Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta prostrata L. Collected in the Central Highlands of Vietnam
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Optimization of Flavonoids from Eclipta prostrata L. Using Response Surface Methodology
2.1.1. Fitting the Response Surface Models
2.1.2. Response Surface Analyzed Process
2.1.3. Optimization and Model Verification
2.2. Chemical Profiles of Eclipta prostrata L. Extract Rich in Flavonoid Content
2.3. Assessment of Novel and Potential Medical Effects of Eclipta prostrata L. Extract
2.4. Assessment of the Interactions and Energy Binding of Major Constituents of Eclipta prostrata L. Extract toward Acetylcholinesterase
2.5. Lipinski’s Rule of Five and ADMET-Based Pharmacokinetics and Pharmacology
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Optimization of the Extraction Conditions of Flavonoid
3.2.1. Preparation of EPL Extracts
3.2.2. Experimental Design
3.2.3. Total Flavonoids
3.3. Chemical Analysis
3.3.1. Ultra High-Performance Liquid Chromatography (UHPLC-UV) Method
3.3.2. Gas Chromatography-Mass Spectrometry (GC-MS) Method
3.4. Chemical Assays for Detection of In Vitro Anti-Oxidant, Anti-Diabetic, and Anti-Alzheimer Effects
3.5. Virtual Study Method
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Property | 1 | 6 | 8 | 9 | 11 | 28 | Unit | Reference |
---|---|---|---|---|---|---|---|---|
Absorption | ||||||||
Caco-2 Permeability | −5.25 | −5.64 | −4.85 | −5.55 | −5.61 | −5.26 | log(cm/s) | Optimal: > −5.15 |
HIA | 74.24 | 70.37 | 81.57 | 70.38 | 69.17 | 59.17 | % | Poor: ≤ 30%; Medium: 30~80%; Optimal: ≥80% |
Pgp Inhibition | 47.51 | 48.73 | 29.18 | 46.99 | 46.03 | 40.79 | % | Poor: ≤ 30%; Medium: 30~70%; Optimal: ≥70% |
log D7.4 | 1.74 | 2.04 | 1.53 | 1.85 | 1.79 | 1.58 | log-ratio | Optimal: 1~3 |
Aqueous Solubility | −4.4 | −4.2 | −4.5 | −4.44 | −4.5 | −4.88 | log(mol/L) | Soluble: −2~0; Slightly soluble: −4~−2; Insoluble: <−4 |
Oral Bioavailability | 41.89 | 38.11 | 48.78 | 33.18 | 34.22 | 37.26 | % | |
Distribution | ||||||||
BBB | 28.99 | 20.63 | 32.61 | 13.45 | 13.27 | 35.14 | % | Optimal: ≤30%; Medium:30~70%; Poor: ≥70% |
PPBR | 46.23 | 45.81 | 43.67 | 40.88 | 35.46 | 58.17 | % | Optimal: ≤90%; Poor: >90% |
VDss | 3.56 | 4.55 | 2.39 | 3.28 | 3.32 | 3.89 | L/kg | Optimal: 0.04~20; Poor: otherwise |
Metabolism | ||||||||
CYP2C9 Inhibition | 62.3 | 61.05 | 41.82 | 48.63 | 46.93 | 52.51 | % | |
CYP2D6 Inhibition | 93.63 | 99.22 | 84.62 | 89.38 | 93.26 | 102.78 | % | |
CYP3A4 Inhibition | 38.63 | 38.82 | 36.14 | 32.67 | 31.28 | 33.65 | % | |
CYP2C9 Substrate | 37.48 | 36.23 | 30.14 | 34.2 | 32.64 | 33.69 | % | Low AUPRC: 0.387 ± 0.018 |
CYP2D6 Substrate | 56.33 | 57.51 | 60.65 | 52.12 | 51.04 | 42.18 | % | Low AUPRC: 0.648 ± 0.023 |
CYP3A4 Substrate | 41.59 | 34.7 | 48.02 | 41.22 | 37.45 | 31.16 | % | Low AUPRC: 0.680 ± 0.005 |
Excretion | ||||||||
Half Life | 96.99 | 68.35 | 32.21 | 60.56 | 60.78 | 62.48 | hr | Low Spearman: 0.396 ± 0.027 |
CL-Hepa | 46.08 | 44.32 | 36.81 | 45.79 | 44.27 | 58.11 | 1 | Low Spearman: 0.420 ± 0.011 |
CL-Micro | 40.22 | 47.21 | 25.36 | 42.08 | 40.39 | 38.41 | 1 | Low Spearman: 0.587 ± 0.006 |
Toxicity | ||||||||
hERG Blockers | 38.92 | 43.38 | 30.23 | 42.04 | 41.69 | 42.19 | % | Optimal: ≤30%; Medium: 30~70%; Poor: ≥70% |
Ames | 47.37 | 44.81 | 30.8 | 47.27 | 46.64 | 40.17 | % | Optimal: ≤30%; Medium: 30~70%; Poor: ≥70% |
DILI | 45.85 | 53.88 | 34.31 | 56.88 | 57.63 | 55.67 | % | Optimal: ≤30%; Medium: 30~70%; Poor: ≥70% |
LD50 | 2.37 | 1.74 | 1.29 | 2.39 | 2.21 | 1.52 | 1 |
Property | 31 | 33 | 34 | 35 | 37 | Unit | Reference |
---|---|---|---|---|---|---|---|
Absorption | |||||||
Caco-2 Permeability | −5.21 | −5.14 | −5.3 | −5.26 | −5.7 | log(cm/s) | Optimal: >−5.15 |
HIA | 63.32 | 58.48 | 69.78 | 73.02 | 47.52 | % | Poor: ≤30%; Medium: 30~80%; Optimal: ≥80% |
Pgp Inhibition | 41.49 | 31.06 | 35.04 | 47.51 | 37.09 | % | Poor: ≤30%; Medium: 30~70%; Optimal: ≥70% |
log D7.4 | 1.68 | 1.73 | 1.68 | 2.14 | 1.68 | Log-ratio | Optimal: 1~3 |
