Synthesis, Characterization, and Stability Assessment for the Benzoate, Hydrochloride, Malonate, and Nicotinate Salts of Bedaquiline
Abstract
:1. Introduction
2. Results
2.1. Methods for Synthesis of Five New Salts of Bedaquiline
2.2. Determination of the Chemical Structures for the Salts and Confirming Identity via Spectrometric Techniques (Achieved Study Objective 1)
2.2.1. Single Crystals and Powder X-ray Diffractometry Determinations
2.2.2. Rietveld Refinements
2.2.3. Raman Spectrometry
2.3. Generated Data to Create Preliminary Specifications for the New Bedaquiline Salts (Achieved Study Objective 2)
2.3.1. Assay/Purity and Solubility Determinations by HPLC
2.3.2. Particle Size and Shape Analysis
2.3.3. Thermal Analysis
Melting Point/Range Data
Differential Scanning Calorimetry (DSC)
Thermogravimetric Analysis (TGA) of the Hydrated Benzoate and Nicotinate Salts
2.3.4. Hygroscopicity
2.3.5. Water Content, Determined via Karl Fischer Titration
2.3.6. Polymorph Salt Screening Experiments
2.4. Stability
2.4.1. Physical Appearance of Stability Samples
2.4.2. PXRD of Stability Samples
2.4.3. Potency at 0, 3, and 6 Months Accelerated Stability
2.4.4. Thermal Analysis of Stability Samples
3. Discussion
3.1. Salts of Bedaquiline
3.1.1. Solubility of the New Bedaquiline Salts
3.1.2. Particle Size Distribution and Particle Shapes for the Salts
3.1.3. Thermal Analysis of Bedaquiline Salts
3.1.4. Water Sorption Potentials and Water Determination
3.2. Stability of the New Bedaquiline Salts
3.3. Polymorph Screening of Benzoate Salts
3.4. Selecting Benzoate as the Leading Candidate in Bedaquiline Salt Screening
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Reagent | Grade | Lo or Batch # | Manufacturer | Use in Study |
---|---|---|---|---|
Acetone | certified ACS | 183550 | Fischer Chemicals | Solvent for Salt and polymorph screening |
Acetonitrile | for HPLC, super gradient reagent | 18J174008 | VWR (BDH) Chemicals | Salt and polymorph screening |
Ethyl Alcohol | ACS reagent ≥ 99.5% | SHBL9722 | Sigma Aldrich | Solvent for polymorph screening |
Tetrahydrofuran (THF) | HPLC ≥ 99.9% | 02158HE | Sigma Aldrich | Solvent for Salt and polymorph screening |
Methanol | HPLC ≥ 99.9% | SHBL8762 | Sigma Aldrich | Solvent for polymorph screening |
Ethyl Acetate | HPLC ≥ 99.5% | SHBL9034 | Sigma Aldrich | Solvent for polymorph screening |
Dimethylformamide (DMF) | HPLC grade | 19060194 | VWR (BDH) Chemicals | Solvent for polymorph screening |
Propyl alcohol | HPLC grade | PX 1815-1 | MCB manufacturing chemists | Solvent for polymorph screening |
2-propanol | HPLC ≥ 99.9% | SHBM 1057 | Sigma Aldrich | Solvent for salt and polymorph screening |
Dichloromethane | HPLC grade | 0000214321 | Avantor performance materials LLC | Solvent for recovery of Bedaquiline base from Fumarate salt |
Hexanes | ACS | 5189-04 | Mallinckrodt Chemicals | Solvent for polymorph screening |
Acetic acid | HPLC grade | 046846 | Fischer Scientific, NJ | Salt former |
Benzene Sulfonic acid | ACS grade, 94% | Q07G032 | Alfa Aesar | Salt former |
Benzoic acid | crystals, USP | KJJV | Mallinckrodt | Salt former |
Hydrobromic acid | 48% | 0000251102 | VWR Chemicals | Salt former |
Hydrochloric acid | ACS reagent, 37% | MKCK1697 | Sigma Aldrich | Salt former |
Lactic acid | ACS reagent, 85+% solution in water | 15220PA | Sigma Aldrich | Salt former |
Maleic acid | ACS grade, 98+% | 50013961 | Beantown Chemical (BTC) | Salt former |
Succinic acid | ACS grade, ≥99.0% | 099K0125 | Sigma Aldrich | Salt former |
