Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals
Abstract
:1. Introduction
2. Obtention of β-Glucans from Food Sources
3. Formulations of Dietary β-Glucans with Biological Activities
4. Use of Food By-Products and Agro-Industrial Wastes to Obtain Bioactive β-Glucans
4.1. Yeast Residues from Wine and Beer Industries
4.2. By-Products from Cereals and Other Vegetal Sources
4.3. Mushroom By-Products
4.4. Residues Utilized as Substrates for the Growth of β-Glucan-Synthesizing Species
5. Conclusions, Current Limitations and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of Dietary Fiber on Human Health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Korczak, R.; Slavin, J.L. Definitions, Regulations, and New Frontiers for Dietary Fiber and Whole Grains. Nutr. Rev. 2020, 78, 6–12. [Google Scholar] [CrossRef]
- Morales, D.; Rutckeviski, R.; Villalva, M.; Abreu, H.; Soler-Rivas, C.; Santoyo, S.; Iacomini, M.; Smiderle, F.R. Isolation and Comparison of α- and β-D-Glucans from Shiitake Mushrooms (Lentinula edodes) with Different Biological Activities. Carbohydr. Polym. 2020, 229, 115521. [Google Scholar] [CrossRef] [PubMed]
- Udayangani, R.M.C.; Dananjaya, S.H.S.; Fronte, B.; Kim, C.H.; Lee, J.; de Zoysa, M. Feeding of Nano Scale Oats β-Glucan Enhances the Host Resistance against Edwardsiella Tarda and Protective Immune Modulation in Zebrafish Larvae. Fish. Shellfish Immunol. 2017, 60, 72–77. [Google Scholar] [CrossRef]
- Zheng, Z.; Deng, W.; Li, Y.; Song, H.; Chen, S. Extraction, Physiological Function and Application of Soluble Dietary Fiber from Edible fungi: A Review. Food Sci. Technol. 2022, 42, e35422. [Google Scholar] [CrossRef]
- Morales, D.; Tejedor-Calvo, E.; Jurado-Chivato, N.; Polo, G.; Tabernero, M.; Ruiz-Rodríguez, A.; Largo, C.; Soler-Rivas, C. In Vitro and in Vivo Testing of the Hypocholesterolemic Activity of Ergosterol- and β-Glucan-Enriched Extracts Obtained from Shiitake Mushrooms (Lentinula edodes). Food Funct. 2019, 10, 7325–7332. [Google Scholar] [CrossRef]
- Khan, A.A.; Gani, A.; Masoodi, F.A.; Amin, F.; Wani, I.A.; Khanday, F.A.; Gani, A. Structural, Thermal, Functional, Antioxidant & Antimicrobial Properties of β-d-Glucan Extracted from Baker’s Yeast (Saccharomyces cereviseae)—Effect of γ-Irradiation. Carbohydr. Polym. 2016, 140, 442–450. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Tan, C.; Zhao, Y.; Zhu, Y.; Bai, J.; Xiao, X.; Zhang, L.; Teng, D.; Tian, J.; et al. Effects of L.Plantarum Dy-1 Fermentation Time on the Characteristic Structure and Antioxidant Activity of Barley β-Glucan in Vitro. Curr. Res. Food Sci. 2022, 5, 125–130. [Google Scholar] [CrossRef]
- Korčok, M.; Calle, J.; Veverka, M.; Vietoris, V. Understanding the Health Benefits and Technological Properties of β-Glucan for the Development of Easy-to-Swallow Gels to Guarantee Food Security among Seniors. Crit. Rev. Food Sci. Nutr. 2022, 1–18. [Google Scholar] [CrossRef]
- Olivares-Galván, S.; Marina, M.L.; García, M.C. Extraction of Valuable Compounds from Brewing Residues: Malt Rootlets, Spent Hops, and Spent Yeast. Trends Food Sci. Technol. 2022, 127, 181–197. [Google Scholar] [CrossRef]
- Horue, M.; Rivero Berti, I.; Cacicedo, M.L.; Castro, G.R. Microbial Production and Recovery of Hybrid Biopolymers from Wastes for Industrial Applications- a Review. Bioresour. Technol. 2021, 340, 125671. [Google Scholar] [CrossRef] [PubMed]
- Tamasiga, P.; Miri, T.; Onyeaka, H.; Hart, A. Food Waste and Circular Economy: Challenges and Opportunities. Sustainability 2022, 14, 9896. [Google Scholar] [CrossRef]