Aqueous Solubility | −4.81 | −4.16 | −4.32 | −4.45 | −4.08 | log(mol/L) | Soluble: −2~0; Slightly soluble: −4~−2; Insoluble: <−4 |
Oral Bioavailability | 32.1 | 42.91 | 35.62 | 44.23 | 36.07 | % | |
Distribution | |||||||
BBB | 38.08 | 26.06 | 21.88 | 21.9 | 17.19 | % | Optimal: ≤30%; Medium:30~70%; Poor: ≥70% |
PPBR | 56.79 | 52.14 | 48.51 | 49.49 | 34.36 | % | Optimal: ≤90%; Poor: >90% |
VDss | 3.5 | 4.65 | 3.1 | 3.99 | 4.37 | L/kg | Optimal: 0.04~20; Poor: otherwise |
Metabolism | |||||||
CYP2C9 Inhibition | 54.2 | 45.75 | 62.79 | 55.92 | 50.97 | % | |
CYP2D6 Inhibition | 92.92 | 92.31 | 92.07 | 97.2 | 85.94 | % | |
CYP3A4 Inhibition | 38.25 | 35.35 | 30.88 | 38.59 | 36.07 | % | |
CYP2C9 Substrate | 30.85 | 30.61 | 29.57 | 32.09 | 30.19 | % | Low AUPRC: 0.387 ± 0.018 |
CYP2D6 Substrate | 52.36 | 56.06 | 58.6 | 59.28 | 48.93 | % | Low AUPRC: 0.648 ± 0.023 |
CYP3A4 Substrate | 37.07 | 43.65 | 28.22 | 40.9 | 34.32 | % | Low AUPRC: 0.680 ± 0.005 |
Excretion | |||||||
Half Life | 60.17 | 56.93 | 57.77 | 56.19 | 120.8 | hr | Low Spearman: 0.396 ± 0.027 |
CL-Hepa | 55.64 | 48.25 | 52.33 | 40.61 | 36.61 | 1 | Low Spearman: 0.420 ± 0.011 |
CL-Micro | 37.7 | 37.85 | 44.17 | 50.13 | 40.51 | 1 | Low Spearman: 0.587 ± 0.006 |
Toxicity | |||||||
hERG Blockers | 38.35 | 37.21 | 39.67 | 41.26 | 41.99 | % | Optimal: ≤30%; Medium: 30~70%; Poor: ≥70% |
Ames | 37.68 | 43.27 | 41.16 | 49.35 | 41.67 | % | Optimal: ≤30%; Medium: 30~70%; Poor: ≥70% |
DILI | 51.01 | 37.57 | 60.7 | 48.67 | 67.95 | % | Optimal: ≤30%; Medium: 30~70%; Poor: ≥70% |
LD50 | 1.72 | 1.93 | 2.11 | 2.79 | 2.13 | 1 |
References
- Chromatography, H.; Analysis, C.; Zeghoud, S.; Seghir, B.B.; Kouadri, I.; Hemmami, H. Classification of Plants Medicine Species from Algerian Regions Using UV Spectroscopy, HPLC Chromatography, and Chemometrics Analysis. Malays. J. Chem. 2023, 25, 126–142. [Google Scholar] [CrossRef]
- Akmal, F.; Nor, N.M.; Dzulkifli, N.N.; Vijayakumar, R. Extraction of Musa Acuminata Peels: Response Surface Optimization, Phytochemical Screening and Antioxidant Activity. Malays. J. Chem. 2023, 25, 52–62. [Google Scholar] [CrossRef]
- Salim, F.; Low, A.; Low, M.; Al-mekhlafi, N.A. Phytochemicals Compositions of Medicinal Plants from Kuala Keniam National Park. Malays. J. Chem. 2023, 25, 43–51. [Google Scholar] [CrossRef]
- Feng, L.; Zhai, Y.-Y.; Xu, J.; Yao, W.-F.; Cao, Y.-D.; Cheng, F.-F.; Bao, B.-H.; Zhang, L. A Review on Traditional Uses, Phytochemistry and Pharmacology of Eclipta prostrata (L.) L. J. Ethnopharmacol. 2019, 245, 112109. [Google Scholar] [CrossRef]
- Kim, D.I.; Lee, S.H.; Hong, J.H.; Lillehoj, H.S.; Park, H.J.; Rhie, S.G.; Lee, G.S. The Butanol Fraction of Eclipta prostrata (Linn) Increases the Formation of Brain Acetylcholine and Decreases Oxidative Stress in the Brain and Serum of Cesarean-Derived Rats. Nutr. Res. 2010, 30, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, G.; Subramanian, N.; Pazhani, G.P.; Ravichandran, V. Anti-Inflammatory Activity of Methanolic Extract of Eclipta prostrata L. (Astearaceae). Afr. J. Pharm. Pharmacol. 2009, 3, 097–100. [Google Scholar]
- Singh, L.; Antil, R.; Kumar, D.; Dahiya, P. Phytochemical Analysis and In-Vitro Assays for Antimicrobial and Antioxidant Activity of Bhringraj Herb Eclipta prostrata (L.). J. Pharmacogn. Phytochem. 2019, 8, 4527–4533. [Google Scholar]
- Rashid, M.H.O.; Das, J.R.; Akter, A.; Uddin, J.; Parvin, N.; Laboni, F.R.; Sarker, M.M.R.; Karim, N. Possible Role of Phenolics and Flavonoids in Antioxidant, Cytotoxic and Thrombolytic Activities of Eclipta prostata L. Bangladesh Pharm. J. 2022, 25, 164–174. [Google Scholar] [CrossRef]
- Chan, C.; Huang, W.; Guo, H.; Wang, B.R. Potent Antioxidative and UVB Protective Effect of Water Extract of Eclipta prostrata L. Sci. World J. 2014, 2014, 759039. [Google Scholar] [CrossRef]
- Yadav, N.K.; Arya, R.K.; Dev, K.; Sharma, C.; Hossain, Z.; Meena, S.; Arya, K.R.; Gayen, J.R.; Datta, D.; Singh, R.K. Alcoholic Extract of Eclipta Alba Shows In Vitro Antioxidant and Anticancer Activity without Exhibiting Toxicological Effects. Oxidative Med. Cell. Longev. 2017, 2017, 9094641. [Google Scholar] [CrossRef]
