PPAR Gamma Receptor: A Novel Target to Improve Morbidity in Preterm Babies
Abstract
:1. Introduction
2. Preclinical Studies Using PPARγ Agonists in Preterm Disease Models
2.1. PPARγ Agonists and BPD
2.2. PPARγ Agonists and Preterm Brain Injury
2.3. PPAR Agonists and Necrotising Enterocolitis
3. Clinical Studies on PPARγ Activity in Premature Babies
3.1. Adiponectin Concentrations in Premature Babies
3.2. PPARγ Signalling in Brain Imaging Genetics Studies
3.3. Clinical Trials of PPARγ Agonists in Preterm Babies
4. Safety Considerations for Using Pioglitazone in Premature Babies
4.1. Increased Insulin Sensitivity
4.2. Effect on Lipid Metabolism
4.3. Weight Gain
4.4. Rare Side Effects
4.5. Reproduction Toxicity in Animals
5. Pharmaceutical Challenges in Creating a Formulation Suited for Premature Babies
6. Future Perspectives and Scope
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, Regional, and Worldwide Estimates of Preterm Birth Rates in the Year 2010 with Time Trends since 1990 for Selected Countries: A Systematic Analysis and Implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef]
- Dassios, T.; Greenough, A. Long-Term Sequelae of BPD. In Respiratory Diseases of the Newborn Infant (ERS Monograph); Sinha, I.P., Bhatt, J.M., Cleator, A., Eds.; European Respiratory Society: Sheffield, UK, 2021; pp. 68–78. [Google Scholar]
- Harris, C.; Bisquera, A.; Zivanovic, S.; Lunt, A.; Calvert, S.; Marlow, N.; Peacock, J.L.; Greenough, A. Postnatal Dexamethasone Exposure and Lung Function in Adolescents Born Very Prematurely. PLoS ONE 2020, 15, e0237080. [Google Scholar] [CrossRef]
- Gou, X.; Yang, L.; Pan, L.; Xiao, D. Association between Bronchopulmonary Dysplasia and Cerebral Palsy in Children: A Meta-Analysis. BMJ Open 2018, 8, e020735. [Google Scholar] [CrossRef] [PubMed]
- Hack, M. Adult Outcomes of Preterm Children. J. Dev. Behav. Pediatr. 2009, 30, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Wolke, D. Behavioural Outcomes and Psychopathology during Adolescence. Early Hum. Dev. 2013, 89, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Nosarti, C.; Reichenberg, A.; Murray, R.M.; Cnattingius, S.; Lambe, M.P.; Yin, L.; MacCabe, J.; Rifkin, L.; Hultman, C.M. Preterm Birth and Psychiatric Disorders in Young Adult Life. Arch. Gen. Psychiatry 2012, 69, E1–E8. [Google Scholar] [CrossRef]
- Schmidt, B.; Roberts, R.S.; Davis, P.; Doyle, L.W.; Barrington, K.J.; Ohlsson, A.; Solimano, A.; Tin, W. Long-Term Effects of Caffeine Therapy for Apnea of Prematurity. N. Engl. J. Med. 2007, 357, 1893–1902. [Google Scholar] [CrossRef]
- Villapol, S. Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell. Mol. Neurobiol. 2018, 38, 121–132. [Google Scholar] [CrossRef]
- Warden, A.; Truitt, J.; Merriman, M.; Ponomareva, O.; Jameson, K.; Ferguson, L.B.; Mayfield, R.D.; Harris, R.A. Localization of PPAR Isotypes in the Adult Mouse and Human Brain. Sci. Rep. 2016, 6, 27618. [Google Scholar] [CrossRef]
- Hwang, S.J.; Kim, J.H.; Shim, J.W.; Kim, D.S.; Jung, H.L.; Park, M.S.; Lee, W.Y.; Kim, S.Y.; Shim, J.Y. Peroxisome Proliferator-Activated Receptor-Gamma Expression in the Lung Tissue of Obese Rats. Yonsei Med. J. 2011, 52, 495–501. [Google Scholar] [CrossRef]
