Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds
Abstract
:1. Introduction
2. Results
2.1. Detection of hTOP1, LdTOP1, and mpxvTOP1 Activities Using the REEAD Assay
2.2. Using REEAD as a Drug Screening Tool for Drugs against hTOP1 and LdTOP1
2.3. The REEAD Assay Can Be Used to Measure Poxvirus TOP1B Activity
2.4. Detection of MsTOP1 Activity Using the TB-EAD Assay
2.5. The TB-EAD Assay Can Be Used as a Drug Screening Tool for Drugs against MsTOP1
3. Discussion and Conclusions
4. Materials and Methods
4.1. Reagents
4.2. DNA Oligonucleotides
- 5′amine REEAD primer: 5′-/5AmMC6/CCAACCAACCAACCAAGGAGCCAAACATGTGCATTGAGG
- hTOP1/LdTOP1 dumbbell substrate: 5′-AGAAAAATTTTTAAAAAAACTGTGAAGATCGCTTATTTTTTTAAAAATTTTTCTAAGTCTTTTAGATCCCTCAATGCACATGTTTGGCTCCGATCTAAAAGACTTAGA
- mpxvTOP1 half-dumbbell substrate: 5′-ATTGTATCGGAATAAGGGCGACAGACTCACTGTGAAGATCGCTTATCCTCAATGCACATGTTTGGCTCCGAGTCTGTCGCCCTTATT
- MsTOP1 substrate: 5′-CAGTGAGCGAGCTTCCGCTTGACATCCCATATCTCTACTGTGAAGATCGCTTATTCTCTCCTCAATGCACATGTTTGGCTCCTCTCTGAGCTTCCGCT
- Fluorescent probe: 5′-FAM-CCTCAATGCACATGTTTGGCTCC
4.3. REEAD
4.3.1. Preparation of Slides
4.3.2. Circularization for Drug Screening
4.3.3. Circularization for mpxvTOP1-Specificity Test
4.3.4. RCA and Detection of RCPs
4.4. TB-EAD
4.4.1. Preparation of slides
4.4.2. Circularization
4.4.3. RCA and Detection of RCPs
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Champoux, J.J. DNA Topoisomerases: Structure, Function, and Mechanism. Annu. Rev. Biochem. 2001, 70, 369–413. [Google Scholar] [CrossRef]
- Leppard, J.B.; Champoux, J.J. Human DNA Topoisomerase I: Relaxation, Roles, and Damage Control. Chromosoma 2005, 114, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C. DNA Topoisomerases. Annu. Rev. Biochem. 1996, 65, 635–692. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C. Cellular Roles of DNA Topoisomerases: A Molecular Perspective. Nat. Rev. Mol. Cell Biol. 2002, 3, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Pommier, Y. Topoisomerase I Inhibitors: Camptothecins and Beyond. Nat. Rev. Cancer 2006, 6, 789–802. [Google Scholar] [CrossRef]
- Ho, J.S.Y.; Mok, B.W.Y.; Campisi, L.; Jordan, T.; Yildiz, S.; Parameswaran, S.; Wayman, J.A.; Gaudreault, N.N.; Meekins, D.A.; Indran, S.V.; et al. TOP1 Inhibition Therapy Protects against SARS-CoV-2-Induced Lethal Inflammation. Cell 2021, 184, 2618–2632. [Google Scholar] [CrossRef] [PubMed]
- Collin, F.; Karkare, S.; Maxwell, A. Exploiting Bacterial DNA Gyrase as a Drug Target: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2011, 92, 479–497. [Google Scholar] [CrossRef]
- Balaña-Fouce, R.; Álvarez-Velilla, R.; Fernández-Prada, C.; García-Estrada, C.; Reguera, R.M. Trypanosomatids Topoisomerase Re-Visited. New Structural Findings and Role in Drug Discovery. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 326–337. [Google Scholar] [CrossRef]
- Balaña-Fouce, R.; Redondo, C.M.; Pérez-Pertejo, Y.; Díaz-González, R.; Reguera, R.M. Targeting Atypical Trypanosomatid DNA Topoisomerase I. Drug Discov. Today 2006, 11, 733–740. [Google Scholar] [CrossRef]