- Ali, H.; Khyber, M.T.; Khyber, M.S. Antimicrobial Potentials of Eclipta alba by Disc Diffusion Method Production of Biomass and Medicinal Metabolites through Invitro Cultures in Ajuga bracteosa View Project Establishment of Plant Invitro Cultures in Artimisia Species for Production of Indus. Artic. Afr. J. Biotechnol. 2011, 10, 7658–7667. [Google Scholar] [CrossRef]
- Datta, K.; Singh, A.T.; Mukherjee, A.; Bhat, B.; Ramesh, B.; Burman, A.C. Eclipta alba Extract with Potential for Hair Growth Promoting Activity. J. Ethnopharmacol. 2009, 124, 450–456. [Google Scholar] [CrossRef]
- Dalal, S.; Kataria, S.K. Phytochemical Screening of Ethanolic Extract and Antibacterial Activity of Eclipta prostrata. Asian J. Chem. 2010, 22, 7336–7342. [Google Scholar]
- Kashtoh, H.; Baek, K.-H. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants 2022, 11, 2722. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Kumar, V.; Nayak, S.K.; Wadhwa, P.; Kaur, P.; Sahu, S.K. Alpha-amylase as Molecular Target for Treatment of Diabetes Mellitus: A Comprehensive Review. Chem. Biol. Drug Des. 2021, 98, 539–560. [Google Scholar] [CrossRef]
- Guenné, S.; Ouattara, N.; Ouédraogo, N.; Ciobica, A.; Hilou, A.; Kiendrebéogo, M. Phytochemistry and Neuroprotective Effects of Eclipta alba (L.) Hassk. J. Complement. Integr. Med. 2019, 17, 20190026. [Google Scholar] [CrossRef] [PubMed]
- Timalsina, D.; Devkota, H.P. Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules 2021, 11, 1738. [Google Scholar] [CrossRef]
- Puri, H.S. Rasayana: Ayurvedic Herbs for Longevity and Rejuvenation: Volume 2 of Traditional Herbal Medicines for Modern Times. J. Altern. Complement. Med. 2003, 9, 331–332. [Google Scholar] [CrossRef]
- Pukumpuang, W.; Chansakaow, S.; Tragoolpua, Y. Antioxidant Activity, Phenolic Compound Content and Phytochemical Constituents of Eclipta prostrate (Linn.) Linn. Chiang Mai J. Sci. 2014, 41, 568–576. [Google Scholar]
- Lee, K.Y.; Ha, N.R.; Kim, T.B.; Kim, Y.C.; Sung, S.H. Characterization of Triterpenoids, Flavonoids and Phenolic Acids in Eclipta prostrata by High-Performance Liqid Chromatography/Diode-Array Detector/Electrospray Ionization with Multi-Stage Tandem Mass Spectroscopy. Nat. Prod. Sci. 2010, 16, 164–168. [Google Scholar]
- Kaur, R.; Sood, A.; Lang, D.K.; Bhatia, S.; Al-Harrasi, A.; Aleya, L.; Behl, T. Potential of Flavonoids as Anti-Alzheimer’s Agents: Bench to Bedside. Environ. Sci. Pollut. Res. 2022, 29, 26063–26077. [Google Scholar] [CrossRef]
- Shahab, U.; Faisal, M.; Alatar, A.A.; Ahmad, S. Impact of Wedelolactone in the Anti-Glycation and Anti-Diabetic Activity in Experimental Diabetic Animals. IUBMB Life 2018, 70, 547–552. [Google Scholar] [CrossRef]
- Abdulai, I.L.; Kwofie, S.K.; Gbewonyo, W.S.; Boison, D.; Puplampu, J.B.; Adinortey, M.B. Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications. Sci. World J. 2021, 2021, 6641128. [Google Scholar] [CrossRef]
- Valdes, M.; Calzada, F.; Martínez-Solís, J.; Martínez-Rodríguez, J. Antihyperglycemic Effects of Annona Cherimola Miller and the Flavonoid Rutin in Combination with Oral Antidiabetic Drugs on Streptozocin-Induced Diabetic Mice. Pharmaceuticals 2023, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Duc, H.N.; Le Duc, D.; Ma, E.S.; Min, B.S.; Woo, M.-H. Development and Validation of an HPLC-PDA Method for Quantitation of Ten Marker Compounds from Eclipta prostrata (L.) and Evaluation of Their Protein Tyrosine Phosphatase 1B, α-Glucosidase, and Acetylcholinesterase Inhibitory Activities. Nat. Prod. Sci. 2020, 26, 326–333. [Google Scholar] [CrossRef]
- Han, L.; Liu, E.; Kojo, A.; Zhao, J.; Li, W.; Zhang, Y.; Wang, T.; Gao, X. Qualitative and Quantitative Analysis of Eclipta prostrata L. by LC/MS. Sci. World J. 2015, 2015, 980890. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas 2022 Reports. Available online: http://www.idf.org (accessed on 10 July 2023).