- Wei, J.; Bhattacharyya, S.; Varga, J. Peroxisome Proliferator-Activated Receptor γ: Innate Protection from Excessive Fibrogenesis and Potential Therapeutic Target in Systemic Sclerosis. Curr. Opin. Rheumatol. 2010, 22, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.M.; Arikan, M.C.; Srisuma, S.; Bhattacharya, S.; Tsai, L.W.; Ingenito, E.P.; Gonzalez, F.; Shapiro, S.D.; Mariani, T.J. Epithelial Cell PPARγ Contributes to Normal Lung Maturation. FASEB J. 2006, 20, 1507–1509. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Santos, J.; Sakurai, R.; Shin, E.; Cerny, L.; Torday, J.S.; Rehan, V.K. Peroxisome Proliferator-Activated Receptor γ Agonists Enhance Lung Maturation in a Neonatal Rat Model. Pediatr. Res. 2009, 65, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Rehan, V.K.; Wang, Y.; Patel, S.; Santos, J.; Torday, J.S. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor-γ Agonist, Prevents Hyperoxia-Induced Neonatal Rat Lung Injury in Vivo. Pediatr. Pulmonol. 2006, 41, 558–569. [Google Scholar] [CrossRef]
- Lee, C.; Sakurai, R.; Shin, E.; Wang, Y.; Liu, J.; Rehan, V.K. Antenatal PPAR-γ Agonist Pioglitazone Stimulates Fetal Lung Maturation Equally in Males and Females. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2020, 319, L435–L443. [Google Scholar] [CrossRef]
- Richter, J.; Toelen, J.; Nagatomo, T.; Jimenez, J.; Vanoirbeek, J.; Deprest, J. Transplacental Administration of Rosiglitazone Attenuates Hyperoxic Lung Injury in a Preterm Rabbit Model. Fetal Diagn. Ther. 2016, 39, 297–305. [Google Scholar] [CrossRef]
- Morales, E.; Sakurai, R.; Husain, S.; Paek, D.; Gong, M.; Ibe, B.; Li, Y.; Husain, M.; Torday, J.S.; Rehan, V.K. Nebulized PPARγ Agonists: A Novel Approach to Augment Neonatal Lung Maturation and Injury Repair in Rats. Pediatr. Res. 2014, 75, 631–640. [Google Scholar] [CrossRef]
- Sakurai, R.; Lee, C.; Shen, H.; Waring, A.J.; Walther, F.J.; Rehan, V.K. A Combination of the Aerosolized PPAR-γ Agonist Pioglitazone and a Synthetic Surfactant Protein B Peptide Mimic Prevents Hyperoxia-Induced Neonatal Lung Injury in Rats. Neonatology 2018, 113, 296–304. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, Y.J.; Choi, C.W.; Lee, J.A.; Kim, E.K.; Kim, H.S.; Kim, B.I.; Choi, J.H. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor-γ Agonist, Restores Alveolar and Pulmonary Vascular Development in a Rat Model of Bronchopulmonary Dysplasia. Yonsei Med. J. 2014, 55, 99–106. [Google Scholar] [CrossRef]
- Kaplan, J.; Nowell, M.; Chima, R.; Zingarelli, B. Pioglitazone Reduces Inflammation through Inhibition of NF-ΚB in Polymicrobial Sepsis. Innate Immun. 2014, 20, 519–528. [Google Scholar] [CrossRef]
- Vallée, A.; Lecarpentier, Y.; Guillevin, R.; Vallée, J.N. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches. Int. J. Mol. Sci. 2018, 19, 1212. [Google Scholar] [CrossRef]
- Zaghloul, N.; Kurepa, D.; Bader, M.Y.; Nagy, N.; Ahmed, M.N. Prophylactic Inhibition of NF-ΚB Expression in Microglia Leads to Attenuation of Hypoxic Ischemic Injury of the Immature Brain. J. Neuroinflamm. 2020, 17, 365. [Google Scholar] [CrossRef] [PubMed]
