Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential
Abstract
:1. Introduction
Aim of the Work
2. Results and Discussion
2.1. Chemistry
2.2. Pharmacological Testing
2.2.1. Inhibitory Assay of SARS-CoV-2 Main Protease
2.2.2. SAR Analysis of Target Compounds
2.3. Antiviral Effect against SARS-CoV-2 Activity
2.4. Computational Studies
2.4.1. Molecular Docking Analysis
2.4.2. Molecular Dynamic Analysis
2.4.3. Prediction of Drug-Likeness and ADME Properties
3. Concluding Remarks
4. Materials and Methods
4.1. Chemistry
4.1.1. Synthesis and Characterization of 4-(prop-2-yn-1-yloxy)-Benzaldehyde (2)
(Z)-1-(4-Chlorophenyl)-3-Methyl-4-(4-(prop-2-yn-1-yloxy)Benzylidene)-1H-Pyrazol-5(4H)-One (4a)
(Z)-3-methyl-1-Phenyl-4-(4-(prop-2-yn-1-yloxy)Benzylidene)-1H-Pyrazol-5(4H)-One (4b)
4.1.2. General Click Procedure for the Synthesis of 1,2,3-Triazole-Pyrazolehybrids 6a–q
4.2. Main Protease Inhibition Assay
4.3. SARS-CoV-2 Antiviral Assay
4.4. Molecular Docking Study
4.5. Molecular Dynamics Simulation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fehr, A.R.; Perlman, S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In Coronaviruses: Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–23. [Google Scholar]
- Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus 2020, 12, e7423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019–COVID-19. Clin. Microbiol. Rev. 2020, 33, e00028-20. [Google Scholar] [CrossRef] [PubMed]
- The World Health Organization WHO. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 5 January 2023).
- Mahmoud, A.; Mostafa, A.; Al-Karmalawy, A.A.; Zidan, A.; Abulkhair, H.S.; Mahmoud, S.H.; Shehata, M.; Elhefnawi, M.M.; Ali, M.A. Telaprevir Is a Potential Drug for Repurposing against SARS-CoV-2: Computational and in Vitro Studies. Heliyon 2021, 7, e07962. [Google Scholar] [CrossRef] [PubMed]
- Kutkat, O.; Moatasim, Y.; Al-Karmalawy, A.A.; Abulkhair, H.S.; Gomaa, M.R.; El-Taweel, A.N.; Abo Shama, N.M.; GabAllah, M.; Mahmoud, D.B.; Kayali, G.; et al. Robust Antiviral Activity of Commonly Prescribed Antidepressants against Emerging Coronaviruses: In Vitro and in Silico Drug Repurposing Studies. Sci. Rep. 2022, 12, 12920. [Google Scholar] [CrossRef]
- Abel, R.; Paredes Ramos, M.; Chen, Q.; Pérez-Sánchez, H.; Coluzzi, F.; Rocco, M.; Marchetti, P.; Mura, C.; Simmaco, M.; Bourne, P.E.; et al. Computational Prediction of Potential Inhibitors of the Main Protease of SARS-CoV-2. Front. Chem. 2020, 8, 1162. [Google Scholar] [CrossRef]
- Cui, W.; Yang, K.; Yang, H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Front. Mol. Biosci. 2020, 7, 616341. [Google Scholar] [CrossRef]
- Negi, M.; Chawla, P.A.; Faruk, A.; Chawla, V. Role of Heterocyclic Compounds in SARS and SARS CoV-2 Pandemic. Bioorg. Chem. 2020, 104, 104315. [Google Scholar] [CrossRef]
- Karypidou, K.; Ribone, S.R.; Quevedo, M.A.; Persoons, L.; Pannecouque, C.; Helsen, C.; Claessens, F.; Dehaen, W. Synthesis, Biological Evaluation and Molecular Modeling of a Novel Series of Fused 1,2,3-Triazoles as Potential Anti-Coronavirus Agents. Bioorg. Med. Chem. Lett. 2018, 28, 3472–3476. [Google Scholar] [CrossRef]