- Alzheimer’s Disease International. World Alzheimer Report 2022—Life after Diagnosis; Alzheimer’s Disease International: Gothenburg, Sweden, 2022. [Google Scholar]
- Yilmaz, Y.; Toledo, R.T. Oxygen Radical Absorbance Capacities of Grape/Wine Industry Byproducts and Effect of Solvent Type on Extraction of Grape Seed Polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Liyana, N.; Jaafar, A.; Shafawati, S.; Tahier, M.; Maulidiani, M.; Abas, F.; Perumal, V.; Huda, N.; Wahab, A. Chemical Profiling and Antioxidant Properties of Leaf and Stem Extracts of Christia Vespertilionis. Malays. J. Chem. 2022, 24, 59–67. [Google Scholar] [CrossRef]
- Shi, D.; Ding, H.; Xu, S. Optimization of Microwave-Assisted Extraction of Wedelolactone from Eclipta alba Using Response Surface Methodology. Front. Chem. Sci. Eng. 2014, 8, 34–42. [Google Scholar] [CrossRef]
- Fang, X.; Wang, J.; Hao, J.; Li, X.; Guo, N. Simultaneous Extraction, Identification and Quantification of Phenolic Compounds in Eclipta prostrata Using Microwave-Assisted Extraction Combined with HPLC-DAD-ESI-MS/MS. Food Chem. 2015, 188, 527–536. [Google Scholar] [CrossRef]
- Hu, T.; Guo, Y.-Y.; Zhou, Q.-F.; Zhong, X.-K.; Zhu, L.; Piao, J.-H.; Chen, J.; Jiang, J.-G. Optimization of Ultrasonic-Assisted Extraction of Total Saponins from Eclipta prostrasta L. Using Response Surface Methodology. J. Food Sci. 2012, 77, C975–C982. [Google Scholar] [CrossRef] [PubMed]
- Vietnam Pharmacopoeia Council. Vietnamese Pharmacopoeia; Medical Publishing House: Hanoi, Vietnam, 2017. [Google Scholar]
- China Pharmacopoeia Council. Pharmacopoeia of the People’s Republic of China (2020 English Edition); China Medical Science Press: Beijing, China, 2020.
- Ding, H.; Wang, Y.; Gao, Y.; Han, X.; Liu, S.; Tang, G.; Li, J.; Zhao, D. Purification of Wedelolactone from Eclipta alba and Evaluation of Antioxidant Activity. Sep. Sci. Technol. 2017, 52, 2732–2741. [Google Scholar] [CrossRef]
- Morel, L.J.D.F.; Carmona, F.; Guimarães, C.C.; Moreira, L.G.Q.; dos Santos Leão, P.; Crevelin, E.J.; Batah, S.S.; Fabro, A.T.; de França, S.C.; de Borges, M.C.; et al. A Methanolic Extract of Eclipta prostrata (L.) L. Decreases Inflammation in a Murine Model of Chronic Allergic Asthma via Inhibition of the NF-Kappa-B Pathway. J. Ethnopharmacol. 2023, 318, 116930. [Google Scholar] [CrossRef] [PubMed]
- Syed, S.D.; Deepak, M.; Yogisha, S.; Chandrashekar, A.P.; Muddarachappa, K.A.; D’Souza, P.; Agarwal, A.; Venkataraman, B.V. Trypsin Inhibitory Effect of Wedelolactone and Demethylwedelolactone. Phyther. Res. 2003, 17, 420–421. [Google Scholar] [CrossRef]
- Benes, P.; Knopfova, L.; Trcka, F.; Nemajerova, A.; Pinheiro, D.; Soucek, K.; Fojta, M.; Smarda, J. Inhibition of Topoisomerase IIα: Novel Function of Wedelolactone. Cancer Lett. 2011, 303, 29–38. [Google Scholar] [CrossRef]
- Sarveswaran, S.; Gautam, S.C.; Ghosh, J. Wedelolactone, a Medicinal Plant-Derived Coumestan, Induces Caspase-Dependent Apoptosis in Prostate Cancer Cells via Downregulation of PKCε without Inhibiting Akt. Int. J. Oncol. 2012, 41, 2191–2199. [Google Scholar] [CrossRef]
- Rhein, L.; Chaudhuri, B.; Jivani, B.; Fares, H.; Davis, A. Targeted Delivery of Salicylic Acid from Acne Treatment Products into and through Skin: Role of Solution and Ingredient Properties and Relationships to Irritation. Int. J. Cosmet. Sci. 2005, 55, 251–252. [Google Scholar] [CrossRef]
- Oh, G.W.; Kim, S.C.; Kim, T.H.; Jung, W.K. Characterization of an Oxidized Alginate-Gelatin Hydrogel Incorporating a COS-Salicylic Acid Conjugate for Wound Healing. Carbohydr. Polym. 2021, 252, 117145. [Google Scholar] [CrossRef]
- Kang, Y.M.; Kim, H.M.; Lee, H.; Lee, D.S.; An, H.J. Anti-Inflammatory Effects of Eclipta prostrata Linné on House Dust Mite-Induced Atopic Dermatitis in Vivo and in Vitro. J. Ethnopharmacol. 2022, 292, 115233. [Google Scholar] [CrossRef]
- Mishra, P.; Sharma, R.K.; Chauhan, N. In-Vitro Antioxidant, Antibacterial and Phytochemical Properties of Various Solvents Extracts of Eclipta alba Against Isolated ESBL Uropathogens. J. Mt. Res. 2022, 17, 257–267. [Google Scholar] [CrossRef]