- Wang, Q.; Ellis, P.R. Oat β-Glucan: Physico-Chemical Characteristics in Relation to Its Blood-Glucose and Cholesterol-Lowering Properties. Br. J. Nutr. 2014, 112, S4–S13. [Google Scholar] [CrossRef] [Green Version]
- Rakszegi, M.; Lovegrove, A.; Balla, K.; Láng, L.; Bedo, Z.; Veisz, O.; Shewry, P.R. Effect of Heat and Drought Stress on the Structure and Composition of Arabinoxylan and β-Glucan in Wheat Grain. Carbohydr. Polym. 2014, 102, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Tan, C.; Sun, X.; Zhao, Y.; Zhang, J.; Zhu, Y.; Bai, J.; Dong, Y.; Zhou, X. Effects of Fermentation on Structural Characteristics and in Vitro Physiological Activities of Barley β-Glucan. Carbohydr. Polym. 2020, 231, 115685. [Google Scholar] [CrossRef]
- Yoshida, T.; Honda, Y.; Tujimoto, T.; Uyama, H.; Azuma, J.I. Freeze-Thaw Treatment in 2% w/w NaOH-6 M Urea Enhanced Extraction of β-(1,3;1,4)-Glucan from Corn Pericarp. In Proceedings of the Macromolecular Symposia; Wiley-VCH: Weinheim, Germany, 2015; Volume 353, pp. 205–211. [Google Scholar]
- Ermawar, R.A.; Collins, H.M.; Byrt, C.S.; Betts, N.S.; Henderson, M.; Shirley, N.J.; Schwerdt, J.; Lahnstein, J.; Fincher, G.B.; Burton, R.A. Distribution, Structure and Biosynthetic Gene Families of (1,3;1,4)-β-Glucan in Sorghum Bicolor. J. Integr. Plant. Biol. 2015, 57, 429–445. [Google Scholar] [CrossRef] [PubMed]
- Smiderle, F.R.; Alquini, G.; Tadra-Sfeir, M.Z.; Iacomini, M.; Wichers, H.J.; van Griensven, L.J.L.D. Agaricus Bisporus and Agaricus Brasiliensis (1 → 6)-β-d-Glucans Show Immunostimulatory Activity on Human THP-1 Derived Macrophages. Carbohydr. Polym. 2013, 94, 91–99. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E.; Terlikowska, K. Quantitative Evaluation of 1,3,1,6 β-D-Glucan Contents in Wild-Growing Species of Edible Polish Mushrooms. Rocz. Panstw. Zakl. Hig. 2017, 68, 281–290. [Google Scholar]
- Baeva, E.; Bleha, R.; Lavrova, E.; Sushytskyi, L.; Čopíková, J.; Jablonsky, I.; Klouček, P.; Synytsya, A. Polysaccharides from Basidiocarps of Cultivating Mushroom Pleurotus Ostreatus: Isolation and Structural Characterization. Molecules 2019, 24, 2740. [Google Scholar] [CrossRef] [Green Version]
- Mirończuk-Chodakowska, I.; Witkowska, A.M. Evaluation of Polish Wild Mushrooms as Beta-Glucan Sources. Int. J. Environ. Res. Public Health 2020, 17, 7299. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D.; Marco, P.; Sánchez, S.; Garcia-Barreda, S.; Smiderle, F.R.; Iacomini, M.; Villalva, M.; Santoyo, S.; Soler-Rivas, C. Screening of Bioactive Compounds in Truffles and Evaluation of Pressurized Liquid Extractions (PLE) to Obtain Fractions with Biological Activities. Food Res. Int. 2020, 132, 109054. [Google Scholar] [CrossRef] [PubMed]
- Tejedor-Calvo, E.; García-Barreda, S.; Sánchez, S.; Morte, A.; Siles-Sánchez, M.d.l.N.; Soler-Rivas, C.; Santoyo, S.; Marco, P. Application of Pressurized Liquid Extractions to Obtain Bioactive Compounds from Tuber aestivum and Terfezia claveryi. Foods 2022, 11, 298. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D.; García-Barreda, S.; Sánchez, S.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C.; Marco, P. Effects of Gamma Irradiation on the Shelf-Life and Bioactive Compounds of Tuber Aestivum Truffles Packaged in Passive Modified Atmosphere. Int. J. Food Microbiol. 2020, 332, 108774. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.; Horst, G.; Tonda, R.; Lumpkins, B.; Mathis, G. Evaluation of the Effects of Feeding Dried Algae Containing Beta-1, 3-Glucan on Broilers Challenged with Eimeria. Poult. Sci 2018, 97, 3594–3600. [Google Scholar] [CrossRef] [PubMed]
