7-Chloroquinolinehydrazones as First-in-Class Anticancer Experimental Drugs in the NCI-60 Screen among Different Investigated Series of Aryl, Quinoline, Pyridine, Benzothiazole and Imidazolehydrazones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Strategy
2.2. Biological Evaluation
2.3. Structure-Activity Relationships
2.4. Conclusions
3. Materials and Methods for Synthesis and Characterizations
3.1. Synthesis of 10-Methyl-10H-phenothiazine-3-carbaldehyde (34)
3.2. General Procedure for the Synthesis of Hydrazone Derivatives (1–27)
3.2.1. 1-(3-Bromophenyl)-2-(3,4,5-trimethoxybenzylidene)hydrazine (1)
3.2.2. 1-(3,4-Dimethylphenyl)-2-(4-nitrobenzylidene)hydrazine (2)
3.2.3. 2-(2-(4-Nitrobenzylidene)hydrazinyl)-4,5-dihydro-1H-imidazole (3)
3.2.4. 2-(2-(Thiophen-2-ylmethylene)hydrazinyl)-4,5-dihydro-1H-imidazole (4)
3.2.5. 2-(2-(2,4-Dichlorobenzylidene)hydrazinyl)-4,5-dihydro-1H-imidazole (5)
3.2.6. 7-Chloro-4-(2-(3-chloro-4-methoxybenzylidene)hydrazinyl)quinoline (6)
3.2.7. 4-((2-(7-Chloroquinolin-4-yl)hydrazono)methyl)-2,6-dimethoxyphenol (7)
3.2.8. 3-((2-(7-Chloroquinolin-4-yl)hydrazono)methyl)-10-methyl-10H-phenothiazine (8)
3.2.9. 3-((2-(4-Methoxyphenyl)hydrazono)methyl)-10-methyl-10H-phenothiazine (9)
3.2.10. 3-((2-(Benzo[d]thiazol-2-yl)hydrazono)methyl)-10-methyl-10H-phenothiazine (10)
3.2.11. 3-((2-(4-Bromophenyl)hydrazono)methyl)-10-methyl-10H-phenothiazine (11)
3.2.12. 3-((2-(3-Bromophenyl)hydrazono)methyl)-10-methyl-10H-phenothiazine (12)
3.2.13. 4-(2-((1H-Indol-3-yl)methylene)hydrazinyl)-7-chloroquinoline (13)
3.2.14. 3-((2-(6-Chloropyridin-2-yl)hydrazono)methyl)-1H-indole (14)
3.2.15. 3-((2-(5-Bromopyridin-2-yl)hydrazono)methyl)-1H-indole (15)
3.2.16. 7-Chloro-4-(2-((5-methoxy-1H-indol-3-yl)methylene)hydrazinyl)quinoline (16)
3.2.17. 2-(2-((5-Methoxy-1H-indol-3-yl)methylene)hydrazinyl)benzo[d]thiazole (17)
3.2.18. 3-((2-(5-Bromopyridin-2-yl)hydrazono)methyl)-5-methoxy-1H-indole (18)
3.2.19. 3-((2-(6-Chloropyridin-2-yl)hydrazono)methyl)-5-methoxy-1H-indole (19)
3.2.20. 7-Chloro-4-(2-((1-methyl-1H-indol-3-yl)methylene)hydrazinyl)quinoline (20)
3.2.21. 3-((2-(5-Bromopyridin-2-yl)hydrazono)methyl)-1-methyl-1H-indole (21)
3.2.22. 3-((2-(6-Chloropyridin-2-yl)hydrazono)methyl)-1-methyl-1H-indole (22)
3.2.23. 7-Chloro-4-(2-((5-methoxy-1-methyl-1H-indol-3-yl)methylene)hydrazinyl)quinoline (23)
3.2.24. 2-(2-((5-Methoxy-1-methyl-1H-indol-3-yl)methylene)hydrazinyl)quinoline (24)
3.2.25. 4-(2-((5-Bromo-1H-indol-3-yl)methylene)hydrazinyl)-7-chloroquinoline (25)
3.2.26. 5-Bromo-3-((2-(5-bromopyridin-2-yl)hydrazono)methyl)-1H-indole (26)
3.2.27. 5-Bromo-3-((2-(6-chloropyridin-2-yl)hydrazono)methyl)-1H-indole (27)
3.3. Cell Proliferation Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.who.int/health-topics/cancer#tab=tab_1 (accessed on 10 April 2023).