- Mohamed, M.; Abrigach, F.; El Kadiri, S.; Omar Said Hassane, S.; Abdellattif, M.H.; Touzani, R. Pyrazole, Imidazole and Triazole: In Silico, Docking and ADMET Studies against SARS-CoV-2. Mater. Today Proc. 2023, 72, 3686–3695. [Google Scholar] [CrossRef]
- Seck, I.; Nguemo, F. Triazole, Imidazole, and Thiazole-Based Compounds as Potential Agents against Coronavirus. Results Chem. 2021, 3, 100132. [Google Scholar] [CrossRef]
- Madasu, C.; Karri, S.; Sangaraju, R.; Sistla, R.; Uppuluri, M.V. Synthesis and Biological Evaluation of Some Novel 1,2,3-Triazole Hybrids of Myrrhanone B Isolated from Commiphora Mukul Gum Resin: Identification of Potent Antiproliferative Leads Active against Prostate Cancer Cells (PC-3). Eur. J. Med. Chem. 2020, 188, 111974. [Google Scholar] [CrossRef]
- Chandrashekhar, M.; Nayak, V.L.; Ramakrishna, S.; Mallavadhani, U.V. Novel Triazole Hybrids of Myrrhanone C, a Natural Polypodane Triterpene: Synthesis, Cytotoxic Activity and Cell Based Studies. Eur. J. Med. Chem. 2016, 114, 293–307. [Google Scholar] [CrossRef]
- Cortés-García, C.J.; Chacón-García, L.; Mejía-Benavides, J.E.; Díaz-Cervantes, E. Tackling the SARS-CoV-2 Main Protease Using Hybrid Derivatives of 1,5-Disubstituted Tetrazole-1,2,3-Triazoles: An in Silico Assay. PeerJ Phys. Chem. 2020, 2, e10. [Google Scholar] [CrossRef]
- Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-Containing Hybrids as Leads in Medicinal Chemistry: A Recent Overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Q.; Guo, S.; Zuo, R.; Hong, Y.; Luo, Y.; Li, Y.; Gong, P.; Liu, Y. Design, Synthesis, and Structure-Activity Relationships of Novel Imidazo[4,5-c]Pyridine Derivatives as Potent Non-Nucleoside Inhibitors of Hepatitis C Virus NS5B. Bioorg. Med. Chem. 2018, 26, 2621–2631. [Google Scholar] [CrossRef]
- Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-Triazole Hybrid Molecules: Synthesis and Anti-Varicella-Zoster Virus (VZV) Evaluation. Eur. J. Med. Chem. 2018, 155, 772–781. [Google Scholar] [CrossRef]
- Sharma, R.; Chawla, P.A.; Chawla, V.; Verma, R.; Nawal, N.; Gupta, V. Therapeutic Journey of 5-Pyrazolones as a Versatile Scaffold: A Review. Mini-Rev. Med. Chem. 2021, 21, 1770–1795. [Google Scholar] [CrossRef]
- Ramajayam, R.; Tan, K.-P.; Liu, H.-G.; Liang, P.-H. Synthesis and Evaluation of Pyrazolone Compounds as SARS-Coronavirus 3C-like Protease Inhibitors. Bioorg. Med. Chem. 2010, 18, 7849–7854. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P.; et al. Pyrazolone Structural Motif in Medicinal Chemistry: Retrospect and Prospect. Eur. J. Med. Chem. 2020, 186, 111893. [Google Scholar] [CrossRef]
- Kumar, V.; Tan, K.-P.; Wang, Y.-M.; Lin, S.-W.; Liang, P.-H. Identification, Synthesis and Evaluation of SARS-CoV and MERS-CoV 3C-like Protease Inhibitors. Bioorg. Med. Chem. 2016, 24, 3035–3042. [Google Scholar] [CrossRef]
- Malebari, A.M.; Ahmed, H.E.A.; Ihmaid, S.K.; Omar, A.M.; Muhammad, Y.A.; Althagfan, S.S.; Aljuhani, N.; El-Sayed, A.A.A.A.; Halawa, A.H.; El-Tahir, H.M.; et al. Exploring the Dual Effect of Novel 1,4-Diarylpyranopyrazoles as Antiviral and Anti-Inflammatory for the Management of SARS-CoV-2 and Associated Inflammatory Symptoms. Bioorg. Chem. 2023, 130, 106255. [Google Scholar] [CrossRef] [PubMed]