- Schulze, C.; Wetzel, M.; Reinhardt, J.; Schmidt, M.; Felten, L.; Mundt, S. Screening of Microalgae for Primary Metabolites Including β-Glucans and the Influence of Nitrate Starvation and Irradiance on β-Glucan Production. J. Appl. Phycol. 2016, 28, 2719–2725. [Google Scholar] [CrossRef]
- Caruso, M.A.; Piermaria, J.A.; Abraham, A.G.; Medrano, M. β-Glucans Obtained from Beer Spent Yeasts as Functional Food Grade Additive: Focus on Biological Activity. Food Hydrocoll. 2022, 133, 107963. [Google Scholar] [CrossRef]
- Bikmurzin, R.; Bandzevičiūtė, R.; Maršalka, A.; Maneikis, A.; Kalėdienė, L. FT-IR Method Limitations for β-Glucan Analysis. Molecules 2022, 27, 4616. [Google Scholar] [CrossRef]
- Vaithanomsat, P.; Boonlum, N.; Trakunjae, C.; Apiwatanapiwat, W.; Janchai, P.; Boondaeng, A.; Phalinphattharakit, K.; Nimitkeatkai, H.; Jarerat, A. Functionality of Yeast β-Glucan Recovered from Kluyveromyces Marxianus by Alkaline and Enzymatic Processes. Polymers 2022, 14, 1582. [Google Scholar] [CrossRef]
- Byrtusová, D.; Shapaval, V.; Holub, J.; Šimanský, S.; Rapta, M.; Szotkowski, M.; Kohler, A.; Márová, I. Revealing the Potential of Lipid and β-Coproduction in Basidiomycetes Yeast. Microorganisms 2020, 8, 1034. [Google Scholar] [CrossRef]
- Jakob, F.; Stahl, L.; Vogel, R.F. β-Glucan Formation Is a Selective Advantage for Beer-Spoiling Levilactobacillus Brevis TMW 1.2112 during Planktonic Growth. Microbiol. Res. 2021, 243, 126648. [Google Scholar] [CrossRef]
- Ibarburu, I.; Aznar, R.; Elizaquível, P.; García-Quintáns, N.; López, P.; Munduate, A.; Irastorza, A.; Dueñas, M.T. A Real-Time PCR Assay for Detection and Quantification of 2-Branched (1,3)-β-d-Glucan Producing Lactic Acid Bacteria in Cider. Int. J. Food Microbiol. 2010, 143, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Goudar, G.; Sharma, P.; Janghu, S.; Longvah, T. Effect of Processing on Barley β-Glucan Content, Its Molecular Weight and Extractability. Int. J. Biol. Macromol. 2020, 162, 1204–1216. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M. Cereal Beta-Glucans: An Underutilized Health Endorsing Food Ingredient. Crit. Rev. Food Sci. Nutr. 2022, 62, 3281–3300. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.A.M.; Börjesdotter, D. Effects of Environment and Variety on Content and Molecular Weight of β-Glucan in Oats. J. Cereal. Sci. 2011, 54, 122–128. [Google Scholar] [CrossRef]
- Wiege, I.; Sluková, M.; Vaculová, K.; Pančíková, B.; Wiege, B. Characterization of Milling Fractions from New Sources of Barley for Use in Food Industry. Starch/Staerke 2016, 68, 321–328. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Substantiation of Health Claims Related to Beta-Glucans from Oats and Barley and Maintenance of Normal Blood LDL-Cholesterol Concentrations (ID 1236, 1299), Increase in Satiety Leading to a Reduction in Energy Intake (ID 851, 852), Reduction of Post-Prandial Glycaemic Responses (ID 821, 824), and “Digestive Function” (ID 850) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2207. [Google Scholar] [CrossRef] [Green Version]
- Tejedor-Calvo, E.; Morales, D.; Marco, P.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C. Effects of Combining Electron-Beam or Gamma Irradiation Treatments with Further Storage under Modified Atmospheres on the Bioactive Compounds of Tuber Melanosporum Truffles. Postharvest Biol. Technol. 2019, 155, 149–155. [Google Scholar] [CrossRef]
- Rao, Z.; Dong, Y.; Zheng, X.; Tang, K.; Liu, J. Extraction, Purification, Bioactivities and Prospect of Lentinan: A Review. Biocatal. Agric. Biotechnol. 2021, 37, 102163. [Google Scholar] [CrossRef]
- Kumar, K. Nutraceutical Potential and Processing Aspects of Oyster Mushrooms (Pleurotus Species). Curr. Nutr. Food Sci. 2018, 16, 3–14. [Google Scholar] [CrossRef]