- De Nuccio, C.; Bernardo, A.; Cruciani, C.; De Simone, R.; Visentin, S.; Minghetti, L. Peroxisome Proliferator Activated Receptor-γ Agonists Protect Oligodendrocyte Progenitors Against Tumor Necrosis Factor-alpha-induced Damage: Effects on Mitochondrial Functions and Differentiation. Exp. Neurol. 2015, 271, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.H.; Wang, K.C.; Kaizaki, A.; Lee, J.W.; Wei, H.C.; Tucci, M.A.; Ojeda, N.B.; Fan, L.W.; Tien, L.T. Pioglitazone Ameliorates Lipopolysaccharide-Induced Behavioral Impairment, Brain Inflammation, White Matter Injury and Mitochondrial Dysfunction in Neonatal Rats. Int. J. Mol. Sci. 2021, 22, 6306. [Google Scholar] [CrossRef]
- Krishna, S.; Cheng, B.; Sharma, D.R.; Yadav, S.; Stempinski, E.S.; Mamtani, S.; Shah, E.; Deo, A.; Acherjee, T.; Thomas, T.; et al. PPAR-γ Activation Enhances Myelination and Neurological Recovery in Premature Rabbits with Intraventricular Hemorrhage. Proc. Natl. Acad. Sci. USA 2021, 118, e2103084118. [Google Scholar] [CrossRef] [PubMed]
- Baregamian, N.; Mourot, J.M.; Ballard, A.R.; Evers, B.M.; Chung, D.H. PPAR-γ Agonist Protects against Intestinal Injury during Necrotizing Enterocolitis. Biochem. Biophys. Res. Commun. 2009, 379, 423–427. [Google Scholar] [CrossRef]
- Corsini, I.; Polvani, S.; Tarocchi, M.; Tempesti, S.; Marroncini, G.; Generoso, M.; Bresci, C.; Gozzini, E.; Bianconi, T.; Galli, A.; et al. Peroxisome Proliferator-Activated Receptor-γ Agonist Pioglitazone Reduces the Development of Necrotizing Enterocolitis in a Neonatal Preterm Rat Model. Pediatr. Res. 2017, 81, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.A.; Wright, E.C.; Ennis, M.M.; Prince, M.; Kochan, J.; Nunez, D.J.R.; Schneider, B.; Wang, M.D.; Chen, Y.; Ghosh, S.; et al. Utility of Adiponectin as a Biomarker Predictive of Glycemic Efficacy is Demonstrated by Collaborative Pooling of Data from Clinical Trials Conducted by Multiple Sponsors. Clin. Pharmacol. Ther. 2009, 86, 619–625. [Google Scholar] [CrossRef]
- Kajantie, E.; Hytinantti, T.; Hovi, P.; Andersson, S. Cord Plasma Adiponectin: A 20-Fold Rise between 24 Weeks Gestation and Term. J. Clin. Endocrinol. Metab. 2004, 89, 4031–4036. [Google Scholar] [CrossRef]
- Hansen-Pupp, I.; Hellgren, G.; Hård, A.L.; Smith, L.; Hellström, A.; Löfqvist, C. Early Surge in Circulatory Adiponectin Is Associated with Improved Growth at near Term in Very Preterm Infants. J. Clin. Endocrinol. Metab. 2015, 100, 2380–2387. [Google Scholar] [CrossRef]
- Boardman, J.P.; Walley, A.; Ball, G.; Takousis, P.; Krishnan, M.L.; Hughes-Carre, L.; Aljabar, P.; Serag, A.; King, C.; Merchant, N.; et al. Common Genetic Variants and Risk of Brain Injury After Preterm Birth. Pediatrics 2014, 133, e1655–e1663. [Google Scholar] [CrossRef]
- Krishnan, M.L.; Wang, Z.; Silver, M.; Boardman, J.P.; Ball, G.; Counsell, S.J.; Walley, A.J.; Montana, G.; Edwards, A.D. Possible Relationship between Common Genetic Variation and White Matter Development in a Pilot Study of Preterm Infants. Brain Behav. 2016, 6, e00434. [Google Scholar] [CrossRef]
- Krishnan, M.L.; Wang, Z.; Aljabar, P.; Ball, G.; Mirza, G.; Saxena, A.; Counsell, S.J.; Hajnal, J.V.; Montana, G.; Edwards, A.D. Machine Learning Shows Association between Genetic Variability in PPARG and Cerebral Connectivity in Preterm Infants. Proc. Natl. Acad. Sci. USA 2017, 114, 13744–13749. [Google Scholar] [CrossRef]