Malic acid | ACS grade, 99+% | 00513BJ | Sigma Aldrich | Salt former |
Methane Sulfonic acid | ACS grade, 98+% | X15E021 | Alfa Aesar | Salt former |
Bedaquiline Nicotinate Single Crystal | |
---|---|
Crystal data | |
Chemical formula | C32H32BrN2O2·C6H4NO2·C3H8O·H2O |
Mr | 756.72 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 11.4008 (6), 14.1757 (7), 23.5052 (11) |
V (Å3) | 3798.8 (3) |
Z | 4 |
Radiation type | Mo Ka |
m (mm−1) | 1.13 |
Crystal size (mm) | 0.45 × 0.25 × 0.15 |
Data collection | |
Diffractometer | Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) |
Absorption correction | Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. and Stalke D. (2015). J. Appl. Cryst. 48, 3–10. |
Tmin, Tmax | 0.545, 0.746 |
No. of measured, independent and observed [I > 2s(I)] reflections | 27,202, 9350, 7311 |
Rint | 0.049 |
(sin q/l)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2s(F2)], wR(F2), S | 0.043, 0.112, 1.05 |
No. of reflections | 9350 |
Bedaquiline Malonate Single Crystal | |
---|---|
Crystal data | |
Chemical formula | C36.50H39BrN2O6.50 |
Mr | 689.60 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 9.5542 (4), 10.7616 (4), 16.8691 (7) |
α, β, γ (°) | 83.130 (2), 80.675 (2), 89.403 (2) |
V (Å3) | 1699.17 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.26 |
Crystal size (mm) | 0.53 × 0.36 × 0.14 |
Data collection | |
Diffractometer | Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) |
Absorption correction | Multi-scan SADABS 2016/2: Krause, L., Herbst-Irmer, R., Sheldrick G.M. and Stalke D. (2015). J. Appl. Cryst. 48, 3–10. |
Tmin, Tmax | 0.610, 0.747 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 130,642, 25,797, 19,220 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.772 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.086, 1.01 |
No. of reflections | 25797 |
No. of parameters | 950 |
No. of restraints | 366 |
H-atom treatment | H atoms treated with a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.37, −0.56 |
Absolute structure | Flack x determined using 7671 quotients [(I+) − (I−)]/[(I+) + (I−)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249–259). |
Absolute structure parameter | −0.002 (2) |
Salt | Chemical Formula Moiety | Chemical Formula Sum | Chemical Formula Weight (g) | Space Group Crystal System | Space Group Name H-M | Cell Formula Units (z) |
---|---|---|---|---|---|---|
bedaquiline benzoate hydrate | C32H32BrN2O2, C7H5O2, 1.166 (H2O) | C39H39.34BrN2O5.17 | 698.7 | Monoclinic | P 21 | 2 |
bedaquiline benzoate solvate | C32H32BrN2O2, C7H5O2, 0.742 (C2H3N), H2O | C40.48H41.23BrN2.74O5 | 726.1 | Monoclinic | P 21 | 2 |
bedaquiline hydrochloride | C32H32BrN2O2, 2 (C3H6O), Cl, H2O | C38H46BrClN2O5 | 726.13 | orthorhombic | P 21 21 21 | 4 |
bedaquiline malonate | C32H32BrN2O2, 2 (C3 H3O4), C3H8O | C36.5H39BrN2O6.5 | 689.60 | triclinic | P1 | 1 |
bedaquiline nicotinate | C32H32BrN2O2, C6H4NO2, C3H8O, H2O | C41H46BrN3O6 | 756.72 | orthorhombic | P 21 21 21 | 4 |
References
- Brigden, G.; Hewison, C.; Varaine, F. New developments in the treatment of drug-resistant tuberculosis: Clinical utility of bedaquiline and delamanid. Infect. Drug Resist. 2015, 8, 367. [Google Scholar] [CrossRef] [PubMed]
- UNITAID; World Health Organization. A Review of the Bedaquiline Patent Landscape; A Scoping Report Avenue Appia 20 CH-1211; WHO: Geneva Switzerland, 2014; Available online: http://unitaid.org/assets/TMC_207_Patent_Landscape.pdf (accessed on 25 July 2021).