- Lin, X.H.; Wu, Y.B.; Lin, S.; Zeng, J.W.; Zeng, P.Y.; Wu, J.Z. Effects of Volatile Components and Ethanolic Extract from Eclipta prostrata on Proliferation and Differentiation of Primary Osteoblasts. Molecules 2010, 15, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Ogunbinu, A.O.; Flamini, G.; Cioni, P.L.; Ogunwande, I.A.; Okeniyi, S.O. Essential Oil Constituents of Eclipta prostrata (L.) and Vernonia Amygdalina Delile. Nat. Prod. Commun. 2009, 4, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, M. pal A Brief Lightening on Medicinal Activity and Pharmacological Profile of Plant Eclipta prostrata: A Review. Int. J. ChemTech Res. 2019, 12, 131–140. [Google Scholar] [CrossRef]
- Cole, J.B.; Florez, J.C. Genetics of Diabetes Mellitus and Diabetes Complications. Nat. Rev. Nephrol. 2020, 16, 377–390. [Google Scholar] [CrossRef]
- Khan, Z.A.; Khare, S.; Dubey, B.K. Comparative Extraction, Phytochemical Screening and in Vitro Biological Activities of Eclipta prostrata Extract. J. Drug Deliv. Ther. 2020, 10, 148–152. [Google Scholar] [CrossRef]
- Kumar, D.; Gaonkar, R.H.; Ghosh, R.; Pal, B.C. Bio-Assay Guided Isolation of α-Glucosidase Inhibitory Constituents from Eclipta alba. Nat. Prod. Commun. 2012, 7, 989–990. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wang, S.L.; Nguyen, V.B. Microorganism-Derived Molecules as Enzyme Inhibitors to Target Alzheimer’s Diseases Pathways. Pharmaceuticals 2023, 16, 580. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Wang, S.-L.; Phan, T.Q.; Doan, M.D.; Phan, T.K.P.; Phan, T.K.T.; Pham, T.H.T.; Nguyen, A.D. Novel Anti-Acetylcholinesterase Effect of Euonymus Laxiflorus Champ. Extracts via Experimental and In Silico Studies. Life 2023, 13, 1281. [Google Scholar] [CrossRef]
- Hassan, I.; Wan Ibrahim, W.N.; Binti Mohamat Yusuf, F.; Ahmad, S.A.; Ahmad, S. Vitexin, Isovitexin and Other Biochemical Constituent of Ficus Deltoidea Leaf Extract in 80% Methanol Inhibits Cholinesterase Enzymes on Javanese Medaka (Oryzias javanicus) Model. J. Res. Appl. Basic Med. Sci. 2021, 7, 179–194. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Lee, H.-K.; Kim, J.-A.; Hong, S.-I.; Kim, H.-C.; Jo, T.-H.; Park, Y.-I.; Lee, C.-K.; Kim, Y.-B.; Lee, S.-Y.; et al. Neuroprotective Effects of Chlorogenic Acid on Scopolamine-Induced Amnesia via Anti-Acetylcholinesterase and Anti-Oxidative Activities in Mice. Eur. J. Pharmacol. 2010, 649, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Balkis, A.; Tran, K.; Lee, Y.Z.; Ng, K. Screening Flavonoids for Inhibition of Acetylcholinesterase Identified Baicalein as the Most Potent Inhibitor. J. Agric. Sci. 2015, 7, 26–35. [Google Scholar] [CrossRef]
- Choi, J.S.; Nurul Islam, M.; Yousof Ali, M.; Kim, E.J.; Kim, Y.M.; Jung, H.A. Effects of C-Glycosylation on Anti-Diabetic, Anti-Alzheimer’s Disease and Anti-Inflammatory Potential of Apigenin. Food Chem. Toxicol. 2014, 64, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ademosun, A.O.; Oboh, G.; Bello, F.; Ayeni, P.O. Antioxidative Properties and Effect of Quercetin and Its Glycosylated Form (Rutin) on Acetylcholinesterase and Butyrylcholinesterase Activities. J. Evid. Based Complement. Altern. Med. 2016, 21, NP11–NP17. [Google Scholar] [CrossRef]
- Jung, W.Y.; Kim, H.; Park, H.J.; Jeon, S.J.; Park, H.J.; Choi, H.J.; Kim, N.J.; Jang, D.S.; Kim, D.H.; Ryu, J.H. The Ethanolic Extract of the Eclipta prostrata L. Ameliorates the Cognitive Impairment in Mice Induced by Scopolamine. J. Ethnopharmacol. 2016, 190, 165–173. [Google Scholar] [CrossRef]
- Gligorić, E.; Igić, R.; Suvajdžić, L.; Grujić-Letić, N. Species of the Genus Salix L.: Biochemical Screening and Molecular Docking Approach to Potential Acetylcholinesterase Inhibitors. Appl. Sci. 2019, 9, 1842. [Google Scholar] [CrossRef]
- Ding, Y.; Fang, Y.; Moreno, J.; Ramanujam, J.; Jarrell, M.; Brylinski, M. Assessing the Similarity of Ligand Binding Conformations with the Contact Mode Score. Comput. Biol. Chem. 2016, 64, 403–413. [Google Scholar] [CrossRef]