- Meirhaeghe, A.; Boreham, C.A.G.; Murray, L.J.; Richard, F.; Smith, G.D.; Young, I.S.; Amouyel, P. A Possible Role for the PPARG Pro12Ala Polymorphism in Preterm Birth. Diabetes 2007, 56, 494–498. [Google Scholar] [CrossRef]
- Victor, S.; Chew, A.; Falconer, S. Pro12Ala Polymorphism of Peroxisome Proliferator Activated Receptor Gamma 2 May Be Associated with Adverse Neurodevelopment in European Preterm Babies. Brain Behav. 2021, 11, e2256. [Google Scholar] [CrossRef] [PubMed]
- Ghaleiha, A.; Rasa, S.M.; Nikoo, M.; Farokhnia, M.; Mohammadi, M.R.; Akhondzadeh, S. A Pilot Double-Blind Placebo-Controlled Trial of Pioglitazone as Adjunctive Treatment to Risperidone: Effects on Aberrant Behavior in Children with Autism. Psychiatry Res. 2015, 229, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Davies, P.L.; Spiller, O.B.; Beeton, M.L.; Maxwell, N.C.; Remold-O’Donnell, E.; Kotecha, S. Relationship of Proteinases and Proteinase Inhibitors with Microbial Presence in Chronic Lung Disease of Prematurity. Thorax 2010, 65, 246–251. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Drug Approval Package Actos (Pioglitazone Hydrochloride) Tablets Home Page. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/021073A_Actos.cfm (accessed on 29 August 2023).
- Sinclair, R.; Schindler, T.; Lui, K.; Bolisetty, S. Hypertriglyceridaemia in Extremely Preterm Infants Receiving Parenteral Lipid Emulsions. BMC Pediatr. 2018, 18, 348. [Google Scholar] [CrossRef] [PubMed]
- Jouyban, A.; Soltanpour, S. Solubility of Pioglitazone Hydrochloride in Binary and Ternary Mixtures of Water, Propylene Glycol, and Polyethylene Glycols 200, 400, and 600 at 298.2 K. AAPS PharmSciTech 2010, 11, 1713–1717. [Google Scholar] [CrossRef]
- Seedher, N.; Kanojia, M. Micellar Solubilization of Some Poorly Soluble Antidiabetic Drugs: A Technical Note. AAPS PharmSciTech 2008, 9, 431–436. [Google Scholar] [CrossRef]
- Seedher, N.; Kanojia, M. Co-Solvent Solubilization of Some Poorly-Soluble Antidiabetic Drugs Solubilization Antidiabetic Drugs. Pharm. Dev. Technol. 2009, 14, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Pandit, V.; Gorantla, R.; Devi, K.; Pai, R.S.; Sarasija, S. Preparation and Characterization of Pioglitazone Cyclodextrin Inclusion Complexes. J. Young Pharm. 2011, 3, 267–274. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Victor, S.; Forbes, B.; Greenough, A.; Edwards, A.D. PPAR Gamma Receptor: A Novel Target to Improve Morbidity in Preterm Babies. Pharmaceuticals 2023, 16, 1530. https://doi.org/10.3390/ph16111530
Victor S, Forbes B, Greenough A, Edwards AD. PPAR Gamma Receptor: A Novel Target to Improve Morbidity in Preterm Babies. Pharmaceuticals. 2023; 16(11):1530. https://doi.org/10.3390/ph16111530
Chicago/Turabian StyleVictor, Suresh, Ben Forbes, Anne Greenough, and A. David Edwards. 2023. "PPAR Gamma Receptor: A Novel Target to Improve Morbidity in Preterm Babies" Pharmaceuticals 16, no. 11: 1530. https://doi.org/10.3390/ph16111530
APA StyleVictor, S., Forbes, B., Greenough, A., & Edwards, A. D. (2023). PPAR Gamma Receptor: A Novel Target to Improve Morbidity in Preterm Babies. Pharmaceuticals, 16(11), 1530. https://doi.org/10.3390/ph16111530