- Okezue, M.; Smith, D.; Zeller, M.; Byrn, S.R.; Smith, P.; Bogandowich-Knipp, S.; Purcell, D.K.; Clase, K.L. Crystal structures of salts of bedaquiline. Acta Crystallogr. C Struct. Chem. 2020, 76 Pt 11, 1010–1023. [Google Scholar] [PubMed]
- Zeller, M.; Bogdanowich-Knipp, S.; Smith, P.; Purcell, D.K.; Okezue, M.; Smith, D.T.; Byrn, S.R.; Clase, K.L. Maleate salts of bedaquiline. Acta Crystallogr. Sect. E Crystallogr. Commun. 2021, 77, 433–445. [Google Scholar] [CrossRef] [PubMed]
- ICHE. Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances Q6A 1999. Available online: https://database.ich.org/sites/default/files/Q6A%20Guideline.pdf (accessed on 12 December 2020).
- Byrn, S.R.; Zografi, G.; Chen, S. Solid State Properties of Pharmaceutical Materials: Wiley Online Library; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- USP/NF. Thermal Analysis <891> General Chapter, the United States Pharmacopoeia/National Formulary 2021. Available online: https://online.uspnf.com/uspnf/document/1_GUID-F8E49188-1329-4A1E-9BB3-45F85D6623C3_1_en-US?source=Search%20Results&highlight=DSC (accessed on 15 February 2022).
- Reutzel-Edens, S.M.; Newman, A.W. Physical Characterization of Hygroscopicity in Pharmaceutical Solids. In Polymorphism: In the Pharmaceutical Industry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 235–258. [Google Scholar]
- Newman, A.W.; Reutzel-Edens, S.M.; Zografi, G. Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. J. Pharm. Sci. 2008, 97, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Okezue, M.A.; Byrn, S.J.; Clase, K.L. Determining the solubilities for benzoate, nicotinate, hydrochloride, and malonate salts of bedaquiline. Int. J. Pharm. 2022, 627, 122229. [Google Scholar] [CrossRef] [PubMed]
- Pardhi, V.; Pant, G.; Flora, S.J.S. RP-HPLC method development and validation for bedaquiline fumarate to evaluate its forced degradation behaviour and stability in official dissolution media. Future J. Pharm. Sci. 2020, 6, 42. [Google Scholar]
- Malvern Instruments. Morphologi G3 User Manual, MAN0410 Issue 1.1, August 2008. Available online: https://www.federation-fermat.fr/wp-content/uploads/2019/09/Morphologi_G3_User-Manual_MAN0410-1.1_0.pdf (accessed on 3 June 2021).
- Awad, M.E.; López-Galindo, A.; Medarević, D.; Đuriš, J.; El-Rahmany, M.M.; Ibrić, S.; Viseras, C. Flow and tableting behaviors of some egyptian kaolin powders as potential pharmaceutical excipients. Minerals 2020, 10, 23. [Google Scholar] [CrossRef]
- Chen, D. Hygroscopicity of Pharmaceutical Crystals. 2009. Available online: https://conservancy.umn.edu/handle/11299/47878 (accessed on 20 July 2020).