- Fattorusso, C.; Campiani, G.; Kukreja, G.; Persico, M.; Butini, S.; Romano, M.P.; Altarelli, M.; Ros, S.; Brindisi, M.; Savini, L.; et al. Design, synthesis, and structure-activity relationship studies of 4-quinolinyl- and 9-acrydinylhydrazones as potent antimalarial agents. J. Med. Chem. 2008, 51, 1333–1343. [Google Scholar] [CrossRef]
- Patel, A.J.; Patel, M.P.; Dholakia, A.B.; Patel, V.C.; Patel, D.S. Antitubercular, Antimalarial Activity and Molecular Docking Study of New Synthesized 7-Chloroquinoline Derivatives. Polycyl. Aromat. Compd. 2022, 42, 4717–4725. [Google Scholar] [CrossRef]
- Kalita, J.; Chetia, D.; Rudrapal, M. Design, Synthesis, Antimalarial Activity and Docking Study of 7-Chloro-4-(2-(substituted benzylidene)hydrazineyl)quinolines. Med. Chem. 2020, 16, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Raj, R.; Gut, J.; Rosenthal, P.J.; Kumar, V. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: Synthesis and antimalarial evaluation. Bioorg. Med. Chem. Lett. 2014, 24, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Sashidhara, K.V.; Avula, S.R.; Palnati, G.R.; Singh, S.V.; Srivastava, K.; Puri, S.K.; Saxena, J.K. Synthesis and in vitro evaluation of new chloroquine-chalcone hybrids against chloroquine-resistant strain of Plasmodium falciparum. Bioorg. Med. Chem. Lett. 2012, 22, 5455–5459. [Google Scholar] [CrossRef] [PubMed]
- Thuy, L.T.; Tien, H.X.; Hoang, V.D.; Vu, T.K. Design, Synthesis and In Vitro Antimalarial Evaluation of New Quinolinylhydrazone Derivatives. Lett. Drug Des. Discov. 2012, 9, 163–168. [Google Scholar] [CrossRef]
- Luo, W.; Lu, W.-Q.; Cui, K.-Q.; Liu, Y.; Wang, J.; Guo, C. N1-{4-[(10S)-Dihydroartemisinin-10-oxyl]}phenylmethylene-N2-(2-methylquinoline-4-yl)hydrazine derivatives as antiplasmodial falcipain-2 inhibitors. Med. Chem. Res. 2012, 21, 3073–3079. [Google Scholar] [CrossRef]
- Singh, T.; Stein, R.G.; Biel, J.H. Antimalarials. 4-Proximal hydrazine derivatives of 7-chloroquinoline. J. Med. Chem. 1969, 12, 801–803. [Google Scholar] [CrossRef]
- Soares, R.R.; Antinarelli, L.M.R.; de O Souza, I.; Lopes, F.V.; Scopel, K.K.G.; Coimbra, E.S.; da Silva, A.D.; Abramo, C. In Vivo Antimalarial and In Vitro Antileishmanial Activity of 4-Aminoquinoline Derivatives Hybridized to Isoniazid or Sulfa or Hydrazine Groups. Lett. Drug Des. Discov. 2017, 14, 597–604. [Google Scholar] [CrossRef]
- Coimbra, E.S.; Antinarelli, L.M.R.; da Silva, A.D.; Bispo, M.L.F.; Kaiser, C.R.; de Souza, M.V.N. 7-Chloro-4-quinolinyl Hydrazones: A Promising and Potent Class of Antileishmanial Compounds. Chem. Biol. Drug Des. 2013, 81, 658–665. [Google Scholar] [CrossRef]
- Antinarelli, L.M.R.; Dias, R.M.P.; Souza, I.O.; Lima, W.P.; Gameiro, J.; da Silva, A.D.; Coimbra, E.S. 4-Aminoquinoline Derivatives as Potential Antileishmanial Agents. Chem. Biol. Drug Des. 2015, 86, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Antinarelli, L.M.R.; de Oliveira Souza, I.; Glanzmann, N.; das Chagas Almeida, A.; Porcino, G.N.; Vasconcelos, E.G.; da Silva, A.D. Aminoquinoline compounds: Effect of 7-chloro-4-quinolinylhydrazone derivatives against Leishmania amazonensis. Exp. Parasitol. 2016, 171, 10–16. [Google Scholar] [CrossRef]
- de L Ferreira, M.; Gonçalves, R.S.B.; de F Cardoso, L.N.; Kaiser, C.R.; Candéa, A.L.P.; das Graças M de O Henriques, M.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; de Souza, M.V.N. Synthesis and Antitubercular Activity of Heteroaromatic Isonicotinoyl and 7-Chloro-4-Quinolinyl Hydrazone Derivatives. Sci. World J. 2010, 10, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Kremer, L.; Louw, S.; Guéradel, Y.; Chibale, K.; Biot, C. Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorg. Med. Chem. Lett. 2011, 21, 2866–2868. [Google Scholar] [CrossRef] [PubMed]
- Maguene, G.M.; Jakhlal, J.; Ladyman, M.; Vallin, A.; Ralambomanana, D.A.; Bousquet, T.; Maugein, J.; Lebibi, J.; Pelinski, L. Synthesis and antimycobacterial activity of a series of ferrocenyl derivatives. Eur. J. Med. Chem. 2010, 46, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Candea, A.L.P.; de L Ferreira, M.; Pais, K.C.; de F Cardoso, L.N.; Kaiser, C.R.; das Graças M de O Henriques, M.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; de Souza, M.V.N. Synthesis and antitubercular activity of 7-chloro-4-quinolinylhydrazones derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 6272–6274. [Google Scholar] [CrossRef] [PubMed]
- Salve, P.S.; Alegaon, S.G.; Sriram, D. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 1859–1866. [Google Scholar] [CrossRef]