- García-Estrada, C.; Prada, C.F.; Fernández-Rubio, C.; Rojo-Vázquez, F.; Balaña-Fouce, R. DNA Topoisomerases in Apicomplexan Parasites: Promising Targets for Drug Discovery. Proc. Biol. Sci. 2010, 277, 1777–1787. [Google Scholar] [CrossRef]
- Álvarez-Bardón, M.; Pérez-Pertejo, Y.; Ordóñez, C.; Sepúlveda-Crespo, D.; Carballeira, N.M.; Tekwani, B.L.; Murugesan, S.; Martinez-Valladares, M.; García-Estrada, C.; Reguera, R.M.; et al. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar. Drugs 2020, 18, 187. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, M.A. Topoisomerase 1B Poisons: Over a Half-Century of Drug Leads, Clinical Candidates, and Serendipitous Discoveries. Med. Res. Rev. 2019, 39, 1294–1337. [Google Scholar] [CrossRef] [PubMed]
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef]
- Proszek, J.; Roy, A.; Jakobsen, A.K.; Frøhlich, R.; Knudsen, B.R.; Stougaard, M. Topoisomerase I as a Biomarker: Detection of Activity at the Single Molecule Level. Sensors 2014, 14, 1195–1207. [Google Scholar] [CrossRef]
- Jakobsen, A.K.; Lauridsen, K.L.; Samuel, E.B.; Proszek, J.; Knudsen, B.R.; Hager, H.; Stougaard, M. Correlation between Topoisomerase I and Tyrosyl-DNA Phosphodiesterase 1 Activities in Non-Small Cell Lung Cancer Tissue. Exp. Mol. Pathol. 2015, 99, 56–64. [Google Scholar] [CrossRef]
- Roy, A.; Tesauro, C.; Frøhlich, R.; Hede, M.S.; Nielsen, M.J.; Kjeldsen, E.; Bonven, B.; Stougaard, M.; Gromova, I.; Knudsen, B.R. Decreased Camptothecin Sensitivity of the Stem-Cell-like Fraction of Caco2 Cells Correlates with an Altered Phosphorylation Pattern of Topoisomerase I. PLoS ONE 2014, 9, e99628. [Google Scholar] [CrossRef]
- Perry, K.; Hwang, Y.; Bushman, F.D.; van Duyne, G.D. Insights from the Structure of a Smallpox Virus Topoisomerase-DNA Transition State Mimic. Structure 2010, 18, 127. [Google Scholar] [CrossRef]
- Estep, R.D.; Messaoudi, I.; O’Connor, M.A.; Li, H.; Sprague, J.; Barron, A.; Engelmann, F.; Yen, B.; Powers, M.F.; Jones, J.M.; et al. Deletion of the Monkeypox Virus Inhibitor of Complement Enzymes Locus Impacts the Adaptive Immune Response to Monkeypox Virus in a Nonhuman Primate Model of Infection. J. Virol. 2011, 85, 9527–9542. [Google Scholar] [CrossRef]
- Villa, H.; Marcos, A.R.O.; Reguera, R.M.; Balaña-Fouce, R.; García-Estrada, C.; Pérez-Pertejo, Y.; Tekwani, B.L.; Myler, P.J.; Stuart, K.D.; Bjornsti, M.A.; et al. A Novel Active DNA Topoisomerase I in Leishmania Donovani. J. Biol. Chem. 2003, 278, 3521–3526. [Google Scholar] [CrossRef]
- Ahmed, W.; Menon, S.; Godbole, A.A.; Karthik, P.V.D.N.B.; Nagaraja, V. Conditional Silencing of Topoisomerase I Gene of Mycobacterium Tuberculosis Validates Its Essentiality for Cell Survival. FEMS Microbiol. Lett. 2014, 353, 116–123. [Google Scholar] [CrossRef]
- Pommier, Y. Diversity of DNA Topoisomerases I and Inhibitors. Biochimie 1998, 80, 255–270. [Google Scholar] [CrossRef]