- Okezue, M.; Bogdanowich-Knipp, S.; Smith, D.; Zeller, M.; Byrn, S.; Smith, P.; Purcell, D.K.; Clase, K. Salts and Polymorph Screens for Bedaquiline. AAPS PharmSciTech 2021, 22, 228. [Google Scholar] [PubMed]
- Serajuddin, A.T.M. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007, 59, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.-L.; Merritt, J.M.; Yu, W.; Taylor, L.S. Salt stability–the effect of pH max on salt to free base conversion. Pharm. Res. 2015, 32, 3110–3118. [Google Scholar] [CrossRef] [PubMed]
- Nan, W.; Pasha, M.; Bonakdar, T.; Lopez, A.; Zafar, U.; Nadimi, S.; Ghadiri, M. Jamming during particle spreading in additive manufacturing. Powder Technol. 2018, 338, 253–262. [Google Scholar] [CrossRef]
- Nasato, D.S.; Pöschel, T. Influence of particle shape in additive manufacturing: Discrete element simulations of polyamide 11 and polyamide 12. Addit. Manuf. 2020, 36, 101421. [Google Scholar]
- Fei, W.; Narsilio, G.A.; van der Linden, J.H.; Tordesillas, A.; Disfani, M.M.; Santamarina, J.C. Impact of particle shape on networks in sands. Comput. Geotech. 2021, 137, 104258. [Google Scholar] [CrossRef]
- Needham, G.F.; Pfeiffer, R.R.; Engel, G.L.; Rutherford, B.S.; Allen, D.J. Effect of impurities on estradiol crystallization in a sustained-release implant. J. Pharm. Sci. 1992, 81, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- USP/NF. Balances <44> USP/NF General Chapter the United States Pharmacopoeia/National Formulary2022. Available online: https://online.uspnf.com/uspnf/document/1_GUID-0778059F-4B53-414F-B496-2195C1D8C7FB_4_en-US?source=Search%20Results&highlight=weighing%20balance (accessed on 16 February 2022).
- Balbach, S.; Korn, C. Pharmaceutical evaluation of early development candidates “the 100 mg-approach”. Int. J. Pharm. 2004, 275, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fiese, E.F.G. General pharmaceutics—The new physical pharmacy. J. Pharm. Sci. 2003, 92, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [PubMed]
- Ousaleh, H.A.; Sair, S.; Zaki, A.; Faik, A.; Igartua, J.M.; El Bouari, A. Double hydrates salt as sustainable thermochemical energy storage materials: Evaluation of dehydration behavior and structural phase transition reversibility. Sol. Energy 2020, 201, 846–856. [Google Scholar] [CrossRef]
- Wheeler, R.C.; Frost, G.B. A comparative study of the dehydration kinetics of several hydrated salts. Can. J. Chem. 1955, 33, 546–561. [Google Scholar]
- Rombouts, J.A.; Veenboer, R.M.; Villellas, C.; Lu, P.; Ehlers, A.W.; Andries, K.; Koul, A.; Lill, H.; Ruijter, E.; Orru, R.V.; et al. Synthesis, characterization and biological activity of fluorescently labeled bedaquiline analogues. RSC Adv. 2016, 6, 108708–108716. [Google Scholar] [CrossRef] [Green Version]
Acid (Salt Former) Used | Acid (Weight, mg) Equivalent to 30 mg Bedaquiline Base (0.054 Mmoles) | pKa | Solvents Used | Experimental Conditions |