- Mushtaque, M.; Avecilla, F.; Haque, A.; Perwez, A.; Khan, M.S.; Rizvi, M.M.A. Experimental and Theoretical Studies of a Pyrazole-Thiazolidin-2,4-Di-One Hybrid. J. Mol. Struct. 2017, 1141, 417–427. [Google Scholar] [CrossRef]
- Mushtaque, M.; Ahamad, S.; Jahan, M.; Hussain, K.; Khan, M.S. Azole-Based Compounds as Antiamoebic Agents: A Perspective Using Theoretical Calculations. RSC Adv. 2016, 6, 815–824. [Google Scholar] [CrossRef]
- Musa, A.; Ihmaid, S.K.; Hughes, D.L.; Said, M.A.; Hamada, S.; El-ghorab, A.H.; Abdelgawad, M.A.; Shalaby, K.; Shaker, M.E.; Alharbi, K.S.; et al. The Anticancer and EGFR-TK / CDK-9 Dual Inhibitory Potentials of New Synthetic Pyranopyrazole and Pyrazolone Derivatives: X-Ray Crystallography, in Vitro, and in Silico Mechanistic Investigations. J. Biomol. Struct. Dyn. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; He, F.; Liu, D.; Fang, M.; Wu, Z.; Xu, D. AI-Aided Design of Novel Targeted Covalent Inhibitors against SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Mengist, H.M.; Dilnessa, T.; Jin, T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front. Chem. 2021, 9, 622898. [Google Scholar] [CrossRef]
- Jacobs, J.; Grum-Tokars, V.; Zhou, Y.; Turlington, M.; Saldanha, S.A.; Chase, P.; Eggler, A.; Dawson, E.S.; Baez-Santos, Y.M.; Tomar, S.; et al. Discovery, Synthesis, And Structure-Based Optimization of a Series of N-(Tert-Butyl)-2-(N-Arylamido)-2-(Pyridin-3-Yl) Acetamides (ML188) as Potent Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) 3. J. Med. Chem. 2013, 56, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Viegas-Junior, C.; Barreiro, E.J.; Fraga, C.A.M.; Danuello, A.; da Silva Bolzani, V. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef]
- Abulkhair, H.S.; Turky, A.; Ghiaty, A.; Ahmed, H.E.A.; Bayoumi, A.H. Novel Triazolophthalazine-Hydrazone Hybrids as Potential PCAF Inhibitors: Design, Synthesis, in Vitro Anticancer Evaluation, Apoptosis, and Molecular Docking Studies. Bioorg. Chem. 2020, 100, 103899. [Google Scholar] [CrossRef]
- Ji, H.; Stanton, B.Z.; Igarashi, J.; Li, H.; Martásek, P.; Roman, L.J.; Poulos, T.L.; Silverman, R.B. Minimal Pharmacophoric Elements and Fragment Hopping, an Approach Directed at Molecular Diversity and Isozyme Selectivity. Design of Selective Neuronal Nitric Oxide Synthase Inhibitors. J. Am. Chem. Soc. 2008, 130, 3900–3914. [Google Scholar] [CrossRef] [Green Version]
- Khayat, M.T.; Ahmed, H.E.A.; Omar, A.M.; Muhammad, Y.A.; Mohammad, K.A.; Malebari, A.M.; Khayyat, A.N.; Halawa, A.H.; Abulkhair, H.S.; Al-Karmalawy, A.A.; et al. A Novel Class of Phenylpyrazolone-Sulphonamides Rigid Synthetic Anticancer Molecules Selectively Inhibit the Isoform IX of Carbonic Anhydrases Guided by Molecular Docking and Orbital Analyses. J. Biomol. Struct. Dyn. 2023, 1–19. [Google Scholar] [CrossRef]
- El-Shershaby, M.H.; Ghiaty, A.; Bayoumi, A.H.; Ahmed, H.E.A.; El-Zoghbi, M.S.; El-Adl, K.; Abulkhair, H.S. 1,2,4-Triazolo[4,3-c]Quinazolines: A Bioisosterism-Guided Approach towards the Development of Novel PCAF Inhibitors with Potential Anticancer Activity. New J. Chem. 2021, 45, 11136–11152. [Google Scholar] [CrossRef]
- Abulkhair, H.S.; Elmeligie, S.; Ghiaty, A.; El-Morsy, A.; Bayoumi, A.H.; Ahmed, H.E.A.; El-Adl, K.; Zayed, M.F.; Hassan, M.H.; Akl, E.N.; et al. In Vivo- and in Silico-Driven Identification of Novel Synthetic Quinoxalines as Anticonvulsants and AMPA Inhibitors. Arch. Pharm. 2021, 354, 2000449. [Google Scholar] [CrossRef]