- Pyta, K.; Janas, A.; Szukowska, M.; Pecyna, P.; Jaworska, M.; Gajecka, M.; Bartl, F.; Przybylski, P. Synthesis, docking and antibacterial studies of more potent amine and hydrazone rifamycin congeners than rifampicin. Eur. J. Med. Chem. 2019, 167, 96–104. [Google Scholar] [CrossRef]
- Al-Shaalan, N.H. Synthesis, characterization and biological activities of Cu(II), Co(II), Mn(II), Fe(II), and UO2(VI) complexes with a new Schiff base hydrazone: o-hydroxyacetophenone-7-chloro-4-quinoline hydrazone. Molecules 2011, 16, 8629–8645. [Google Scholar] [CrossRef] [PubMed]
- Khizhan, E.I.; Khizhan, A.I.; Tikhonova, G.A.; Maslova, V.Y. Antioxidant Activity of Arylhydrazones in Sunflower Oil Oxidation. Russ. J. Appl. Chem. 2012, 85, 460–464. [Google Scholar] [CrossRef]
- Khizhan, E.I.; Vinogradov, V.V.; Morenko, V.V.; Nikolaevskii, A.N.; Khizhan, A.I.; Zarechnaya, O.M.; Dmitruk, A.F. Antiradical Activity of Aryl- and Hetarylhydrazones in Ethylbenzene Oxidation. Russ. J. Gen. Chem. 2013, 83, 1529–1536. [Google Scholar] [CrossRef]
- Duval, A.R.; Carvalho, P.H.; Soares, M.C.; Gouvea, D.P.; Siqueira, G.M.; Lund, R.G.; Cunico, W. 7-Chloroquinolin-4-yl arylhydrazone derivatives: Synthesis and antifungal activity. Sci. World J. 2011, 11, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.H.D.A.; Duval, A.R.; Leite, F.R.M.; Nedel, F.; Cunico, W.; Lund, R.G. (7-Chloroquinolin-4-yl)arylhydrazones: Candida albicans enzymatic repression and cytotoxicity evaluation, Part 2. J. Enz. Inhib. Med. Chem. 2016, 31, 126–131. [Google Scholar] [CrossRef]
- Thomas, J.; Berkoff, C.E.; Flagg, W.B.; Gallo, J.J.; Haff, R.F.; Pinto, C.A.; Pellerano, C.; Savini, L. Antiviral quinolinehydrazones. Modified Free-Wilson analysis. J. Med. Chem. 1975, 18, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Debnath, U.; Mukherjee, S.; Joardar, N.; Sinha Babu, S.P.; Jana, K.; Misra, A.K. Aryl quinolinyl hydrazone derivatives as anti-inflammatory agents that inhibit TLR4 activation in the macrophages. Eur. J. Pharm. Sci. 2019, 134, 102–115. [Google Scholar] [CrossRef]
- Zaccagnini, L.; Rossetti, G.; Tran, T.H.; Salzano, G.; Gandini, A.; Colini Baldeschi, A.; Bolognesi, M.L.; Carloni, P.; Legname, G. In silico/in vitro screening and hit evaluation identified new phenothiazine anti-prion derivatives. Eur. J. Med. Chem. 2020, 196, 112295. [Google Scholar] [CrossRef]
- Popp, F.D. Potential anticonvulsants. VIII. Some hydrazones of indole-3-carboxaldehyde. J. Heterocycl. Chem. 1984, 21, 617–619. [Google Scholar] [CrossRef]
- Gomes, I.; Fujita, W.; Gupta, A.; Saldanha, S.A.; Negri, A.; Pinello, C.E.; Eberhart, C.; Roberts, E.; Filizola, M.; Hodder, P.; et al. Identification of a μ-δ opioid receptor heteromer-biased agonist with antinociceptive activity. Proc. Natl. Acad. Sci. USA 2013, 110, 12072–12077. [Google Scholar] [CrossRef]
- de L. F. Bispo, M.; de Alcantara, C.C.; de Moraes, M.O.; do O Pessoa, C.; Rodrigues, F.A.R.; Kaiser, C.R.; Wardell, S.M.S.V.; Wardell, J.L.; de Souza, M.V.N. A new and potent class of quinoline derivatives against cancer. Monatsh. Chem. 2015, 146, 2041–2052. [Google Scholar] [CrossRef]
- Montenegro, R.C.; Lotufo, L.V.; Odorico de Moraes, M.; do O Pessoa, C.; Rodrigues, F.A.R.; de Lima Ferreira Bispo, M.; Freire, B.A.; Kaiser, C.R.; de Souza, M.V.N. Cytotoxic Activity of Polysubstituted 7-chloro-4-quinolinylhydrazone Derivatives. Lett. Drug Des. Discov. 2012, 9, 251–256. [Google Scholar] [CrossRef]
- Montenegro, R.C.; Lotufo, L.V.; Odorico de Moraes, M.; do O Pessoa, C.; Rodrigues, F.A.R.; de Lima Ferreira Bispo, M.; de Faria Cardoso, L.N.; Kaiser, C.R.; de Souza, M.V.N. Synthesis and antitumoral evaluation of 7-chloro-4-quinolinylhydrazones derivatives. Med. Chem. 2011, 7, 599–604. [Google Scholar] [CrossRef]
- Montenegro, R.C.; Lotufo, L.V.; Odorico de Moraes, M.; do O Pessoa, C.; Rodrigues, F.A.R.; de Lima Ferreira Bispo, M.; de Alcantara, C.C.; Kaiser, C.R.; de Souza, M.V.N. 1-(7-Chloroquinolin-4-yl)-2-[(1H-pyrrol-2-yl)methylene]hydrazine. A potent compound against cancer. Med. Chem. Res. 2012, 21, 3615–3619. [Google Scholar] [CrossRef]
- Moise, I.-M.; Ghinet, A.; Belei, D.; Dubois, J.; Farce, A.; Bîcu, E. New indolizine-chalcones as potent inhibitors of human farnesyltransferase: Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2016, 26, 3730–3734. [Google Scholar] [CrossRef] [PubMed]
- Bâcu, E.; Petrovanu, M.; Grandclaudon, P.; Couture, A. Diamides et dipeptides lies au cycle phenothiazinique. Rev. Roum. Chim. 1999, 44, 699–703. [Google Scholar]
- Available online: https://dtp.cancer.gov/organization/dscb/compoundSubmission/structureSelection.htm (accessed on 21 March 2023).