- Utama, G.L.; Irena, F.; Lembong, E.; Kayaputri, I.L.; Tensiska, T.; Balia, R.L. The Utilization of Vegetable and Fruit Wastes for Saccharomyces Cerevisieae Cell Wall Based SS-Glucan Production with Antioxidant Activity. Acta Univ. Agric. Silvic. Mendel. Brun. 2020, 68, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Garai-Ibabe, G.; Dueñas, M.T.; Irastorza, A.; Sierra-Filardi, E.; Werning, M.L.; López, P.; Corbí, A.L.; Fernández de Palencia, P. Naturally Occurring 2-Substituted (1,3)-β-d-Glucan Producing Lactobacillus Suebicus and Pediococcus Parvulus Strains with Potential Utility in the Production of Functional Foods. Bioresour. Technol. 2010, 101, 9254–9263. [Google Scholar] [CrossRef] [Green Version]
- Morales, D.; Piris, A.J.; Ruiz-Rodriguez, A.; Prodanov, M.; Soler-Rivas, C. Extraction of Bioactive Compounds against Cardiovascular Diseases from Lentinula Edodes Using a Sequential Extraction Method. Biotechnol. Prog. 2018, 34, 746–755. [Google Scholar] [CrossRef] [Green Version]
- Morales, D.; Smiderle, F.R.; Piris, A.J.; Soler-Rivas, C.; Prodanov, M. Production of a β-D-Glucan-Rich Extract from Shiitake Mushrooms (Lentinula edodes) by an Extraction/Microfiltration/Reverse Osmosis (Nanofiltration) Process. Innov. Food Sci. Emerg. Technol. 2019, 51, 80–90. [Google Scholar] [CrossRef]
- Maheshwari, G.; Sowrirajan, S.; Joseph, B. Extraction and Isolation of β-Glucan from Grain Sources—A Review. J. Food Sci. 2017, 82, 1535–1545. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.; Taylor, A.; Nally, R.; Benson, K.F.; Stamets, P.; Jensen, G.S. Differential Immune Activating, Anti-Inflammatory, and Regenerative Properties of the Aqueous, Ethanol, and Solid Fractions of a Medicinal Mushroom Blend. J. Inflamm. Res. 2020, 13, 117–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Bassart, Z.; Fabra, M.J.; Martínez-Abad, A.; López-Rubio, A. Compositional Differences of β-Glucan-Rich Extracts from Three Relevant Mushrooms Obtained through a Sequential Extraction Protocol. Food Chem. 2023, 402, 134207. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Xie, H.; Liu, L.; Jia, D.; Yao, K.; Chi, Y. Processing and Prebiotics Characteristics of β-Glucan Extract from Highland Barley. Appl. Sci. 2018, 8, 1481. [Google Scholar] [CrossRef] [Green Version]
- Benito-Román; Alonso, E.; Palacio, L.; Prádanos, P.; Cocero, M.J. Purification and Isolation of β-Glucans from Barley: Downstream Process Intensification. Chem. Eng. Process. 2014, 84, 90–97. [Google Scholar] [CrossRef]
- Rodrigues, D.; Freitas, A.C.; Sousa, S.; Amorim, M.; Vasconcelos, M.W.; da Costa, J.P.; Silva, A.M.S.; Rocha-Santos, T.A.P.; Duarte, A.C.; Gomes, A.M.P. Chemical and Structural Characterization of Pholiota Nameko Extracts with Biological Properties. Food Chem. 2017, 216, 176–185. [Google Scholar] [CrossRef]
- Karimi, R.; Azizi, M.H.; Xu, Q. Effect of Different Enzymatic Extractions on Molecular Weight Distribution, Rheological and Microstructural Properties of Barley Bran β-Glucan. Int. J. Biol. Macromol. 2019, 126, 298–309. [Google Scholar] [CrossRef]
- Gil-Ramírez, A.; Smiderle, F.R.; Morales, D.; Iacomini, M.; Soler-Rivas, C. Strengths and Weaknesses of the Aniline-Blue Method Used to Test Mushroom (1→3)-β-D-Glucans Obtained by Microwave-Assisted Extractions. Carbohydr. Polym. 2019, 217, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smiderle, F.R.; Morales, D.; Gil-Ramírez, A.; de Jesus, L.I.; Gilbert-López, B.; Iacomini, M.; Soler-Rivas, C. Evaluation of Microwave-Assisted and Pressurized Liquid Extractions to Obtain β-D-Glucans from Mushrooms. Carbohydr. Polym. 2017, 156, 165–174. [Google Scholar] [CrossRef]
