. Pharm. Res. 2018, 35, 105. [Google Scholar] [CrossRef]
- Shi, C.; Zhu, P.; Chen, N.; Ye, X.; Wang, Y.; Xiao, S. Preparation and sustainable release of modified konjac glucomannan/chitosan nanospheres. Int. J. Biol. Macromol. 2016, 91, 609–614. [Google Scholar] [CrossRef]
- Mocanu, G.; Mihai, D. Microparticles Crosslinked with Siloxane: Interactions with Biologically Active substances. J. Bioact. Compat. Polym. 2008, 23, 82–94. [Google Scholar] [CrossRef]
- Singh, R.; Maity, S.; Sa, B. Effect of ionic crosslink on the release of metronidazole from partially carboxymethylated guar gum tablet. Carbohydr. Polym. 2014, 106, 414–421. [Google Scholar] [CrossRef]
- Badwaik, H.R.; Sakure, K.; Alexander, A.; Ajazuddin; Dhongade, H.; Tripathi, D.K. Synthesis and characterisation of poly(acryalamide) grafted carboxymethyl xanthan gum copolymer. Int. J. Biol. Macromol. 2016, 85, 361–369. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Sharma, S. Investigation of pH-sensitive swelling and drug release behavior of barium alginate/carboxymethyl guar gum hydrogel beads. J. Macromol. Sci. Part A Pure Appl. Chem. 2006, 43, 1513–1521. [Google Scholar] [CrossRef]
- Giri, A.; Bhowmick, M.; Pal, S.; Bandyopadhyay, A. Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium. Int. J. Biol. Macromol. 2011, 49, 885–893. [Google Scholar] [CrossRef]
- Rani, I.; Warkar, S.G.; Kumar, A. Nano ZnO embedded poly (ethylene glycol) diacrylate cross-linked carboxymethyl tamarind kernel gum (CMTKG)/poly (sodium acrylate) composite hydrogels for oral delivery of ciprofloxacin drug and their antibacterial properties. Mater. Today Commun. 2023, 35, 105635. [Google Scholar] [CrossRef]
- Maestrelli, F.; Cirri, M.; Corti, G.; Mennini, N.; Mura, P. Development of enteric-coated calcium pectinate microspheres intended for colonic drug delivery. Eur. J. Pharm. Biopharm. 2008, 69, 508–518. [Google Scholar] [CrossRef]
- Duchene, D.; Touchard, F.; Peppas, N.A. Pharmaceutical and Medical Aspects of Bioadhesive Systems for Drug Administration. Drug Dev. Ind. Pharm. 1988, 14, 283–318. [Google Scholar] [CrossRef]
- Giri, A.; Bhunia, T.; Mishra, S.R.; Goswami, L.; Panda, A.B.; Bandyopadhyay, A. A transdermal device from 2-hydroxyethyl methacrylate grafted carboxymethyl guar gum-multi-walled carbon nanotube composites. RSC Adv. 2014, 4, 13546–13556. [Google Scholar] [CrossRef]
- Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 2012, 37, 237–280. [Google Scholar] [CrossRef]
- Lu, H.; Dai, Y.; Lv, L.; Zhao, H. Chitosan-graft-polyethylenimine/DNA nanoparticles as novel non-viral gene delivery vectors targeting osteoarthritis. PLoS ONE 2014, 9, e84703. [Google Scholar] [CrossRef] [PubMed]
- Grandinetti, G.; Ingle, N.P.; Reineke, T.M. Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria: Implications for a mechanism of cytotoxicity. Mol. Pharm. 2011, 8, 1709–1719. [Google Scholar] [CrossRef] [PubMed]
- Roacho-p, J.A.; Rodr, K.O.; Gallardo-blanco, H.L.; Velazco-campos, M.R.; Sosa-cruz, K.V.; Garc, P.E.; Rojas-patl, L.; Margarita, S.; Rivas-estilla, A.M.; Chapa-gonzalez, V.G.C.; et al. A Full Set of In Vitro Assays in Chitosan/Tween 80 Microspheres Loaded with Magnetite Nanoparticles. Polymers 2021, 13, 400. [Google Scholar] [CrossRef]