- Hammoud, M.M.; Khattab, M.; Abdel-Motaal, M.; Van der Eycken, J.; Alnajjar, R.; Abulkhair, H.S.; Al-Karmalawy, A.A. Synthesis, Structural Characterization, DFT Calculations, Molecular Docking, and Molecular Dynamics Simulations of a Novel Ferrocene Derivative to Unravel Its Potential Antitumor Activity. J. Biomol. Struct. Dyn. 2022. ahead of print. [Google Scholar] [CrossRef]
- Aljuhani, A.; Ahmed, H.E.A.; Ihmaid, S.K.; Omar, A.M.; Althagfan, S.S.; Alahmadi, Y.M.; Ahmad, I.; Patel, H.; Ahmed, S.; Almikhlafi, M.A.; et al. In Vitro and Computational Investigations of Novel Synthetic Carboxamide-Linked Pyridopyrrolopyrimidines with Potent Activity as SARS-CoV-2-M Pro Inhibitors. RSC Adv. 2022, 12, 26895–26907. [Google Scholar] [CrossRef]
- Boopathi, S.; Poma, A.B.; Kolandaivel, P. Novel 2019 Coronavirus Structure, Mechanism of Action, Antiviral Drug Promises and Rule out against Its Treatment. J. Biomol. Struct. Dyn. 2020, 39, 3409–3418. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Aouad, M.R.; Khan, D.J.O.; Said, M.A.; Al-Kaff, N.S.; Rezki, N.; Ali, A.A.; Bouqellah, N.; Hagar, M. Novel 1,2,3-Triazole Derivatives as Potential Inhibitors against COVID-19 Main Protease: Synthesis, Characterization, Molecular Docking and DFT Studies. ChemistrySelect 2021, 6, 3468–3486. [Google Scholar] [CrossRef]
- Said, M.A.; Khan, D.J.O.; Al-blewi, F.F.; Al-Kaff, N.S.; Ali, A.A.; Rezki, N.; Aouad, M.R.; Hagar, M. New 1,2,3-Triazole Scaffold Schiff Bases as Potential Anti-COVID-19: Design, Synthesis, DFT-Molecular Docking, and Cytotoxicity Aspects. Vaccines 2021, 9, 1012. [Google Scholar] [CrossRef]
- Alzahrani, A.Y.; Shaaban, M.M.; Elwakil, B.H.; Hamed, M.T.; Rezki, N.; Aouad, M.R.; Zakaria, M.A.; Hagar, M. Anti-COVID-19 Activity of Some Benzofused 1,2,3-Triazolesulfonamide Hybrids Using in Silico and in Vitro Analyses. Chemom. Intell. Lab. Syst. 2021, 217, 104421. [Google Scholar] [CrossRef]
- Al-Humaidi, J.Y.; Shaaban, M.M.; Rezki, N.; Aouad, M.R.; Zakaria, M.; Jaremko, M.; Hagar, M.; Elwakil, B.H. 1,2,3-Triazole-Benzofused Molecular Conjugates as Potential Antiviral Agents against SARS-CoV-2 Virus Variants. Life 2022, 12, 1341. [Google Scholar] [CrossRef] [PubMed]
- Ihmaid, S.K.; Aljuhani, A.; Alsehli, M.; Rezki, N.; Alawi, A.; Aldhafiri, A.J.; Salama, S.A.; Ahmed, H.E.A.; Aouad, M.R. Discovery of Triaromatic Flexible Agents Bearing 1,2,3-Triazole with Selective and Potent Anti-Breast Cancer Activity and CDK9 Inhibition Supported by Molecular Dynamics. J. Mol. Struct. 2022, 1249, 131568. [Google Scholar] [CrossRef]
- Albelwi, F.F.; Abdu Mansour, H.M.; Elshatanofy, M.M.; El Kilany, Y.; Kandeel, K.; Elwakil, B.H.; Hagar, M.; Aouad, M.R.; El Ashry, E.S.H.; Rezki, N.; et al. Design, Synthesis and Molecular Docking of Novel Acetophenone-1,2,3-Triazoles Containing Compounds as Potent Enoyl-Acyl Carrier Protein Reductase (InhA) Inhibitors. Pharmaceuticals 2022, 15, 799. [Google Scholar] [CrossRef]
- Othman, E.M.; Fayed, E.A.; Husseiny, E.M.; Abulkhair, H.S. Apoptosis Induction, PARP-1 Inhibition, and Cell Cycle Analysis of Leukemia Cancer Cells Treated with Novel Synthetic 1,2,3-Triazole-Chalcone Conjugates. Bioorg. Chem. 2022, 123, 105762. [Google Scholar] [CrossRef] [PubMed]