- Spreitzer, H.; Scholz, M.; Gescheidt, G.; Daub, J. Electron-Transfer Chemistry and Redox-Switching of Stilbene-Like Heteroaromatic Compounds—Syntheses, Optoelectrochemical and ESR/ENDOR Studies. Liebigs Ann. 1996, 2069–2077. [Google Scholar] [CrossRef]
- Scott, F.L.; O’Halloran, J.K.; O’Driscoll, J.; Hegarty, A.F. Synthesis and solvolysis of a new group of reactive halides, the imidazolin-2-ylidenehydrazonyl chlorides; a route to 6,7-dihydro-3-aryl-5H-imidazolo[2,1-c]-s-triazoles. J. Chem. Soc. Perkin Trans. 1972, 1, 2224–2231. [Google Scholar] [CrossRef]
- Sandoz-Wander Inc. Heterocyclic Substituted Midazoline Hydrazones. Patent US3528968 A, 15 September 1970. [Google Scholar]
- Purgatorio, R.; Gambacorta, N.; Catto, M.; de Candia, M.; Pisani, L.; Espargaró, A.; Sabaté, R.; Cellamare, S.; Nicolotti, O.; Altomare, C.D. Pharmacophore Modeling and 3D-QSAR Study of Indole and Isatin Derivatives as Antiamyloidogenic Agents Targeting Alzheimer’s Disease. Molecules 2020, 25, 5773. [Google Scholar] [CrossRef]
- Boyd, R.B. The NCI in vitro Anticancer Drug Discovery Screen. In Anticancer Drug Development Guide; Preclinical Screening, Clinical Trials, and Approval; Teicher, B., Ed.; Humana Press Inc.: Totowa, NJ, USA, 1997; pp. 23–42. [Google Scholar]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesh, H.; Kennedy, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Available online: https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm (accessed on 3 April 2023).
Cell Type | Compound | 1 | 2 | 6 | 7 | 9 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 22 | 23 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cell Line | Cell Growth Inhibition, GI% b (10 µM) | |||||||||||||||||
Leukemia | CCRF-CEM | 53 | 44 | −19 | 90 | 26 | 43 | −10 | 91 | 93 | −42 | 52 | 88 | 90 | −35 | 51 | −29 | −7 |
HL-60(TB) | 56 | 42 | −37 | −44 | 42 | 32 | −34 | 86 | 86 | −56 | 60 | 94 | 76 | −60 | 43 | −52 | −74 | |
K-562 | 84 | 52 | −52 | −54 | 95 | 77 | −22 | 86 | 88 | −4 | 75 | 90 | 80 | 97 | 79 | −48 | −25 | |
MOLT-4 | 54 | 42 | −25 | −13 | 61 | 23 | −48 | 76 | 82 | −48 | 64 | 75 | 85 | −32 | 67 | −49 | −48 | |
RPMI-8226 | 28 | 0 | −37 | −9 | 21 | 0 | −25 | 95 | 97 | −62 | 52 | −11 | −1 | −41 | 52 | −42 | −42 | |
SR | 76 | 25 | −9 | −23 | 57 | 66 | 87 | 86 | 97 | −27 | 54 | 96 | 82 | −25 | 72 | −22 | −45 | |
Non-Small Cell Lung Cancer | A549/ATCC | 31 | 19 | −41 | −82 | 42 | 0 | −24 | 47 | 62 | −49 | 47 | 77 | 30 | −38 | 24 | −69 | 98 |
EKVX | 15 | 0 | 87 | −71 | 34 | 0 | −79 | 67 | 75 | −96 | 50 | 77 | 55 | −85 | 42 | −81 | −92 | |
HOP-62 | 0 | 0 | −42 | −78 | 33 | 0 | −75 | 53 | 68 | −56 | N.D. c | 54 | 40 | −63 | 24 | −81 | −59 | |
HOP-96 | 29 | 0 | −57 | −74 | 32 | 0 | −88 | −10 | −28 | −91 | 47 | −24 | 73 | −68 | 57 | −81 | −69 | |
NCI-H226 | 28 | 0 | 30 | 0 | −68 d | 15 | −52 | 49 | 64 | −78 | 24 | 60 | 51 | −67 | 41 | −52 | −64 | |