- Ahuja, M.; Kumar, A.; Singh, K. Synthesis, characterization and in vitro release behavior of carboxymethyl xanthan. Int. J. Biol. Macromol. 2012, 51, 1086–1090. [Google Scholar] [CrossRef]
- Rahman, M.M.; Roy, S.; Das, S.C.; Jha, M.K.; Ahsan, M.Q.; Shahparan, M.; Reza, M.S. Formulation and evaluation of hydroxypropylmethylcellulose based matrix systems as oral sustained release drug delivery systems for ciprofloxacin hydrochloride. Int. J. Pharm. Sci. Rev. Res. 2011, 6, 34–41. [Google Scholar]
- Orsu, P.; Koyyada, A.; Naidu, K.L.; Yadav, S. Nanofibers of carboxymethyl tamarind gum / reduced graphene oxide composite for neuronal cell proliferation. J. Drug Deliv. Sci. Technol. 2021, 66, 1–6. [Google Scholar] [CrossRef]
- Chen, F.; Yu, S.; Liu, B.; Ni, Y.; Yu, C.; Su, Y.; Zhu, X.; Yu, X.; Zhou, Y.; Yan, D. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
SN. | Modification | Effect | References |
---|---|---|---|
1. | Graft copolymerization with 4-vinyl-pyridine |
| [48,50,51] |
2. | Graft copolymerization with poly-(ethylene glycol) |
| [46,52] |
3. | Graft copolymerization with poly-(N-isopropyl acrylamide) |
| [53] |
4. | Graft copolymerization with poly-acrylamide |
| [54] [55] [56] [57] |
5. | Graft copolymerization with 2-acryl-amidoglycolic acid |
| [58] |
6. | Poly-(N-vinyl imidazole) grafted with (PEPO) [Poly-(ethylene oxide-co-propylene oxide)] |
| [59] [60] |
7. | Graft copolymerization with polymethacrylamide |
| [45] |
8. | Graft copolymerization with acrylonitrile |
| [61] |
9. | Graft copolymerization with methacrylate |
| [62] |
10. | Alterations involving cholesterol |
| [63] |
11. | Jeffamine substitution |
| [36] |
12. | Barium ions cross-linked bipolymeric blend with sodium alginate |
| [64] |
13. | Cross-linking with calcium ions |
| [65] |
14. | Cross-linking with Epichlorohydrin |
| [66] |
15. | Cross-linking with polyelectrolyte complexation with chitosan |
| [67] |
16. | Cross-linking with citric acid |
| [68] |
17. | Thiolation |
| [69] |
18. | β-cyclodextrin grafting followed by thiolation |
| [70] |
S. No. | Drug Delivery | Derivatized Gum | Drug | Comments | Reference |
---|---|---|---|---|---|
1. | Intestine-targeted delivery system (tablet) | Genipin-cross-linked O-CMC–gum Arabic coacervates | BSA |
| [80] |
2. | Intestine-targeted delivery system (tablet) | GA-cross-linked O-CMC–gum Arabic coacervates | -- |
| [82] |
3. | Sustained-release drug delivery (monolithic matrix tablet) | Sodium carboxymethyl okra gum-grafted polymethacrylamide copolymer | Diclofenac sodium |
| [45] |
4. | Vaccine delivery vehicles(nanoparticles) | Cationic quaternized konjac glucomannan and Anionic carboxymethylated konjac glucomannan | Ovalbumin (OVA) |
| [101] |
5. | Enzyme encapsulation (hallow nanospheres) | Carboxymethyl konjac glucomannan-grafted poly(ethylene glycol) with α-cyclodextrin complexes | Glucose oxidase (GOX) |
| [46] |
6. | Controlled hydrophobic drug delivery (hydrogel beads) | Carboxymethyl fenugreek galactomannan gellan gum | Glimepiride (GLI) |