- Chandra Babu, T.M.; Rajesh, S.S.; Bhaskar, B.V.; Devi, S.; Rammohan, A.; Sivaraman, T.; Rajendra, W. Molecular Docking, Molecular Dynamics Simulation, Biological Evaluation and 2D QSAR Analysis of Flavonoids from Syzygium alternifolium as Potent Anti-Helicobacter Pylori Agents. RSC Adv. 2017, 7, 18277–18292. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Wang, M.-H.; Rhee, H.-I. A Novel α-Glucosidase Inhibitor from Pine Bark. Carbohydr. Res. 2004, 339, 715–717. [Google Scholar] [CrossRef]
- Nguyen, V.B.; Wang, S.-L.; Phan, T.Q.; Pham, T.H.T.; Huang, H.-T.; Liaw, C.-C.; Nguyen, A.D. Screening and Elucidation of Chemical Structures of Novel Mammalian α-Glucosidase Inhibitors Targeting Anti-Diabetes Drug from Herbals Used by E De Ethnic Tribe in Vietnam. Pharmaceuticals 2023, 16, 756. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G. Pressurized Liquid Extraction of Phenolic Compounds from Rice (Oryza sativa) Grains. Food Chem. 2016, 192, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.V.; Wang, S.-L.; Nguyen, A.D. In Vitro α-Glucosidase and α-Amylase Inhibition, and in Vivo Anti-Hyperglycemic Effects of Psidium littorale Raddi Leaf Extract. Res. Chem. Intermed. 2018, 44, 1745–1753. [Google Scholar] [CrossRef]
- Doan, M.D.; Wang, S.-L.; Nguyen, V.B.; Phan, T.K.P.; Phan, T.Q.; Nguyen, T.T.; Nguyen, T.H.; Nguyen, Q.V.; Nguyen, A.D. Phytochemical Profiles and Novel Biofunctions of Dillenia Ovata Wall. Ex Hook.f. et Thomson: A Vietnamese Indigenous Medicinal Plant. Res. Chem. Intermed. 2023, 1–27. [Google Scholar] [CrossRef]
- Nguyen, Q.-V.; Doan, M.-D.; Bui Thi, B.-H.; Nguyen, M.-T.; Tran Minh, D.; Nguyen, A.-D.; Le, T.-M.; Nguyen, T.-H.; Nguyen, T.-D.; Tran, V.-C.; et al. The Effect of Drying Methods on Chlorophyll, Polyphenol, Flavonoids, Phenolic Compounds Contents, Color and Sensory Properties, and in Vitro Antioxidant and Anti-Diabetic Activities of Dried Wild Guava Leaves. Dry Technol. 2022, 41, 1291–1302. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Nicácio, A.E.; Jardim, I.C.S.F.; Visentainer, J.V.; Maldaner, L. Determination of Phenolic Compounds in Red Sweet Pepper (Capsicum annuum L.) Using a Modified QuEChERS Method and UHPLC-MS/MS Analysis and Its Relation to Antioxidant Activity. J. Braz. Chem. Soc. 2019, 30, 1229–1240. [Google Scholar] [CrossRef]
- Silva, B.; Gonzaga, L.V.; Fett, R.; Oliveira Costa, A.C. Improved Strategy Based on QuEChERS Method Followed by HPLC/DAD for the Quantification of Phenolic Compounds from Mimosa Scabrella Bentham Honeydew Honeys. LWT Food Sci. Technol. 2019, 116, 108471. [Google Scholar] [CrossRef]
- Priya, K.; John, P.; Usha, P.T.A.; Kariyil, B.J.; Uma, R.; Hogale, M.S. Phytochemical Analysis of Eclipta prostrata L. (L.) Leaves. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1069–1075. [Google Scholar] [CrossRef]
- Anand, D.; John Wyson, W.; Saravanan, P.; Rajarajan, S. Phytochemical Analysis of Leaf Extract of Eclipta alba (L.) Hassk by GC-MS Method. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 562–566. [Google Scholar]
- Nguyen, V.; Nguyen, T.; Doan, C.; Tran, T.; Nguyen, A.; Kuo, Y.-H.; Wang, S.-L. Production and Bioactivity-Guided Isolation of Antioxidants with α-Glucosidase Inhibitory and Anti-NO Properties from Marine Chitinous Materials. Molecules 2018, 23, 1124. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Wang, S.-L.; Nguyen, A.D.; Doan, M.D.; Tran, T.N.; Doan, C.T.; Nguyen, V.B. Novel α-Amylase Inhibitor Hemi-Pyocyanin Produced by Microbial Conversion of Chitinous Discards. Mar. Drugs 2022, 20, 283. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.B.; Wang, S.-L. New Novel α–Glucosidase Inhibitors Produced by Microbial Conversion. Process Biochem. 2018, 65, 228–232. [Google Scholar] [CrossRef]
- Nguyen, V.; Wang, S.-L.; Nguyen, A.; Lin, Z.-H.; Doan, C.; Tran, T.; Huang, H.; Kuo, Y.-H. Bioactivity-Guided Purification of Novel Herbal Antioxidant and Anti-NO Compounds from Euonymus laxiflorus Champ. Molecules 2018, 24, 120. [Google Scholar] [CrossRef] [PubMed]
Run No | Extraction Temperature | Extraction Time | Extraction Pressure | Total Flavonoid Content |
---|---|---|---|---|
X1 (°C) | X2 (min) | X3 (bar) | Y1 (mg QE/g) | |
1 | 50 | 45 | 120 | 169.28 |