---|---|---|---|---|
Benzoic acid | 6.6 | 4.2 | Acetone, 2-propanol, water as antisolvent | Slow evaporation and antisolvent |
HCl aq. | 1.97 | −6.3 | Acetone | Slow evaporation |
Malonic acid | 5.62 | 2.85 | Acetone, and 2-propanol | Slow evaporation |
Nicotinic acid | 6.65 | 2.79 | Acetone, and 2-propanol | Slow evaporation |
Salicylic acid | 7.46 | 2.79 | Acetone, and 2-propanol | Slow evaporation |
Salt | Conc Used (µg/mL) | Peak Area | Salt Mwt | Mwt. of BQ | Conc of BQ in Salt Used (µg/mL) | (Ps/Pstd) * (Cstd/Cs) * 100 |
---|---|---|---|---|---|---|
benzoate | 51 | 3089.9 | 698.7 | 555.504 | 40.55 | 98.3 |
malonate | 53 | 3721.7 | 1379.21 | 555.504 | 50.68 | 94.7 |
HCl | 106 | 8295 | 726.13 | 555.504 | 81.09 | 132 * |
nicotinate | 130 | 8085.4 | 756.72 | 555.504 | 95.43 | 109.3 |
BQ base (std) | 107 | 8294.7 | 555.504 |
Salt | CE Diam. Min. (µm) | CE Diam. Max. (µm) | CE Diam. Mean (µm) | CE Diam. STDEV (µm) | CE Diam. (µm) D10 | CE Diam. (µm) D50 | CE Diam. (µm) D90 | Span (D90 − D10)/D50 |
---|---|---|---|---|---|---|---|---|
free base | 0.54 | 130.14 | 4.29 | 10.21 | 0.54 | 0.67 | 17.6 | 25.5 |
benzoate | 0.54 | 115.1 | 9.83 | 9.83 | 0.64 | 6.24 | 23.87 | 3.7 |
HCl | 0.54 | 75.34 | I.87 | 3.13 | 0.6 | 1.07 | 3.26 | 2.5 |
malonate | 0.54 | 129.96 | 9.02 | 12.14 | 0.56 | 1.7 | 22.11 | 12.7 |
nicotinate | 0.54 | 102.46 | 4.98 | 10.91 | 0.54 | 0.7 | 15.03 | 20.7 |
salicylate | 0.54 | 66.29 | 5.95 | 9.51 | 0.56 | 0.85 | 16.84 | 19.2 |
Salt Experiment | Melting Range (°C) |
---|---|
Bedaquiline benzoate (BABQ) from acetone | 128 ± 1 |
Bedaquiline base | 174 ± 1 |
Benzoic acid | 121 ± 1 |
Bedaquiline hydrochloride salt from IPA slow evaporation (SE) experiments | 163 ± 1 |
Bedaquiline nicotinate from acetone/acetonitrile (ACN) SE | 131 ± 1 |
Bedaquiline malonate from acetone/ACN SE | 154 ± 1 |
Bedaquiline salicylate from acetone/ACN SE | 143 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okezue, M.A.; Byrn, S.R. Synthesis, Characterization, and Stability Assessment for the Benzoate, Hydrochloride, Malonate, and Nicotinate Salts of Bedaquiline. Pharmaceuticals 2023, 16, 257. https://doi.org/10.3390/ph16020257
Okezue MA, Byrn SR. Synthesis, Characterization, and Stability Assessment for the Benzoate, Hydrochloride, Malonate, and Nicotinate Salts of Bedaquiline. Pharmaceuticals. 2023; 16(2):257. https://doi.org/10.3390/ph16020257
Chicago/Turabian StyleOkezue, Mercy A., and Stephen R. Byrn. 2023. "Synthesis, Characterization, and Stability Assessment for the Benzoate, Hydrochloride, Malonate, and Nicotinate Salts of Bedaquiline" Pharmaceuticals 16, no. 2: 257. https://doi.org/10.3390/ph16020257
APA StyleOkezue, M. A., & Byrn, S. R. (2023). Synthesis, Characterization, and Stability Assessment for the Benzoate, Hydrochloride, Malonate, and Nicotinate Salts of Bedaquiline. Pharmaceuticals, 16(2), 257. https://doi.org/10.3390/ph16020257