NCI-H23 | 29 | 0 | −11 | −41 | 23 | 0 | −88 | 42 | 58 | −91 | 32 | 63 | 35 | −84 | 40 | −80 | −85 | |
NCI-H322M | 38 | 17 | −64 | −45 | 22 | 17 | −89 | 34 | 52 | −100 | 20 | 56 | 28 | −99 | 10 | −95 | −96 | |
NCI-H460 | 48 | 0 | −78 | −63 | 71 | 0 | −87 | 71 | 91 | −78 | 67 | 83 | 52 | −67 | 36 | −79 | 90 | |
NCI-H522 | 63 | 20 | −73 | −73 | 53 | 58 | −77 | 83 | 75 | −62 | 71 | 61 | 72 | −68 | 25 | −65 | −66 | |
Colon Cancer | COLO 205 | 0 | 0 | −82 | 28 | 0 | 0 | −85 | 62 | 51 | −56 | 19 | 62 | 42 | −59 | 32 | −86 | −44 |
HCC-2998 | 48 | 0 | −39 | −81 | 15 | 0 | −92 | 69 | −1 | −89 | 58 | 89 | 60 | −87 | 51 | −86 | −92 | |
HTC-116 | 35 | 0 | −89 | −68 | 46 | 33 | −91 | 76 | 93 | −50 | 53 | 91 | 62 | −46 | 66 | −82 | −10 | |
HCT-15 | 47 | 33 | −20 | −58 | 15 | 28 | −82 | 81 | 91 | −88 | 77 | 93 | 70 | −92 | 71 | −85 | −80 | |
HT29 | 49 | 0 | −55 | 91 | 0 | 0 | −72 | 69 | 86 | −42 | 40 | 76 | 39 | −40 | 55 | −44 | −3 | |
KM12 | 66 | 46 | −88 | −53 | 83 | 47 | −77 | 90 | 99 | −77 | 86 | −1 | 78 | −94 | 66 | −78 | −81 | |
SW-620 | 66 | 0 | −88 | −30 | 72 | 42 | −74 | 47 | 79 | −71 | 25 | 80 | 20 | −62 | 34 | −76 | 97 | |
CNS cancer | SF-268 | 44 | 10 | −64 | −37 | 46 | 19 | −58 | 80 | 78 | −60 | 44 | 79 | 67 | −73 | 44 | −67 | −35 |
SF-295 | 40 | 15 | −53 | −80 | 93 | 0 | −85 | 50 | 74 | −100 | 41 | 82 | 52 | −93 | 26 | −84 | −99 | |
SF-539 | 31 | 0 | −90 | −84 | 42 | 0 | −86 | 93 | 89 | −100 | 29 | 81 | 73 | −92 | 35 | −82 | −87 | |
SNB-19 | 0 | 0 | −79 | −24 | 19 | 0 | −92 | 56 | 56 | −100 | 20 | 48 | 38 | −79 | 23 | −68 | −85 | |
SNB-75 | 13 | 0 | −88 | −81 | 24 | 11 | −96 | 84 | 73 | −94 | 33 | 56 | 38 | −85 | 29 | −91 | −91 | |
U251 | 33 | 0 | −90 | −87 | 36 | 17 | −84 | 65 | 80 | −83 | 44 | 79 | 42 | −49 | 43 | −80 | −25 | |
Melanoma | LOX IMVI | 71 | 17 | −35 | −96 | 71 | 50 | −92 | 82 | −2 | −92 | 69 | 92 | 71 | −83 | 49 | −78 | −77 |
MALME-3M | 23 | 0 | −78 | −88 | 0 | 0 | −95 | 49 | 35 | −97 | 0 | 36 | 23 | −82 | 29 | −77 | −83 | |
M14 | 48 | 0 | −84 | −90 | 59 | 0 | −89 | 56 | 85 | −79 | 48 | 91 | 50 | −66 | 44 | −71 | −46 | |
MDA-MB-435 | 53 | 11 | −84 | −85 | 82 | 37 | −92 | 80 | 69 | −90 | 33 | 86 | 55 | −83 | 89 | −92 | −77 | |
SK-MEL-2 | 0 | 0 | −88 | 0 | 0 | 0 | −82 | 26 | 26 | −83 | 19 | 26 | 0 | 72 | 12 | −80 | −93 | |
SK-MEL-28 | 19 | 0 | −92 | 0 | 0 | 0 | −92 | 20 | 36 | −100 | 16 | 38 | 0 | −89 | 0 | −85 | −98 | |
SK-MEL-5 | 14 | 0 | −93 | −92 | 23 | 0 | −98 | 58 | 48 | −100 | 16 | 78 | 35 | −98 | 28 | −95 | −100 | |
UACC-257 | 13 | 0 | −84 | 0 | 0 | 0 | −91 | 32 | 29 | −84 | 18 | 47 | 15 | −71 | 11 | −84 | −83 | |
UACC-62 | 59 | 34 | −86 | 0 | 81 | 20 | −61 | 44 | 45 | −98 | 26 | 48 | 38 | −66 | 32 | −57 | −85 | |
Ovarian Cancer | IGROV1 | 27 | 20 | 59 | −83 | 44 | 15 | −87 | −4 | 98 | −94 | 70 | 89 | 94 | −72 | 53 | −82 | −41 |
OVCAR-3 | N.D. | 0 | −92 | N.D. | 22 | N.D. | −66 | −12 | 80 | −82 | N.D. | 69 | 82 | −89 | 36 | −80 | −82 | |