2 | 50 | 45 | 80 | 167.05 |
3 | 60 | 45 | 100 | 172.63 |
4 | 60 | 60 | 120 | 171.97 |
5 | 50 | 30 | 100 | 166.72 |
6 | 60 | 45 | 100 | 171.85 |
7 | 70 | 45 | 80 | 169.48 |
8 | 70 | 60 | 100 | 170.23 |
9 | 60 | 30 | 80 | 169.24 |
10 | 60 | 60 | 80 | 171.52 |
11 | 50 | 60 | 100 | 169.63 |
12 | 60 | 30 | 120 | 170.59 |
13 | 60 | 45 | 100 | 173.05 |
14 | 70 | 45 | 120 | 169.81 |
15 | 60 | 45 | 100 | 172.39 |
16 | 60 | 45 | 100 | 172.51 |
17 | 70 | 30 | 100 | 169.12 |
Source | Total Flavonoid Content | |
---|---|---|
F-Value | p-Value | |
Model | 51.97 | <0.0001 S |
X1 | 36.93 | 0.0005 S |
X2 | 61.31 | 0.0001 S |
X3 | 19.76 | 0.0030 S |
X1X2 | 6.74 | 0.0357 S |
X1X3 | 7.51 | 0.0289 S |
X2X3 | 1.68 | 0.2355 NS |
X12 | 263.46 | <0.0001 S |
X22 | 23.43 | 0.0019 S |
X32 | 24.59 | 0.0016 S |
Lack of Fit | 0.1569 | 0.9200 NS |
R2 | 0.9853 | |
Adjusted R2 | 0.9663 | |
C.V% | 0.2035 |
No. | Compound | Content (μg/g of Dried Extract) |
---|---|---|
1 | Wedelolactone | 1652.93 ± 0.04 |
2 | Catechin | 44.52 ± 0.03 |
3 | Chlorogenic Acid | 420.54 ± 0.03 |
4 | EpiGalloCatechin Gallate | 9.23 ± 0.02 |
5 | Epicatechin | 257.61 ± 0.03 |
6 | Epicatechin gallate | 537.78 ± 0.02 |
7 | Vitexin | 58.69 ± 0.02 |
8 | Salicylic acid | 7912.08 ± 0.03 |
9 | Isovitexin | 537.49 ± 0.04 |
10 | Rutin | 313.51 ± 0.03 |
11 | Apigetrin | 519.70 ± 0.03 |
12 | Myricetin | 465.42 ± 0.03 |
13 | Quercetin | 141.49 ± 0.04 |
14 | Kaempferol | 33.72 ± 0.01 |
15 | Apigenin | 7.23 ± 0.01 |
No. | RT | % Area | Name |
---|---|---|---|
16 | 11.15 | 0.89 ± 0.01 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one |
17 | 19.30 | 0.33 ± 0.01 | Germacrene D |
18 | 20.31 | 0.35 ± 0.01 | Phenol, 2,4-bis(1,1-dimethylethyl)- |
19 | 20.98 | 0.22 ± 0.01 | 3’,4’-Dihydroxy-β-naphthoflavone |
20 | 23.51 | 1.18 ± 0.02 | 13,14-Dihydro-15(R)-prostaglandin E1 |
21 | 24.19 | 0.57 ± 0.02 | Pentadecane, 2-methyl- |
22 | 25.44 | 1.25 ± 0.05 | Daidzin |
23 | 25.82 | 0.77 ± 0.02 | Benzene, 1-(1,1-dimethylethyl)-4-ethoxy- |
24 | 26.05 | 0.26 ± 0.01 | 4,5-Dicaffeoylquinic acid |
25 | 26.59 | 0.40 ± 0.02 | Estra-1,3,5(10)-trien-17-one, 2-[(trimethylsilyl)amino]-3-[(trimethylsilyl)oxy]- |
26 | 26.75 | 0.38 ± 0.04 | Isoquercitin |
27 | 28.42 | 0.77 ± 0.02 | Hexadecanoic acid, methyl ester |
28 | 29.01 | 3.01 ± 0.02 | Hexadecanoic acid |
29 | 31.30 | 0.69 ± 0.01 | 9,12-Octadecadienoic acid (Z,Z)-, 2,3-dihydroxypropyl ester |
30 | 31.59 | 0.55 ± 0.02 | Cyclopentaneethanol, 2-(hydroxymethyl)-β,3-dimethyl- |
31 | 31.88 | 3.59 ± 0.04 | 9,12-Octadecadienoic acid (Z,Z)- |
32 | 32.35 | 0.71 ± 0.05 | 6,9,12-Octadecatrienoic acid, methyl ester |
33 | 37.42 | 2.16 ± 0.04 | all-trans-5,8-Epoxyretinoic acid |
34 | 40.01 | 2.33 ± 0.02 | Pregna-5,16-dien-20-one, 3,21-bis(acetyloxy)-, (3β)- |
35 | 40.63 | 77.97 ± 0.05 | 3′,4′,5′,5,6,7-hexamethoxyflavone |
36 | 41.84 | 0.77 ± 0.04 | Schizandrin A |
Sample | AChE IC50 (μg/mL) | DPPH IC50 (μg/mL) | ABTS IC50 (μg/mL) | α-amylase IC50 (μg/mL) | α-Glucosidase IC50 (μg/mL) |
---|---|---|---|---|---|
EPL | 76.8 ± 0.8 | 130.2 ± 1.0 | 79.9 ± 0.9 | 429.9 ± 2.1 | 223.1 ± 1.3 |
Berberine chloride | 301.1 ± 1.2 | Nd | Nd | Nd | Nd |
Vitamin C | Nd | 38.4 ± 0.5 | 23.0 ± 0.4 | Nd | Nd |
Salicylic acid | 55.98 ± 0.12 | Nd | Nd | Nd | Nd |
Wedelolactone | 61.23 ± 0.21 | Nd | Nd | Nd | Nd |
Acarbose | Nd | Nd | Nd | 24.9 ± 0.3 | 9.3 ± 0.1 |
No. | Compound | Content (μg/g of Dried Extract) | Reference |
---|---|---|---|
3 | Chlorogenic Acid | 98.17 | [56] |
4 | EpiGalloCatechin Gallate | 16.83 ± 0.12 | [57] |
7 | Vitexin | 12.16 ± 3.58 | [58] |
9 | Isovitexin | 6.24 ± 1.15 | [58] |
10 | Rutin | 0.219 ± 0.011 | [59] |
12 | Myricetin | 3.95 ± 0.61 | [57] |
13 | Quercetin | 0.181 ± 0.023 to 9.56 ± 0.37 | [57,58,59] |
14 | Kaempferol | 3.05 ± 0.77 | [57] |
15 | Apigenin | 7.72 ± 0.15 to 34.43 ± 2.41 | [57,58] |
Ligands | Symbol of Complex | RMSD (Å) | DS (kcal/mol) | Linkages | Amino Acids Interacting with the Ligands (Distance (Å)/E (kcal/mol)/ Linkage Type) |
---|---|---|---|---|---|
Wedelolactone (1) | WED-1EEA-1(1) | 1.02 | −12.3 | 2 linkages (2 pi-H) | GLY118 (4.37/-0.6/pi-H) GLY118 (3.70/-0.6/pi-H) |