- Othman, E.M.; Fayed, E.A.; Husseiny, E.M.; Abulkhair, H.S. Rationale Design, Synthesis, Cytotoxicity Evaluation, and in Silico Mechanistic Studies of Novel 1,2,3-Triazoles with Potential Anticancer Activity. New J. Chem. 2022, 46, 12206–12216. [Google Scholar] [CrossRef]
- Othman, E.M.; Fayed, E.A.; Husseiny, E.M.; Abulkhair, H.S. The Effect of Novel Synthetic Semicarbazone- and Thiosemicarbazone-Linked 1,2,3-Triazoles on the Apoptotic Markers, VEGFR-2, and Cell Cycle of Myeloid Leukemia. Bioorg. Chem. 2022, 127, 105968. [Google Scholar] [CrossRef]
- Reda Aouad, M.; Almehmadi, M.A.; Faleh Albelwi, F.; Teleb, M.; Tageldin, G.N.; Abu-Serie, M.M.; Hagar, M.; Rezki, N. Targeting the Interplay between MMP-2, CA II and VEGFR-2 via New Sulfonamide-Tethered Isomeric Triazole Hybrids; Microwave-Assisted Synthesis, Computational Studies and Evaluation. Bioorg. Chem. 2022, 124, 105816. [Google Scholar] [CrossRef]
- Ihmaid, S.K.; Alraqa, S.Y.; Aouad, M.R.; Aljuhani, A.; Elbadawy, H.M.; Salama, S.A.; Rezki, N.; Ahmed, H.E.A. Design of Molecular Hybrids of Phthalimide-Triazole Agents with Potent Selective MCF-7/HepG2 Cytotoxicity: Synthesis, EGFR Inhibitory Effect, and Metabolic Stability. Bioorg. Chem. 2021, 111, 104835. [Google Scholar] [CrossRef]
- Abul-Khair, H.; Elmeligie, S.; Bayoumi, A.; Ghiaty, A.; El-Morsy, A.; Hassan, M.H. Synthesis and Evaluation of Some New (1,2,4) Triazolo(4,3-a)Quinoxalin- 4(5h)-One Derivatives as AMPA Receptor Antagonists. J. Heterocycl. Chem. 2013, 50, 1202–1208. [Google Scholar] [CrossRef]
- El-Adl, K.; El-Helby, A.G.A.; Sakr, H.; Ayyad, R.R.; Mahdy, H.A.; Nasser, M.; Abulkhair, H.S.; El-Hddad, S.S.A. Design, Synthesis, Molecular Docking, Anticancer Evaluations, and in Silico Pharmacokinetic Studies of Novel 5-[(4-Chloro/2,4-Dichloro)Benzylidene]Thiazolidine-2,4-Dione Derivatives as VEGFR-2 Inhibitors. Arch. Pharm. 2021, 354, e202000279. [Google Scholar] [CrossRef]
- Khedr, F.; Ibrahim, M.K.; Eissa, I.H.; Abulkhair, H.S.; El-Adl, K. Phthalazine-Based VEGFR-2 Inhibitors: Rationale, Design, Synthesis, in Silico, ADMET Profile, Docking, and Anticancer Evaluations. Arch. Pharm. 2021, 354, 202100201. [Google Scholar] [CrossRef]
- Alam, F.; Khan, M.; Ateeq, M. Synthesis of Triazole-Based Nonionic Surfactants for Nanostructured Drug Delivery: Investigation of Their Physicochemical and Biological Aspects. J. Surfactants Deterg. 2019, 22, 1419–1427. [Google Scholar] [CrossRef]
- Minvielle, M.J.; Bunders, C.A.; Melander, C. Indole–Triazole Conjugates Are Selective Inhibitors and Inducers of Bacterial Biofilms. MedChemComm 2013, 4, 916. [Google Scholar] [CrossRef]
- Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, in Vitro Evaluation and Molecular Docking Studies of Novel Triazine-Triazole Derivatives as Potential α-Glucosidase Inhibitors. Eur. J. Med. Chem. 2017, 125, 423–429. [Google Scholar] [CrossRef]
- Roomi, M.W.; Monterrey, J.C.; Kalinovsky, T.; Rath, M.; Niedzwiecki, A. In Vitro Modulation of MMP-2 and MMP-9 in Human Cervical and Ovarian Cancer Cell Lines by Cytokines, Inducers and Inhibitors. Oncol. Rep. 2010, 23, 605–614. [Google Scholar] [CrossRef]