OVCAR-4 | 43 | 0 | −60 | −50 | 31 | 32 | −61 | 58 | 58 | −100 | 32 | 46 | 40 | −76 | 39 | −76 | −78 | |
OVCAR-5 | 34 | 0 | −71 | −5 | 46 | 17 | −83 | 47 | 54 | −100 | 26 | 44 | 22 | −90 | 0 | −87 | −66 | |
OVCAR-8 | 47 | 0 | −57 | −55 | 34 | 34 | −67 | 59 | 55 | −70 | 32 | 66 | 42 | −52 | 19 | −66 | −64 | |
NCI/ADR-RES | 46 | 0 | 99 | 97 | 20 | 25 | −71 | −4 | 94 | −60 | 33 | 92 | 77 | −79 | 63 | −71 | −77 | |
SK-OV-3 | 0 | 0 | 0 | 0 | 12 | 0 | -85 | 36 | 28 | −95 | 34 | 34 | 0 | −71 | 0 | −89 | −84 | |
Renal cancer | 786-0 | 33 | 12 | −94 | −87 | 11 | 16 | −89 | 86 | 99 | −92 | 47 | −4 | 74 | −65 | 36 | −81 | −54 |
A498 | 29 | 26 | 63 | 0 | 82 | 0 | −93 | 24 | 58 | −98 | 36 | 49 | 0 | −80 | 0 | −89 | −77 | |
ACHN | 77 | 14 | −99 | −98 | 48 | 37 | −98 | 55 | 72 | −100 | 36 | 73 | 52 | −92 | 28 | −97 | −90 | |
CAKI-1 | 73 | 45 | −83 | −92 | 73 | 53 | −97 | 64 | 73 | −99 | 58 | 69 | 53 | −85 | 33 | −92 | −94 | |
RXF 393 | 29 | 0 | −58 | −86 | 0 | 0 | −87 | N.D. | N.D. | −100 | 39 | N.D. | N.D. | N.D. | N.D. | −81 | N.D. | |
SN12C | 25 | 0 | −70 | −64 | 20 | 0 | −77 | 83 | 84 | −100 | 30 | 76 | 61 | −59 | 30 | −81 | −56 | |
TK-10 | 0 | 0 | −81 | −69 | 0 | 0 | −91 | 28 | 40 | −96 | 0 | 46 | 0 | −72 | 0 | −79 | −67 | |
UO-31 | 58 | 33 | −89 | −96 | 57 | 24 | −95 | 89 | 97 | −100 | 62 | 89 | 66 | −90 | 59 | −89 | −95 | |
Prostate cancer | PC-3 | 57 | 24 | −24 | −61 | 56 | 51 | −81 | 74 | 79 | −86 | 66 | 87 | 64 | −51 | 41 | −83 | −52 |
DU-145 | 22 | 0 | −57 | −24 | 41 | 0 | −90 | 51 | 62 | −98 | 39 | 69 | 35 | −92 | 27 | −93 | −79 | |
Breast cancer | MCF7 | 49 | 30 | −12 | −72 | 67 | 28 | −71 | 82 | 90 | −69 | 77 | 96 | 68 | −78 | 64 | −80 | −56 |
MDA-MB231/ATCC | 43 | 0 | −71 | −74 | 15 | 19 | −83 | −1 | −25 | −93 | 32 | 93 | 96 | −90 | 48 | −82 | −90 | |
HS 578T | 12 | 0 | −53 | −38 | 0 | 0 | −47 | 71 | 48 | −49 | 39 | 74 | 50 | −63 | 30 | −53 | −58 | |
BT-549 | 0 | 0 | −79 | 0 | 0 | 0 | −89 | 96 | −2 | −91 | 41 | −3 | 87 | −64 | 56 | −76 | −79 | |
T-47D | 62 | 21 | −61 | −56 | 48 | 44 | −54 | 72 | 74 | −53 | 97 | 73 | 68 | −60 | 52 | −64 | −54 | |
MDA-MB-468 | 44 | 0 | −71 | −72 | N.D. | 20 | −75 | −10 | −35 | −80 | 59 | −40 | −13 | −83 | −1 | −87 | −94 |
Cell Type | Compound | 6 | 7 | 13 | 14 | 15 | 16 | 18 | 20 | 23 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|
Cell Line | GI50 a,b (µM) | ||||||||||
Leukemia | CCRF-CEM | 2.14 | N.D. c | 0.32 d | 0.30 | 0.83 | 0.31 | 0.46 | 0.28 | 0.25 | 0.20 |
HL-60(TB) | 1.96 | 1.89 | 0.24 | 1.28 | 2.81 | 0.26 | 2.54 | 0.20 | 0.25 | 0.46 | |
K-562 | 2.49 | 1.63 | 0.24 | 1.94 | 4.05 | 0.30 | 2.94 | 0.20 | 0.19 | 0.20 | |
MOLT-4 | 2.20 | 2.36 | 1.05 | 1.55 | 2.67 | 0.26 | 2.85 | 0.34 | 0.23 | 0.26 | |
RPMI-8226 | 2.20 | 2.18 | 1.18 | 0.83 | 3.07 | 0.27 | 1.61 | 0.30 | 0.24 | 0.22 | |
SR | 0.70 | 1.90 | 0.25 | 2.93 | 2.28 | 0.12 | 4.80 | 0.25 | 0.15 | 0.28 | |