| [97] |
7. | Sustained drug delivery | Thiolated carboxymethyl chitosan-g-β-cyclodextrin | Ketoprofen |
| [70] |
8. | Controlled drug delivery(nanoparticles) | Thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles | Albendazole |
| [100] |
9. | Controlled drug release | Carboxymethyl pullulan, cross-linked with siloxane | Lysozyme, propranolol, quinidine |
| [102] |
10. | Controlled drug delivery(hydrogel) | Carboxymethyl pullulan, cross-linked with Jeffamine | Lysozyme, BSA, lutein |
| [103] |
11. | Colon delivery of drug (matrix tablet) | Calcium-cross-linked carboxymethyl xanthan gum | Prednisolone |
| [84] |
12. | Colon delivery of drug (tablet) | Cross-linked chitosan and carboxymethyl guar gum | Fluticasone |
| [98] |
13. | Colon delivery of drug (Matrix tablet) | Calcium-cross-linked carboxymethyl guar gum | Metronidazole |
| [104] |
14. | Sustained drug delivery (tablet) | Polyacrylamide-grafted carboxymethylated xanthan gum (CMXG-g-PAAm) | -- |
| [105] |
15. | Colon delivery of drug (tablet) | Interpolymer complex films of carboxymethyl fenugreek gum/ carboxymethyl guar gum with chitosan | Tamoxifen |
| [39] |
16. | Intestine-targeted delivery system | Barium ions cross-linked with carboxymethyl guar gum bipolymeric | Vitamin B12 |
| [106] |
17. | Sustained-release drug delivery (multiwalled carbon nanotubes (MWCNTs)) | 2-hydroxyethyl methacrylate-grafted carboxymethyl guar gum | Diclofenac sodium |
| [107] |
18. | Ocular drug delivery | Cross-linked carboxymethyl sago pulp | Ciprofloxacin |
| [86] |
19. | Sustained-release drug delivery | Al/Ca cross-linked CMTG matrices | Tramadol hydrochloride |
| [3] |
20. | Oral drug delivery | Poly(ethylene glycol) diacrylate cross-linked carboxymethyl tamarind kernel gum poly(sodium acrylate) | Ciprofloxacin |
| [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghel, M.; Sakure, K.; Giri, T.K.; Maiti, S.; Nakhate, K.T.; Ojha, S.; Sharma, C.; Agrawal, Y.; Goyal, S.; Badwaik, H. Carboxymethylated Gums and Derivatization: Strategies and Significance in Drug Delivery and Tissue Engineering. Pharmaceuticals 2023, 16, 776. https://doi.org/10.3390/ph16050776
Baghel M, Sakure K, Giri TK, Maiti S, Nakhate KT, Ojha S, Sharma C, Agrawal Y, Goyal S, Badwaik H. Carboxymethylated Gums and Derivatization: Strategies and Significance in Drug Delivery and Tissue Engineering. Pharmaceuticals. 2023; 16(5):776. https://doi.org/10.3390/ph16050776
Chicago/Turabian StyleBaghel, Madhuri, Kalyani Sakure, Tapan Kumar Giri, Sabyasachi Maiti, Kartik T. Nakhate, Shreesh Ojha, Charu Sharma, Yogeeta Agrawal, Sameer Goyal, and Hemant Badwaik. 2023. "Carboxymethylated Gums and Derivatization: Strategies and Significance in Drug Delivery and Tissue Engineering" Pharmaceuticals 16, no. 5: 776. https://doi.org/10.3390/ph16050776
APA StyleBaghel, M., Sakure, K., Giri, T. K., Maiti, S., Nakhate, K. T., Ojha, S., Sharma, C., Agrawal, Y., Goyal, S., & Badwaik, H. (2023). Carboxymethylated Gums and Derivatization: Strategies and Significance in Drug Delivery and Tissue Engineering. Pharmaceuticals, 16(5), 776. https://doi.org/10.3390/ph16050776