- Roomi, M.W.; Monterrey, J.C.; Kalinovsky, T.; Rath, M.; Niedzwiecki, A. Patterns of MMP-2 and MMP-9 Expression in Human Cancer Cell Lines. Oncol. Rep. 2009, 21, 1323–1333. [Google Scholar] [CrossRef]
- Vihinen, P.; Kähäri, V.-M. Matrix Metalloproteinases in Cancer: Prognostic Markers and Therapeutic Targets. Int. J. Cancer 2002, 99, 157–166. [Google Scholar] [CrossRef]
- Ii, M.; Yamamoto, H.; Adachi, Y.; Maruyama, Y.; Shinomura, Y. Role of Matrix Metalloproteinase-7 (Matrilysin) in Human Cancer Invasion, Apoptosis, Growth, and Angiogenesis. Exp. Biol. Med. 2006, 231, 20–27. [Google Scholar] [CrossRef]
- Lockbaum, G.J.; Reyes, A.C.; Lee, J.M.; Tilvawala, R.; Nalivaika, E.A.; Ali, A.; Kurt Yilmaz, N.; Thompson, P.R.; Schiffer, C.A. Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188. Viruses 2021, 13, 174. [Google Scholar] [CrossRef]
- Xia, Z.; Sacco, M.; Hu, Y.; Ma, C.; Meng, X.; Zhang, F.; Szeto, T.; Xiang, Y.; Chen, Y.; Wang, J. Rational Design of Hybrid SARS-CoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. ACS Pharmacol. Transl. Sci. 2021, 4, 1408–1421. [Google Scholar] [CrossRef]
- Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; et al. Boceprevir, GC-376, and Calpain Inhibitors II, XII Inhibit SARS-CoV-2 Viral Replication by Targeting the Viral Main Protease. Cell Res. 2020, 30, 678–692. [Google Scholar] [CrossRef] [PubMed]
- Osipiuk, J.; Azizi, S.-A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; et al. Structure of Papain-like Protease from SARS-CoV-2 and Its Complexes with Non-Covalent Inhibitors. Nat. Commun. 2021, 12, 743. [Google Scholar] [CrossRef] [PubMed]
- Singer, C.F.; Kronsteiner, N.; Marton, E.; Kubista, M.; Cullen, K.J.; Hirtenlehner, K.; Seifert, M.; Kubista, E. MMP-2 and MMP-9 Expression in Breast Cancer-Derived Human Fibroblasts Is Differentially Regulated by Stromal-Epithelial Interactions. Breast Cancer Res. Treat. 2002, 72, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. ChemBioChem 2020, 21, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal Structure of SARS-CoV-2 Main Protease Provides a Basis for Design of Improved α-Ketoamide Inhibitors. Science 2020, 368, 409–412. [Google Scholar] [CrossRef] [Green Version]
- Pitsillou, E.; Liang, J.; Ververis, K.; Lim, K.W.; Hung, A.; Karagiannis, T.C. Identification of Small Molecule Inhibitors of the Deubiquitinating Activity of the SARS-CoV-2 Papain-Like Protease: In Silico Molecular Docking Studies and In Vitro Enzymatic Activity Assay. Front. Chem. 2020, 8, 623971. [Google Scholar] [CrossRef]
- Zhu, W.; Xu, M.; Chen, C.Z.; Guo, H.; Shen, M.; Hu, X.; Shinn, P.; Klumpp-Thomas, C.; Michael, S.G.; Zheng, W. Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-Throughput Screening. ACS Pharmacol. Transl. Sci. 2020, 3, 1008–1016. [Google Scholar] [CrossRef]
- Chung, Y.-S.; Lee, N.-J.; Woo, S.H.; Kim, J.-M.; Kim, H.M.; Jo, H.J.; Park, Y.E.; Han, M.-G. Validation of Real-Time RT-PCR for Detection of SARS-CoV-2 in the Early Stages of the COVID-19 Outbreak in the Republic of Korea. Sci. Rep. 2021, 11, 14817. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Integrated Computer-Aided Molecular Design Platform. Available online: https://www.chemcomp.com/Products.htm (accessed on 12 May 2022).