- Harasym, J.; Olędzki, R. The Mutual Correlation of Glucose, Starch, and Beta-Glucan Release During Microwave Heating and Antioxidant Activity of Oat Water Extracts. Food Bioproc. Tech. 2018, 11, 874–884. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, Y.; You, M.; Liu, X. Comparison of Physicochemical Properties of β-Glucans Extracted from Hull-Less Barley Bran by Different Methods. Int. J. Biol. Macromol. 2021, 182, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.; Smiderle, F.R.; Villalva, M.; Abreu, H.; Rico, C.; Santoyo, S.; Iacomini, M.; Soler-Rivas, C. Testing the Effect of Combining Innovative Extraction Technologies on the Biological Activities of Obtained β-Glucan-Enriched Fractions from Lentinula Edodes. J. Funct. Foods 2019, 60, 103446. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Walton, J.; Viñas, I.; Tiwari, B.K. Ultrasound Assisted Extraction of Polysaccharides from Mushroom By-Products. LWT 2017, 77, 92–99. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Wang, R.; Luo, X.; Li, Y.; Li, J.; Li, Y.; Chen, Z. Ultrasound-Assisted Extraction from Defatted Oat (Avena sativa L.) Bran to Simultaneously Enhance Phenolic Compounds and β-Glucan Contents: Compositional and Kinetic Studies. J. Food Eng. 2018, 222, 1–10. [Google Scholar] [CrossRef]
- Benito-Román, Ó.; Alvarez, V.H.; Alonso, E.; Cocero, M.J.; Saldaña, M.D.A. Pressurized Aqueous Ethanol Extraction of β-Glucans and Phenolic Compounds from Waxy Barley. Food Res. Int. 2015, 75, 252–259. [Google Scholar] [CrossRef]
- Kodama, S.; Shoda, T.; Machmudah, S.; Wahyudiono; Kanda, H.; Goto, M. Enhancing Pressurized Water Extraction of β-Glucan from Barley Grain by Adding CO2 under Hydrothermal Conditions. Chem. Eng. Process. 2015, 97, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Zhu, F.; Xu, B. β-Glucan Extraction from Bran of Hull-Less Barley by Accelerated Solvent Extraction Combined with Response Surface Methodology. J. Cereal. Sci. 2014, 59, 95–100. [Google Scholar] [CrossRef]
- Xue, D.; Farid, M.M. Pulsed Electric Field Extraction of Valuable Compounds from White Button Mushroom (Agaricus Bisporus). Innov. Food Sci. Emerg. Technol. 2015, 29, 178–186. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Y.; Mao, Q.; Guo, X.; Li, P.; Liu, Y.; Xu, N. Characteristics and Antitumor Activity of Morchella Esculenta Polysaccharide Extracted by Pulsed Electric Field. Int. J. Mol. Sci. 2016, 17, 986. [Google Scholar] [CrossRef] [Green Version]
- Henrion, M.; Francey, C.; Lê, K.A.; Lamothe, L. Cereal B-Glucans: The Impact of Processing and How It Affects Physiological Responses. Nutrients 2019, 11, 1729. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cai, C.; Zheng, M.; Hao, J.; Wang, Y.; Hu, M.; Fan, L.; Yu, G. Alkaline Extraction, Structural Characterization, and Bioactivities of (1→6)-β-d-Glucan from Lentinus Edodes. Molecules 2019, 24, 1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruthes, A.C.; Smiderle, F.R.; Iacomini, M. D-Glucans from Edible Mushrooms: A Review on the Extraction, Purification and Chemical Characterization Approaches. Carbohydr. Polym. 2015, 117, 753–761. [Google Scholar] [CrossRef]
- Mäkelä, N.; Brinck, O.; Sontag-Strohm, T. Viscosity of β-Glucan from Oat Products at the Intestinal Phase of the Gastrointestinal Model. Food Hydrocoll. 2020, 100, 105422. [Google Scholar] [CrossRef]