- Gutiérrez-Corbo, C.; Álvarez-Velilla, R.; Reguera, R.M.; García-Estrada, C.; Cushman, M.; Balaña-Fouce, R.; Pérez-Pertejo, Y. Topoisomerase IB Poisons Induce Histone H2A Phosphorylation as a Response to DNA Damage in Leishmania Infantum. Int. J. Parasitol. Drugs Drug Resist. 2019, 11, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Balaña-Fouce, R.; García-Estrada, C.; Pérez-Pertejo, Y.; Reguera, R.M. Gene Disruption of the DNA Topoisomerase IB Small Subunit Induces a Non-Viable Phenotype in the Hemoflagellate Leishmania Major. BMC Microbiol. 2008, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, R.P.; Shapiro, T.A. RNA Interference of Trypanosoma Brucei Topoisomerase IB: Both Subunits Are Essential. Mol. Biochem. Parasitol. 2004, 136, 249–255. [Google Scholar] [CrossRef]
- Zhang, C.X.; Chen, A.D.; Gettel, N.J.; Hsieh, T.S. Essential Functions of DNA Topoisomerase I in Drosophila Melanogaster. Dev. Biol. 2000, 222, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Morham, S.G.; Kluckman, K.D.; Voulomanos, N.; Smithies, O. Targeted Disruption of the Mouse Topoisomerase I Gene by Camptothecin Selection. Mol. Cell Biol. 1996, 16, 6804–6809. [Google Scholar] [CrossRef]
- Burgess, D.J.; Doles, J.; Zender, L.; Xue, W.; Ma, B.; McCombie, W.R.; Hannon, G.J.; Lowe, S.W.; Hemann, M.T. Topoisomerase Levels Determine Chemotherapy Response in Vitro and in Vivo. Biol. Sci. 2008, 105, 9053–9058. [Google Scholar] [CrossRef]
- Pommier, Y. Camptothecins and Topoisomerase I: A Foot in the Door. Targeting the Genome beyond Topoisomerase I with Camptothecins and Novel Anticancer Drugs: Importance of DNA Replication, Repair and Cell Cycle Checkpoints. Curr. Med. Chem. Anticancer. Agents 2004, 4, 429–434. [Google Scholar] [CrossRef]
- Nitiss, J.L.; Soans, E.; Rogojina, A.; Seth, A.; Mishina, M. Topoisomerase Assays. Curr. Protoc. Pharmacol. 2012, 57, 3. [Google Scholar] [CrossRef]
- Tesauro, C.; Fiorani, P.; D’annessa, I.; Chillemi, G.; Turchi, G.; Desideri, A. Erybraedin C, a Natural Compound from the Plant Bituminaria Bituminosa, Inhibits Both the Cleavage and Religation Activities of Human Topoisomerase I. Biochem. J. 2010, 425, 531–539. [Google Scholar] [CrossRef]
- Keller, J.G.; Hymøller, K.M.; Thorsager, M.E.; Hansen, N.Y.; Erlandsen, J.U.; Tesauro, C.; Simonsen, A.K.W.; Andersen, A.B.; VandsøPetersen, K.; Holm, L.L.; et al. Topoisomerase 1 Inhibits MYC Promoter Activity by Inducing G-Quadruplex Formation. Nucleic Acids Res. 2022, 11, 6332–6342. [Google Scholar] [CrossRef]
- Christiansen, K.; Westergaard, O. Characterization of Intra- and Intermolecular DNA Ligation Mediated by Eukaryotic Topoisomerase I. Role of Bipartite DNA Interaction in the Ligation Process. J. Biol. Chem. 1994, 269, 721–729. [Google Scholar] [CrossRef]
- Svejstrup, J.Q.; Christiansen, K.; Andersen, A.H.; Lund, K.; Westergaard, O. Minimal DNA Duplex Requirements for Topoisomerase I-Mediated Cleavage in Vitro. J. Biol. Chem. 1990, 265, 12529–12535. [Google Scholar] [CrossRef]
- Anand, J.; Sun, Y.; Zhao, Y.; Nitiss, K.C.; Nitiss, J.L. Detection of Topoisomerase Covalent Complexes in Eukaryotic Cells. Methods Mol. Biol. 2018, 1703, 283–299. [Google Scholar] [PubMed]
- Stougaard, M.; Lohmann, J.S.; Mancino, A.; Celik, S.; Andersen, F.F.; Koch, J.; Knudsen, B.R. Single-Molecule Detection of Human Topoisomerase I Cleavage-Ligation Activity. ACS Nano 2009, 3, 223–233. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report. Available online: https://www.who.int/publications/i/item/9789240061729 (accessed on 23 January 2023).