- Ahmed, H.E.A.; Ihmaid, S.K.; Omar, A.M.; Shehata, A.M.; Rateb, H.S.; Zayed, M.F.; Ahmed, S.; Elaasser, M.M. Design, Synthesis, Molecular Docking of New Lipophilic Acetamide Derivatives Affording Potential Anticancer and Antimicrobial Agents. Bioorg. Chem. 2018, 76, 332–342. [Google Scholar] [CrossRef]
- Zaki, A.A.; Kaddah, M.M.Y.; Abulkhair, H.S.; Ashour, A. Unravelling the Antifungal and Antiprotozoal Activities and LC-MS/MS Quantification of Steroidal Saponins Isolated from Panicum Turgidum. RSC Adv. 2022, 12, 2980–2991. [Google Scholar] [CrossRef]
- Husseiny, E.M.; Abulkhair, H.S.; El-Dydamony, N.M.; Anwer, K.E. Exploring the Cytotoxic Effect and CDK-9 Inhibition Potential of Novel Sulfaguanidine-Based Azopyrazolidine-3,5-Diones and 3,5-Diaminoazopyrazoles. Bioorg. Chem. 2023, 133, 106397. [Google Scholar] [CrossRef]
- Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; et al. Crystallographic and Electrophilic Fragment Screening of the SARS-CoV-2 Main Protease. Nat. Commun. 2020, 11, 5047. [Google Scholar] [CrossRef]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D.; et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters. In Proceedings of the ACM/IEEE SC 2006 Conference (SC’06), Tampa, FL, USA, 11–17 November 2006; IEEE: Piscataway, NJ, USA, 2006; p. 43. [Google Scholar]
ID | R1 | R2 | n | IC50 (μM) ± SE * |
---|---|---|---|---|
6a | Cl | 4-COOH | - | 76.91 ± 3.7 |
6b | H | 4-COOH | - | >200 |
6c | Cl | 4-COCH3 | - | 81.14 ± 3.9 |
6d | Cl | 4-F | - | 42.45 ± 3.8 |
6e | Cl | 4-NO2 | - | 30.08 ± 1.4 |
6f | Cl | 4-Cl | - | 143.90 ± 6.9 |
6g | Cl | 3,4-DiCl | - | 199.80 ± 9.5 |
6h | Cl | 3-F,4-CH3 | - | 5.08 ± 3.5 |
6i | Cl | 4-COOH | 1 | 3.16 ± 1.2 |
6j | Cl | 4-F | 1 | 49.39 ± 2.4 |
6k | H | 4-F | 1 | >200 |
6l | Cl | 4-NO2 | 1 | 135.30 ± 6.5 |
6m | Cl | 3-F,4-CH3 | 1 | 25.70 ± 0.4 |
6n | Cl | 4-Cl | 2 | 86.61 ± 4.1 |
6o | Cl | 4-CH3 | 2 | 43.31 ± 2.1 |
6p | Cl | 4-OCH3 | 2 | 23.73 ± 1.1 |
6q | Cl | 4-F | 2 | 7.55 ± 1.6 |
GC-376 | - | - | - | 12.85 ± 0.74 |
ID | Cytotoxicity (Vero E6) (IC50, μM) | Anti-SARS-CoV-2 Effect Assay (%) | API Value | |
---|---|---|---|---|
1 μM | 10 μM | |||
6a | 17.1 ± 13 | 10.8 ± 0.06 | 19.27 ± 0.51 | 0.21 |
6c | 92.1 ± 7 | 4.46 ± 0.034 | 24.51 ± 0.37 | 0.26 |