- Tong, L.T.; Zhong, K.; Liu, L.; Zhou, X.; Qiu, J.; Zhou, S. Effects of Dietary Hull-Less Barley β-Glucan on the Cholesterol Metabolism of Hypercholesterolemic Hamsters. Food Chem. 2015, 169, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Ames, N.; Malunga, L.N.; Mollard, R.; Johnson, J.; Chu, Y.; Thandapilly, S.J. Effect of Processing on Oat β-Glucan Viscosity, Postprandial Glycemic Response and Subjective Measures of Appetite. Food Funct. 2021, 12, 3672–3679. [Google Scholar] [CrossRef]
- Zurbau, A.; Noronha, J.C.; Khan, T.A.; Sievenpiper, J.L.; Wolever, T.M.S. The Effect of Oat β-Glucan on Postprandial Blood Glucose and Insulin Responses: A Systematic Review and Meta-Analysis. Eur. J. Clin. Nutr. 2021, 75, 1540–1554. [Google Scholar] [CrossRef]
- van Steenwijk, H.P.; Bast, A.; de Boer, A. Immunomodulating Effects of Fungal Beta-Glucans: From Traditional Use to Medicine. Nutrients 2021, 13, 1333. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.J.; Rezoagli, E.; Major, I.; Rowan, N.J.; Laffey, J.G. β-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. J. Fungi 2020, 6, 356. [Google Scholar] [CrossRef] [PubMed]
- Sandström, V.; Chrysafi, A.; Lamminen, M.; Troell, M.; Jalava, M.; Piipponen, J.; Siebert, S.; van Hal, O.; Virkki, V.; Kummu, M. Food System By-Products Upcycled in Livestock and Aquaculture Feeds Can Increase Global Food Supply. Nat. Food 2022, 3, 729–740. [Google Scholar] [CrossRef]
- Bravo, F.I.; Calvo, E.; López-Villalba, R.A.; Torres-Fuentes, C.; Muguerza, B.; García-Ruiz, A.; Morales, D. Valorization of Chicken Slaughterhouse Byproducts to Obtain Antihypertensive Peptides. Nutrients 2023, 15, 457. [Google Scholar] [CrossRef] [PubMed]
- Rozmierska, J.; Stecka, K.M.; Kotyrba, D.; Piasecka-Jóźwiak, K. Preparation of Sedimented Wine Yeast Derived Products for Potential Application in Food and Feed Industry. Waste Biomass Valorization 2019, 10, 455–463. [Google Scholar] [CrossRef]
- Varelas, V.; Tataridis, P.; Liouni, M.; Nerantzis, E.T. Valorization of Winery Spent Yeast Waste Biomass as a New Source for the Production of β-Glucan. Waste Biomass Valorization 2016, 7, 807–817. [Google Scholar] [CrossRef]
- Avramia, I.; Amariei, S. Spent Brewer’s Yeast as a Source of Insoluble β-Glucans. Int. J. Mol. Sci. 2021, 22, 825. [Google Scholar] [CrossRef]
- Panfili, G.; Fratianni, A.; di Criscio, T.; Marconi, E. Tocol and β-Glucan Levels in Barley Varieties and in Pearling by-Products. Food Chem. 2008, 107, 84–91. [Google Scholar] [CrossRef]
- Patsioura, A.; Galanakis, C.M.; Gekas, V. Ultrafiltration Optimization for the Recovery of β-Glucan from Oat Mill Waste. J. Memb. Sci. 2011, 373, 53–63. [Google Scholar] [CrossRef]
- la Torre, C.; Caputo, P.; Plastina, P.; Cione, E.; Fazio, A. Green Husk of Walnuts (Juglans regia L.) from Southern Italy as a Valuable Source for the Recovery of Glucans and Pectins. Fermentation 2021, 7, 305. [Google Scholar] [CrossRef]
- Fazio, A.; Iacopetta, D.; la Torre, C.; Ceramella, J.; Muià, N.; Catalano, A.; Carocci, A.; Sinicropi, M.S. Finding Solutions for Agricultural Wastes: Antioxidant and Antitumor Properties of Pomegranate Akko Peel Extracts and β-Glucan Recovery. Food Funct. 2018, 9, 6619–6632. [Google Scholar] [CrossRef]
- Fazio, A.; la Torre, C.; Dalena, F.; Plastina, P. Screening of Glucan and Pectin Contents in Broad Bean (Vicia faba L.) Pods during Maturation. Eur. Food Res. Technol. 2020, 246, 333–347. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdullah, N.; Yusof, H.M.; Shuib, A.S.; Razak, S.A. Improvement of Growth and Antioxidant Status in Nile Tilapia, Oreochromis Niloticus, Fed Diets Supplemented with Mushroom Stalk Waste Hot Water Extract. Aquac. Res. 2017, 48, 1146–1157. [Google Scholar] [CrossRef]