- Franch, O.; Han, X.; Marcussen, L.B.; Givskov, A.; Andersen, M.B.; Godbole, A.A.; Harmsen, C.; Nørskov-Lauritsen, N.; Thomsen, J.; Pedersen, F.S.; et al. A New DNA Sensor System for Specific and Quantitative Detection of Mycobacteria. Nanoscale 2019, 11, 587–597. [Google Scholar] [CrossRef]
- Prada, C.F.; Álvarez-Velilla, R.; Balaña-Fouce, R.; Prieto, C.; Calvo-Álvarez, E.; Escudero-Martínez, J.M.; Requena, J.M.; Ordóñez, C.; Desideri, A.; Pérez-Pertejo, Y.; et al. Gimatecan and Other Camptothecin Derivatives Poison Leishmania DNA-Topoisomerase IB Leading to a Strong Leishmanicidal Effect. Biochem. Pharmacol. 2013, 85, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Cushman, M. Design and Synthesis of Indenoisoquinolines Targeting Topoisomerase I and Other Biological Macromolecules for Cancer Chemotherapy. J. Med. Chem. 2021, 64, 17572–17600. [Google Scholar] [CrossRef]
- Balanã-Fouce, R.; Prada, C.F.; Requena, J.M.; Cushman, M.; Pommier, Y.; Álvarez-Velilla, R.; Escudero-Martínez, J.M.; Calvo-Álvarez, E.; Pérez-Pertejo, Y.; Reguera, R.M. Indotecan (LMP400) and AM13-55: Two Novel Indenoisoquinolines Show Potential for Treating Visceral Leishmaniasis. Antimicrob. Agents Chemother. 2012, 56, 5264–5270. [Google Scholar] [CrossRef]
- Lisby, M.; Krogh, B.O.; Boege, F.; Westergaard, O.; Knudsen, B.R. Camptothecins Inhibit the Utilization of Hydrogen Peroxide in the Ligation Step of Topoisomerase I Catalysis. Biochemistry 1998, 37, 10815–10827. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, B.R.; Straub, T.; Boege, F. Separation and Functional Analysis of Eukaryotic DNA Topoisomerases by Chromatography and Electrophoresis. J. Chromatogr. B Biomed. Appl. 1996, 684, 307–321. [Google Scholar] [CrossRef]
- Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B.; Stewart, L. The Mechanism of Topoisomerase I Poisoning by a Camptothecin Analog. Proc. Natl. Acad. Sci. USA 2002, 99, 15387–15392. [Google Scholar] [CrossRef]
- Shuman, S. Vaccinia Virus DNA Topoisomerase: A Model Eukaryotic Type IB Enzyme. Biochim. Biophys. Acta 1998, 1400, 321–337. [Google Scholar] [CrossRef]
- Keller, J.G.; Petersen, K.V.; Knudsen, B.R.; Tesauro, C. Simple and Fast DNA-Based Tool to Investigate Topoisomerase 1 Activity, a Biomarker for Drug Susceptibility in Colorectal Cancer. In Recent Understanding of Colorectal Cancer Treatment; Intech Open: London, UK, 2022. [Google Scholar]
- Keller, J.G.; Mizielinski, K.; Petersen, K.V.; Stougaard, M.; Knudsen, B.R.; Tesauro, C. Simple and Fast Rolling Circle Amplification-Based Detection of Topoisomerase 1 Activity in Crude Biological Samples. J. Vis. Exp. 2022, 190, e64484. [Google Scholar]
- Keller, J.G.; Stougaard, M.; Knudsen, B.R. Enzymatic Activity in Single Cells. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 628, pp. 43–57. ISBN 9780128170908. [Google Scholar]
- Keller, J.G.; Tesauro, C.; Coletta, A.; Graversen, A.D.; Ho, Y.P.; Kristensen, P.; Stougaard, M.; Knudsen, B.R. On-Slide Detection of Enzymatic Activities in Selected Single Cells. Nanoscale 2017, 9, 13546–13553. [Google Scholar] [CrossRef] [PubMed]
- Tesauro, C.; Keller, J.G.; Gromova, I.; Gromov, P.; Frøhlich, R.; Erlandsen, J.U.; Andersen, A.H.; Stougaard, M.; Knudsen, B.R. Different Camptothecin Sensitivities in Subpopulations of Colon Cancer Cells Correlate with Expression of Different Phospho-Isoforms of Topoisomerase I with Different Activities. Cancers 2020, 12, 1240. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, A.K.; Yuusufi, S.; Madsen, L.B.; Meldgaard, P.; Knudsen, B.R.; Stougaard, M. TDP1 and TOP1 as Targets in Anticancer Treatment of NSCLC: Activity and Protein Level in Normal and Tumor Tissue from 150 NSCLC Patients Correlated to Clinical Data. Lung Cancer 2022, 164, 23–32. [Google Scholar] [CrossRef]