6d | 172 ± 13 | 7.38 ± 0.007 | 55.47 ± 0.27 | 0.60 |
6e | 66.4 ± 5.1 | 17.42 ± 0.19 | 49.48 ± 1.01 | 0.53 |
6f | 51.4 ± 3.9 | 1.54 ± 0.089 | 30.21 ± 0.31 | 0.31 |
6g | 235 ± 18 | 12.23 ± 0.05 | 38.74 ± 0.30 | 0.41 |
6h | 33.7 ± 2.6 | 15.5 ± 0.003 | 62.14 ± 0.29 | 0.66 |
6i | 21.1 ± 1.6 | 21.86 ± 0.09 | 63.39 ± 0.48 | 0.67 |
6j | 156 ± 12 | 16.16 ± 0.03 | 39.65 ± 0.25 | 0.46 |
6l | 32.6 ± 2.5 | 8.84 ± 0.11 | 46.91 ± 0.28 | 0.68 |
6m | 189 ± 14 | 9.55 ± 0.02 | 46.5 ± 0.26 | 0.49 |
6n | 23.1 ± 1.8 | 3.73 ± 0.01 | 51.13 ± 0.14 | 0.55 |
6o | 262 ± 20 | 12.23 ± 0.10 | 54.12 ± 0.61 | 0.56 |
6p | 20.1 ± 1.5 | 9.50 ± 0.11 | 50.37 ± 0.43 | 0.54 |
6q | 35.3 ± 2.7 | 12.90 ± 0.03 | 78.64 ± 0.37 | 0.84 |
GC-376 | 41.22 ± 1.1 | 78.96 ± 0.67 | 92.92 ± 1.15 | 0.99 |
REM | 61.8 ± 4.7 | 89.61 ± 0.98 | 93.33 ± 1.17 | 1.0 |
ID | Molecular Properties | Druggability | Toxicity Risks | %ABS | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TPSA | Mwt | Solubility | ClogP | Druglikeness | Drug-Score | M | T | I | R | ||
6f | 139 | 503 | −6.01 | 4.99 | 1.41 | 0.19 | 65.81 | ||||
6i | 73 | 570 | −5.29 | 3.41 | 2.04 | 0.24 | 83.05 | ||||
GC-376 | 179 | 485 | −2.75 | −0.97 | −28.75 | 0.37 | 47.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, A.; Abulkhair, H.S.; Aljuhani, A.; Rezki, N.; Abdelgawad, M.A.; Shalaby, K.; El-Ghorab, A.H.; Aouad, M.R. Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential. Pharmaceuticals 2023, 16, 463. https://doi.org/10.3390/ph16030463
Musa A, Abulkhair HS, Aljuhani A, Rezki N, Abdelgawad MA, Shalaby K, El-Ghorab AH, Aouad MR. Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential. Pharmaceuticals. 2023; 16(3):463. https://doi.org/10.3390/ph16030463
Chicago/Turabian StyleMusa, Arafa, Hamada S. Abulkhair, Ateyatallah Aljuhani, Nadjet Rezki, Mohamed A. Abdelgawad, Khaled Shalaby, Ahmed H. El-Ghorab, and Mohamed R. Aouad. 2023. "Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential" Pharmaceuticals 16, no. 3: 463. https://doi.org/10.3390/ph16030463
APA StyleMusa, A., Abulkhair, H. S., Aljuhani, A., Rezki, N., Abdelgawad, M. A., Shalaby, K., El-Ghorab, A. H., & Aouad, M. R. (2023). Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential. Pharmaceuticals, 16(3), 463. https://doi.org/10.3390/ph16030463