- Ahmed, M.; Abdullah, N.; Shuib, A.S.; Abdul Razak, S. Influence of Raw Polysaccharide Extract from Mushroom Stalk Waste on Growth and PH Perturbation Induced-Stress in Nile Tilapia, Oreochromis Niloticus. Aquaculture 2017, 468, 60–70. [Google Scholar] [CrossRef]
- Zerva, A.; Papaspyridi, L.M.; Christakopoulos, P.; Topakas, E. Valorization of Olive Mill Wastewater for the Production of β-Glucans from Selected Basidiomycetes. Waste Biomass Valorization 2017, 8, 1721–1731. [Google Scholar] [CrossRef]
- Reverberi, M.; di Mario, F.; Tomati, U. β-Glucan Synthase Induction in Mushrooms Grown on Olive Mill Wastewaters. Appl. Microbiol. Biotechnol. 2004, 66, 217–225. [Google Scholar] [CrossRef]
- Eliopoulos, C.; Markou, G.; Chorianopoulos, N.; Haroutounian, S.A.; Arapoglou, D. Transformation of Mixtures of Olive Mill Stone Waste and Oat Bran or Lathyrus Clymenum Pericarps into High Added Value Products Using Solid State Fermentation. Waste Manag. 2022, 149, 168–176. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Z.; Lu, Y.; Lu, Z.; Chen, Y. Chemical Composition and Bioactivity Changes in Stale Rice after Fermentation with Cordyceps Sinensis. J. Biosci. Bioeng. 2008, 106, 188–193. [Google Scholar] [CrossRef]
- Kapri, M.; Singh, U.; Behera, S.M.; Srivastav, P.P.; Sharma, S. Nutraceutical Augmentation of Agro-Industrial Waste through Submerged Fermentation Using Calocybe Indica. LWT 2020, 134, 110156. [Google Scholar] [CrossRef]
- Mongkontanawat, N.; Wasikadilok, N.; Chanawanno, S.; Khunphutthiraphi, T. β-glucan production of Saccharomyces Cerevisiae by using malva nut juice production wastewater. Int. Food Res. J. 2018, 25, 499–503. [Google Scholar]
- Bzducha-Wróbel, A.; Pobiega, K.; Błażejak, S.; Kieliszek, M. The Scale-up Cultivation of Candida Utilis in Waste Potato Juice Water with Glycerol Affects Biomass and β(1,3)/(1,6)-Glucan Characteristic and Yield. Appl. Microbiol. Biotechnol. 2018, 102, 9131–9145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bzducha-Wróbel, A.; Bryła, M.; Gientka, I.; Błażejak, S.; Janowicz, M. Candida Utilis Atcc 9950 Cell Walls and β(1,3)/(1,6)-Glucan Preparations Produced Using Agro-Waste as a Mycotoxins Trap. Toxins 2019, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.M.; Kim, J.Y.; Kim, J.H.; Kim, S.M.; Jung, S.; Song, H.; Kwon, E.E.; Choi, Y.E. Zero-Waste Strategy by Means of Valorization of Bread Waste. J. Clean. Prod. 2022, 365, 132795. [Google Scholar] [CrossRef]
- Worrasinchai, S.; Suphantharika, M.; Pinjai, S.; Jamnong, P. β-Glucan Prepared from Spent Brewer’s Yeast as a Fat Replacer in Mayonnaise. Food Hydrocoll. 2006, 20, 68–78. [Google Scholar] [CrossRef]
- da Silva Guedes, J.; Pimentel, T.C.; Diniz-Silva, H.T.; Tayse da Cruz Almeida, E.; Tavares, J.F.; Leite de Souza, E.; Garcia, E.F.; Magnani, M. Protective Effects of β-Glucan Extracted from Spent Brewer Yeast during Freeze-Drying, Storage and Exposure to Simulated Gastrointestinal Conditions of Probiotic Lactobacilli. LWT 2019, 116, 108496. [Google Scholar] [CrossRef]
- Antunes, F.; Marçal, S.; Taofiq, O.; Morais, A.M.M.B.; Freitas, A.C.; Ferreira, I.C.F.R.; Pintado, M. Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules 2020, 25, 2672. [Google Scholar] [CrossRef]
- Glibert, P.M. Harmful Algae at the Complex Nexus of Eutrophication and Climate Change. Harmful. Algae 2020, 91, 101583. [Google Scholar] [CrossRef]
- Lee, K.H.; Jang, Y.J.; Hwang, W.S.; Kwon, K.S.; Lee, W.Y.; Kim, J.; Kim, S.P.; Friedman, M. Edible Algae (Ecklonia Cava) Bioprocessed with Mycelia of Shiitake (Lentinula edodes) Mushrooms in Liquid Culture and Its Isolated Fractions Protect Mice against Allergic Asthma. BMC Complement. Med. Ther. 2022, 22, 242. [Google Scholar] [CrossRef]