Epicatechin gallate (6) | EPG-1EEA-1(17) | 1.45 | −14.3 | 3 linkages (3 H-donor) | SER81 (2.68/-2.4/H-donor) GLU199 (3.24/-2.1/H-donor) GLU199 (2.68/-5.6/H-donor) |
Salicylic acid (8) | SALA-1EEA-1(25) | 1.98 | −10.2 | 3 linkages (1 H-donor, 1 H-pi, 1 pi-pi) | SER122 (2.90/-1.9/H-donor) PHE330 (4.28/-0.6 H-pi) TRP84 (3.97/-0.0 pi-pi) |
Isovitexin (9) | ISVIT-1EEA-1(37) | 1.67 | −13.4 | 2 linkages (1 H-donor, 1 H-pi) | GLU199 (3.14/-1.6 H-donor) TRP279 (4.49/-0.9 H-pi) |
Apigetrin (11) | APG-1EEA-1(42) | 1.44 | −13.7 | 5 linkages (3 H-donor, 1 H-pi, 1 pi-H) | GLU199 (2.93/-2.8 H-donor) ASP72 (3.01/-1.2 H-donor) SER 286 (2.98/-0.8 H-donor) PHE331 (4.57/-0.6 H-pi) PHE288 (4.69/-0.7 pi-H) |
Hexadecanoic acid (28) | HDA-1EEA-1(156) | 1.81 | −11.7 | 3 linkages (1 H-donor, 1 H-acceptor, 1 pi-H) | SER286 (2.96/-1.9 H-donor) ARG289 (3.21/-1.9 H-acceptor) TRP279 (4.58/-0.7 H-pi) |
9,12-Octadecadienoic acid (Z,Z)- (31) | ODDA-1EEA-1(126) | 1.59 | −11.5 | 2 linkages (1 H-donor, 1 H-pi) | TYR70 (2.84/-3.9 H-donor) TYR334 (4.14/-0.8 H-pi) |
all-trans-5,8-Epoxyretinoic acid (33) | EPRA-1EEA-1(79) | 1.11 | −10.6 | 1 linkage (1 H-acceptor) | TYR121 (3.25/-0.7 H-acceptor) |
Pregna-5,16-dien-20-one, 3,21-bis(acetyloxy)-, (3β)- (34) | PREGD-1EEA-1(81) | 1.42 | −10.4 | 1 linkage (1 H-acceptor) | ARG289 (3.42/-1.0 H-acceptor) |
3′,4′,5′,5,6,7-hexamethoxyflavone (35) | HMF-1EEA-1(97) | 1.75 | −10.0 | 1 linkage (1 H-pi) | PHE330 (4.46/-0.6 H-pi) |
Berberine chloride (37) | BC-1EEA1(3) | 1.65 | −12.1 | 1 linkage (1 H-pi) | TYR121 (4.50/-0.7 H-pi) |
Compound | Mass (Dalton) | Hydrogen Bond Donor | Hydrogen Bond Acceptors | LogP | Molar Refractivity |
---|---|---|---|---|---|
Wedelolactone (1) | 314.0 | 3 | 7 | 2.758 | 78.15 |
Epicatechin gallate (6) | 458.0 | 8 | 11 | 2.233 | 108.92 |
Salicylic acid (8) | 137.0 | 1 | 3 | −0.244 | 32.44 |
Isovitexin (9) | 432.0 | 7 | 10 | −0.066 | 103.53 |
Apigetrin (11) | 432.0 | 6 | 10 | −0.107 | 103.54 |
Hexadecanoic acid (28) | 255.0 | 0 | 2 | 4.218 | 75.32 |
9,12-Octadecadienoic acid (Z,Z)- (31) | 279.0 | 0 | 2 | 4.550 | 84.36 |
all-trans-5,8-Epoxyretinoic acid (33) | 317.0 | 0 | 3 | 3.330 | 89.33 |
Pregna-5,16-dien-20-one, 3,21-bis(acetyloxy)-, (3β)- (34) | 414.0 | 0 | 5 | 4.549 | 112.36 |
3′,4′,5′,5,6,7-hexamethoxyflavone (35) | 402.0 | 0 | 8 | 3.354 | 105.13 |
Berberine chloride (37) | 337.0 | 0 | 3 | 2.733 | 93.03 |
Five Lipinski Rules | <500 | <5 | <10 | <5 | 40–130 |
Ranges of Independent Variable | Independent Variable | Dependent Variable (Y) | ||
---|---|---|---|---|
Extraction Temperature (X1-oC) | Extraction Time (X2-min) | Extraction Pressure (X3-bar) | ||
−1 | 50 | 30 | 80 | Total flavonoid content |
0 | 60 | 45 | 100 | |
1 | 70 | 60 | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, T.K.P.; Wang, S.-L.; Nguyen, Q.V.; Phan, T.Q.; Nguyen, T.T.; Tran, T.T.T.; Nguyen, A.D.; Nguyen, V.B.; Doan, M.D. Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta prostrata L. Collected in the Central Highlands of Vietnam. Pharmaceuticals 2023, 16, 1476. https://doi.org/10.3390/ph16101476
Phan TKP, Wang S-L, Nguyen QV, Phan TQ, Nguyen TT, Tran TTT, Nguyen AD, Nguyen VB, Doan MD. Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta prostrata L. Collected in the Central Highlands of Vietnam. Pharmaceuticals. 2023; 16(10):1476. https://doi.org/10.3390/ph16101476
Chicago/Turabian StylePhan, Thi Kim Phung, San-Lang Wang, Quang Vinh Nguyen, Tu Quy Phan, Tan Thanh Nguyen, Thanh Tam Toan Tran, Anh Dzung Nguyen, Van Bon Nguyen, and Manh Dung Doan. 2023. "Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta prostrata L. Collected in the Central Highlands of Vietnam" Pharmaceuticals 16, no. 10: 1476. https://doi.org/10.3390/ph16101476
APA StylePhan, T. K. P., Wang, S. -L., Nguyen, Q. V., Phan, T. Q., Nguyen, T. T., Tran, T. T. T., Nguyen, A. D., Nguyen, V. B., & Doan, M. D. (2023). Assessment of the Chemical Profile and Potential Medical Effects of a Flavonoid-Rich Extract of Eclipta prostrata L. Collected in the Central Highlands of Vietnam. Pharmaceuticals, 16(10), 1476. https://doi.org/10.3390/ph16101476