- Sikder, D.; Nagaraja, V. Determination of the Recognition Sequence of Mycobacterium Smegmatis Topoisomerase I on Mycobacterial Genomic Sequences. Nucleic Acids Res. 2000, 28, 1830–1837. [Google Scholar] [CrossRef]
- Martín-Encinas, E.; Selas, A.; Palacios, F.; Alonso, C. The Design and Discovery of Topoisomerase I Inhibitors as Anticancer Therapies. Expert. Opin. Drug Discov. 2022, 17, 581–601. [Google Scholar] [CrossRef]
- Alonso, C.; Fuertes, M.; Martín-Encinas, E.; Selas, A.; Rubiales, G.; Tesauro, C.; Knudssen, B.K.; Palacios, F. Novel Topoisomerase I Inhibitors. Syntheses and Biological Evaluation of Phosphorus Substituted Quinoline Derivates with Antiproliferative Activity. Eur. J. Med. Chem. 2018, 149, 225–237. [Google Scholar] [CrossRef]
- Selas, A.; Fuertes, M.; Melcón-Fernández, E.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; Knudsen, B.R.; Palacios, F.; Alonso, C. Hybrid Quinolinyl Phosphonates as Heterocyclic Carboxylate Isosteres: Synthesis and Biological Evaluation against Topoisomerase 1b (Top1b). Pharmaceuticals 2021, 14, 784. [Google Scholar] [CrossRef]
- Selas, A.; Ramírez, G.; Palacios, F.; Alonso, C. Design, Synthesis and Cytotoxic Evaluation of Diphenyl(Quinolin-8-Yl)Phosphine Oxides. Tetrahedron Lett. 2021, 70, 153019. [Google Scholar] [CrossRef]
- Fuertes, M.; Selas, A.; Trejo, A.; Knudsen, B.R.; Palacios, F.; Alonso, C. Synthesis of Hybrid Phosphorated Indenoquinolines and Biological Evaluation as Topoisomerase I Inhibitors and Antiproliferative Agents. Bioorg Med. Chem. Lett. 2022, 57, 128517. [Google Scholar] [CrossRef] [PubMed]
- Ghashghaei, O.; Masdeu, C.; Alonso, C.; Palacios, F.; Lavilla, R. Recent Advances of the Povarov Reaction in Medicinal Chemistry. Drug Discov. Today Technol. 2018, 29, 71–79. [Google Scholar] [CrossRef]
- Trejo, A.; Masdeu, C.; Serrano-Pérez, I.; Pendrola, M.; Juanola, N.; Ghashghaei, O.; Jiménez-Galisteo, G.; Lavilla, R.; Palacios, F.; Alonso, C.; et al. Efficient AntiMycolata Agents by Increasing the Lipophilicity of Known Antibiotics through Multicomponent Reactions. Antibiotics 2023, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.V.; Selas, A.; Hymøller, K.M.; Mizielinski, K.; Thorsager, M.; Stougaard, M.; Alonso, C.; Palacios, F.; Pérez-Pertejo, Y.; Reguera, R.M.; et al. Simple and Fast Dna Based Sensor System for Screening of Small-Molecule Compounds Targeting Eukaryotic Topoisomerase 1. Pharmaceutics 2021, 13, 1255. [Google Scholar] [CrossRef]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 4: Treatment: Drug-Resistant Tuberculosis Treatment. Available online: https://www.who.int/publications/i/item/9789240007048 (accessed on 23 January 2023).
- Koch, A.; Cox, H.; Mizrahi, V. Drug-Resistant Tuberculosis: Challenges and Opportunities for Diagnosis and Treatment. Curr. Opin. Pharmacol. 2018, 42, 7–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keller, J.G.; Petersen, K.V.; Mizielinski, K.; Thiesen, C.; Bjergbæk, L.; Reguera, R.M.; Pérez-Pertejo, Y.; Balaña-Fouce, R.; Trejo, A.; Masdeu, C.; et al. Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds. Pharmaceuticals 2023, 16, 657. https://doi.org/10.3390/ph16050657
Keller JG, Petersen KV, Mizielinski K, Thiesen C, Bjergbæk L, Reguera RM, Pérez-Pertejo Y, Balaña-Fouce R, Trejo A, Masdeu C, et al. Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds. Pharmaceuticals. 2023; 16(5):657. https://doi.org/10.3390/ph16050657
Chicago/Turabian StyleKeller, Josephine Geertsen, Kamilla Vandsø Petersen, Karol Mizielinski, Celine Thiesen, Lotte Bjergbæk, Rosa M. Reguera, Yolanda Pérez-Pertejo, Rafael Balaña-Fouce, Angela Trejo, Carme Masdeu, and et al. 2023. "Gel-Free Tools for Quick and Simple Screening of Anti-Topoisomerase 1 Compounds" Pharmaceuticals 16, no. 5: 657. https://doi.org/10.3390/ph16050657