Natural Source | Examples of Species | β-Glucan Structure/Type | References |
---|---|---|---|
Cereals | Oat (Avena sativa) | Branched (1→3), (1→4) | [13] |
Wheat (Titricum aestivum) | [14] | ||
Barley (Hordeum vulgare) | [15] | ||
Corn (Zea mays) | [16] | ||
Sorghum (Sorgum bicolor) | [17] | ||
Mushrooms | White button (Agaricus bisporus) | Linear (1→6); Branched (1→3), (1→6) | [18,19] |
Shiitake (Lentinula edodes) | [3] | ||
Oyster (Pleurotus ostreatus) | Linear (1→3); Branched (1→3), (1→6) | [20] | |
Porcini (Boletus edulis) | [21] | ||
Truffles | Black (Tuber melanosporum) | Branched (1→3), (1→6) | [22] |
Summer (Tuber aestivum) | [23,24] | ||
Desert (Terfezia claveryi) | [23] | ||
Algae/microalgae | Euglena gracilis | Linear (1→3) | [25] |
Chlorella spp. | [26] | ||
Yeasts | Saccharomyces cerevisiae | Linear (1→6); Linear (1→3); Branched (1→3), (1→6) | [27] |
Saccharomyces pastorianus | Branched (1→3), (1→6) | [28] | |
Kluyveromyces marxianus | [29] | ||
Metschnikowia pulcherrima | [30] | ||
Bacteria | Levilactobacillus brevis | Linear (1→3) | [31] |
Oenococcus oeni | Branched (1→3), (1→2) | [32] | |
Lactobacillus diolivorans | |||
Pediococcus parvulus |
Extraction Method | Temperature Range (°C) | Usually Utilized Solvents | References |
---|---|---|---|
Conventional solid–liquid | 25–100 | Water, ethanol | [43,44,45,46] |
Alkaline solid–liquid | 22–80 | Alkaline solutions | [3,47,48] |
Enzyme-assisted | 50–96 | Water, buffer solutions | [49,50,51] |
Microwave-assisted | 50–180 (750–850 W) | Water, ethanol | [52,53,54,55] |
Ultrasound-assisted | 20–90 | Water, ethanol | [56,57,58] |
Pressurized liquid | 50–200 | Water, ethanol | [22,53,56,59,60,61] |
Pulsed electric field-assisted | 4–85 | Water | [62,63] |
Raw Material | Obtained β-Glucan/s | Functionality | Reference/s |
---|---|---|---|
Sedimented wine yeast | 1→3, 1→6 | Water- and fat-binding | [75,76] |
Spent beer yeast | 1→3, 1→6 | Water-holding, fat replacer, antioxidant, cytoprotective | [10,27,77] |
Barley by-products | - | - | [61,78] |
Oat mill waste | - | - | [79] |
Walnut husks | - | - | [80] |
Pomegranate peel | - | Antioxidant, antiproliferative | [81] |
Bean pods | - | - | [82] |
Mushroom (Agaricus bisporus) by-products (caps and stalks) | - | - | [57] |
Mushroom (Pleurotus pulmonarius) stalks | - | Antioxidant | [83,84] |
Olive mill wastewater/mushrooms strains | - | Antioxidant | [85,86] |
Olive mil stone waste/Pleurotus ostreatus | 1→3, 1→6 | - | [87] |
Oat bran/Pleurotus ostreatus | 1→3, 1→6 | - | [87] |
Lathyrus clymenum pericarps/Pleurotus ostreatus | 1→3, 1→6 | - | [87] |
Stale rice/Cordyceps sinensis | - | Antioxidant | [88] |
Banana peel/Calocybe indica) | - | - | [89] |
De-oiled groundnut cake/Calocybe indica | - | - | [89] |
Napa cabbage, banana and papaya wastes/Saccharomyces cerevisiae | - | Antioxidant | [41] |
Malva nut juice wastewater/Saccharomyces cerevisiae | - | - | [90] |
Potato juice water/Candida utilis | 1→3, 1→6 | - | [91,92] |
Bread waste/Euglena gracilis | Paramylon, 1→3 | - | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, D. Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals. Pharmaceuticals 2023, 16, 460. https://doi.org/10.3390/ph16030460
Morales D. Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals. Pharmaceuticals. 2023; 16(3):460. https://doi.org/10.3390/ph16030460
Chicago/Turabian StyleMorales, Diego. 2023. "Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals" Pharmaceuticals 16, no. 3: 460. https://doi.org/10.3390/ph16030460
APA StyleMorales, D. (2023). Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals. Pharmaceuticals, 16(3), 460. https://doi.org/10.3390/ph16030460