Non-Small Cell Lung Cancer | A549/ATCC | 1.77 | 1.74 | 1.45 | 13.2 | 12.6 | 1.48 | 8.12 | 1.48 | 0.18 | 1.58 |
EKVX | 1.73 | 1.74 | 1.45 | 1.97 | 4.44 | 1.69 | 2.71 | 1.26 | 1.43 | 1.16 | |
HOP-62 | 1.66 | 1.69 | 1.67 | 10.0 | 11.0 | 1.91 | 10.1 | 1.52 | 1.45 | 1.58 | |
HOP-96 | 1.38 | 1.44 | 0.53 | 5.32 | 6.66 | 1.32 | 2.22 | 1.42 | 0.50 | 1.33 | |
NCI-H226 | 1.80 | 1.79 | 1.89 | 1.65 | 3.78 | 1.86 | 2.02 | 1.50 | 1.93 | 1.47 | |
NCI-H322M | 1.72 | 1.72 | 1.73 | 11.4 | >100 | 1.44 | 13.4 | 1.56 | 0.30 | 1.57 | |
NCI-H460 | 2.04 | 2.05 | 1.72 | 11.5 | 14.1 | 2.02 | 7.68 | 0.50 | 0.19 | 0.37 | |
NCI-H522 | 1.68 | 1.66 | 1.77 | 1.03 | 2.53 | 1.34 | 3.11 | 1.16 | 0.22 | 1.79 | |
Colon Cancer | COLO 205 | 1.82 | 1.86 | 1.79 | 13.8 | >100 | 0.25 | 15.7 | 1.21 | 0.35 | 0.35 |
HCC-2998 | 1.75 | 1.73 | 1.78 | 12.0 | 9.35 | 1.62 | 5.74 | 0.71 | 0.26 | 0.76 | |
HTC-116 | 1.69 | 1.92 | 0.33 | 12.1 | 13.2 | 0.19 | 5.97 | 0.19 | 0.16 | 0.19 | |
HCT-15 | 1.62 | 1.78 | 0.37 | 8.10 | 9.19 | 0.18 | 4.46 | 0.29 | 0.17 | 0.18 | |
HT29 | 1.53 | 1.81 | 0.35 | 15.0 | 29.4 | 0.21 | 8.77 | 0.18 | 0.17 | 0.27 | |
KM12 | 2.08 | 2.39 | 1.79 | 9.78 | 3.68 | 1.65 | 2.71 | 1.65 | 0.18 | 1.80 | |
SW-620 | 1.90 | 1.69 | 0.79 | 13.3 | 76.0 | 0.18 | 15.7 | 0.24 | 0.18 | 0.36 | |
CNS cancer | SF-268 | 1.90 | 2.00 | 1.76 | 2.99 | 4.15 | 1.86 | 5.23 | 1.72 | 1.55 | 1.70 |
SF-295 | 1.79 | 1.79 | 1.82 | 11.4 | 19.1 | 1.32 | 9.13 | 1.36 | 1.43 | 1.61 | |
SF-539 | 1.80 | 1.75 | 1.72 | 1.47 | 4.70 | 0.18 | 2.65 | 0.18 | 0.21 | 1.66 | |
SNB-19 | 1.93 | 1.97 | 1.67 | 12.7 | 11.4 | 1.17 | 20.7 | 1.65 | 0.36 | 1.54 | |
SNB-75 | 1.55 | 1.67 | 1.38 | 0.14 | 0.38 | 1.58 | 0.28 | 0.36 | 1.23 | 1.07 | |
U251 | 1.74 | 1.81 | 0.83 | 10.7 | 21.0 | 0.75 | 15.9 | 0.25 | 0.17 | 0.27 | |
Melanoma | LOX IMVI | 2.02 | 2.15 | 0.23 | 3.32 | 6.47 | 0.21 | 3.40 | 0.17 | 0.18 | 0.17 |
MALME-3M | 1.90 | 1.87 | 1.76 | 7.33 | >100 | 1.80 | 82.7 | 1.62 | 1.40 | 1.60 | |
M14 | 1.80 | 1.76 | 1.73 | 11.9 | 78.5 | 1.54 | 7.27 | 1.57 | 0.57 | 1.69 | |
MDA-MB-435 | 1.79 | 1.69 | 1.75 | 2.46 | 79.4 | 1.61 | 6.73 | 0.60 | 0.20 | 1.69 | |
SK-MEL-2 | 1.79 | 16.3 | 1.83 | 12.9 | >100 | 1.83 | 21.4 | 1.60 | 1.74 | 1.79 | |
SK-MEL-28 | 1.75 | 1.79 | 1.81 | 14.5 | >100 | 1.69 | 29.1 | 1.59 | 1.84 | 1.59 | |
SK-MEL-5 | 1.77 | 1.77 | 1.75 | 8.61 | 25.6 | 1.65 | 7.41 | 1.29 | 1.76 | 1.50 | |
UACC-257 | 1.69 | 1.77 | 1.65 | 11.6 | >100 | 1.82 | 25.1 | 1.52 | 1.82 | 1.58 | |
UACC-62 | 1.76 | 1.71 | 1.77 | 10.3 | 37.3 | 1.63 | 8.45 | 1.50 | 1.75 | 1.66 | |
Ovarian Cancer | IGROV1 | 1.91 | 1.85 | 1.54 | 1.37 | 1.63 | 0.30 | 0.63 | 1.64 | 0.17 | 1.65 |
OVCAR-3 | 1.88 | 2.41 | N.D. | 3.85 | 8.63 | 1.58 | 11.6 | 0.17 | N.D. | 1.66 | |
OVCAR-4 | 1.83 | 1.85 | 1.83 | 10.5 | 77.9 | 1.36 | 43.2 | 1.29 | 0.28 | 1.77 | |
OVCAR-5 | 1.85 | 1.67 | 1.63 | 11.0 | >100 | 1.17 | 4.17 | 1.59 | 0.19 | 1.53 | |
OVCAR-8 | 2.09 | 2.02 | 1.68 | 8.12 | 26.3 | 0.40 | 20.8 | 1.63 | 0.20 | 1.80 | |
NCI/ADR-RES | 1.98 | 2.13 | 1.93 | 2.98 | 7.03 | 0.58 | 5.33 | 1.04 | 0.24 | 1.41 | |
SK-OV-3 | 1.82 | 1.72 | 1.67 | 2.40 | 56.2 | 1.86 | 6.19 | 1.56 | 1.54 | 1.57 | |
Renal cancer | 786-0 | 1.55 | 1.89 | 1.41 | 11.1 | 13.2 | 0.31 | 12.6 | 0.47 | 0.17 | 1.44 |
A498 | 1.72 | 18.9 | 1.51 | 18.7 | 35.2 | 1.49 | 20.5 | 2.07 | 1.73 | 1.87 | |
ACHN | 1.95 | 1.83 | 1.87 | 10.5 | 11.6 | 0.34 | 7.76 | 1.59 | 0.28 | 1.66 | |
CAKI-1 | 1.68 | 1.66 | 1.68 | 2.23 | 4.35 | 1.54 | 3.01 | 1.30 | 1.58 | 1.46 | |
RXF 393 | 1.75 | 1.75 | 1.47 | 2.84 | 2.50 | 1.40 | 2.09 | 1.48 | 1.54 | 1.42 | |
SN12C | 1.75 | 1.80 | 1.56 | 2.28 | 2.28 | 0.65 | 2.38 | 1.73 | 0.19 | 1.75 | |
TK-10 | 1.74 | 1.81 | 2.09 | 19.5 | 48.0 | 1.80 | 18.6 | 2.61 | 2.81 | 2.27 | |
UO-31 | 1.68 | 1.69 | 1.32 | 1.21 | 1.46 | 1.47 | 1.09 | 1.43 | 1.53 | 1.44 | |
Prostate cancer | PC-3 | 1.64 | 1.66 | 1.55 | 2.98 | 4.83 | 0.53 | 2.55 | 1.15 | 0.24 | 1.31 |
DU-145 | 1.95 | 1.90 | 1.53 | 13.0 | 20.5 | 0.46 | 13.3 | 1.30 | 0.19 | 0.92 | |
Breast cancer | MCF7 | 1.63 | 1.58 | 1.25 | 2.67 | 2.43 | 0.18 | 1.70 | 0.28 | 0.16 | 0.95 |
MDA-MB-231/ATCC | 1.93 | 2.05 | 1.65 | 1.37 | 2.20 | 0.25 | 1.93 | 0.19 | 0.17 | 1.24 | |
HS 578T | 1.99 | 2.03 | 1.73 | 4.17 | 7.45 | 2.00 | 6.91 | 1.32 | 1.70 | 1.52 | |
BT-549 | 1.54 | 1.75 | 1.55 | 0.24 | 0.17 | 1.76 | 0.17 | 1.62 | 1.95 | 1.48 | |
T-47D | 1.83 | 1.80 | 1.55 | 4.04 | 3.97 | 1.28 | 3.22 | 0.33 | 0.16 | 1.61 | |
MDA-MB-468 | 1.76 | 1.65 | 1.01 | 1.89 | 1.88 | 0.80 | 1.74 | 0.27 | 0.22 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negru, G.; Ghinet, A.; Bîcu, E. 7-Chloroquinolinehydrazones as First-in-Class Anticancer Experimental Drugs in the NCI-60 Screen among Different Investigated Series of Aryl, Quinoline, Pyridine, Benzothiazole and Imidazolehydrazones. Pharmaceuticals 2023, 16, 691. https://doi.org/10.3390/ph16050691
Negru G, Ghinet A, Bîcu E. 7-Chloroquinolinehydrazones as First-in-Class Anticancer Experimental Drugs in the NCI-60 Screen among Different Investigated Series of Aryl, Quinoline, Pyridine, Benzothiazole and Imidazolehydrazones. Pharmaceuticals. 2023; 16(5):691. https://doi.org/10.3390/ph16050691
Chicago/Turabian StyleNegru (Apostol), Georgiana, Alina Ghinet, and Elena Bîcu. 2023. "7-Chloroquinolinehydrazones as First-in-Class Anticancer Experimental Drugs in the NCI-60 Screen among Different Investigated Series of Aryl, Quinoline, Pyridine, Benzothiazole and Imidazolehydrazones" Pharmaceuticals 16, no. 5: 691. https://doi.org/10.3390/ph16050691
APA StyleNegru, G., Ghinet, A., & Bîcu, E. (2023). 7-Chloroquinolinehydrazones as First-in-Class Anticancer Experimental Drugs in the NCI-60 Screen among Different Investigated Series of Aryl, Quinoline, Pyridine, Benzothiazole and Imidazolehydrazones. Pharmaceuticals, 16(5), 691. https://doi.org/10.3390/ph16050691