Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review
Abstract
:1. Introduction
2. Results
2.1. Antibacterial Activity
2.2. Antifungal Activity
3. Discussion
3.1. Antibacterial Activity
3.2. Antifungal Activity
3.3. Active Compounds of E. angustifolium Extracts and Mechanisms of Action
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.-X.; Cao, X.-Y.; Peng, C. Antimicrobial activity of natural products against MDR bacteria: A scientometric visualization analysis. Front. Pharmacol. 2022, 13, 1000974. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, R.; Ballini, A.; Topi, S.; Bottalico, L.; Jirillo, E.; Santacroce, L. Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. Antibiotics 2022, 11, 1431. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Wu, G.; Tao, X.; Yang, S.; Lv, L.; Zhu, Y.; Dong, D.; Xiang, H. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Adv. 2023, 13, 7798–7817. [Google Scholar] [CrossRef] [PubMed]
- Granica, S.; Piwowarski, J.P.; Czerwińska, M.E.; Kiss, A.K. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J. Ethnopharmacol. 2014, 156, 316–346. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Ramstead, A.G.; Kirpotina, L.N.; Voyich, J.M.; Jutila, M.A.; Quinn, M.T. Therapeutic Potential of Polyphenols from Epilobium Angustifolium (Fireweed). Phytother. Res. 2016, 30, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Vitalone, A.; Allkanjari, O. Epilobium spp: Pharmacology and Phytochemistry. Phytother. Res. 2018, 32, 1229–1240. [Google Scholar] [CrossRef]
- Adamczak, A.; Dreger, M.; Seidler-Łożykowska, K.; Wielgus, K. Fireweed (Epilobium angustifolium L.): Botany, phytochemistry and traditional uses. A review. Herba Pol. 2019, 65, 51–63. [Google Scholar] [CrossRef]
- Nowak, A.; Zielonka-Brzezicka, J.; Perużyńska, M.; Klimowicz, A. Epilobium angustifolium L. as a Potential Herbal Component of Topical Products for Skin Care and Treatment—A Review. Molecules 2022, 27, 3536. [Google Scholar] [CrossRef]
- Sõukand, R.; Mattalia, G.; Kolosova, V.; Stryamets, N.; Prakofjewa, J.; Belichenko, O.; Kuznetsova, N.; Minuzzi, S.; Keedus, L.; Prūse, B.; et al. Inventing a herbal tradition: The complex roots of the current popularity of Epilobium angustifolium in Eastern Europe. J. Ethnopharmacol. 2020, 247, 112254. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA) Committee on Herbal Medicinal Products. European Union Herbal Monograph on Epilobium angustifolium L. and/or Epilobium Parviflorum Schreb., Herba. Available online: https://www.ema.europa.eu/en/documents/herbal-monograph/european-union-herbal-monograph-epilobium-angustifolium-l/epilobium-parviflorum-schreb-herba_en.pdf (accessed on 3 October 2023).
- Esposito, C.; Santarcangelo, C.; Masselli, R.; Buonomo, G.; Nicotra, G.; Insolia, V.; D’Avino, M.; Caruso, G.; Antonio Riccardo Buonomo, A.R.; Sacchi, R.; et al. Epilobium angustifolium L. extract with high content in oenothein B on benign prostatic hyperplasia: A monocentric, randomized, double-blind, placebo-controlled clinical trial. Biomed. Pharmacother. 2021, 138, 111414. [Google Scholar] [CrossRef]
- Stolarczyk, M.; Naruszewicz, M.; Kiss, A.K. Extracts from Epilobium sp. herbs induce apoptosis in human hormone-dependent prostate cancer cells by activating the mitochondrial pathway. J. Pharm. Pharmacol. 2013, 65, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Sayik, A.; Yusufoğlu, S.A.; Acık, L.; Turker, G.; Aydin, B.; Arslan, L. DNA-Binding, Biological Activities, and Chemical Composition of Wild Growing Epilobium angustifolium L. Extracts from Canakkale, Turkey. J. Turk. Chem. Soc. Sect. A 2017, 4, 811–840. [Google Scholar] [CrossRef]
- Perużyńska, M.; Nowak, A.; Birger, R.; Ossowicz-Rupniewska, P.; Konopacki, M.; Rakoczy, R.; Kucharski, Ł.; Wenelska, K.; Klimowicz, A.; Droździk, M.; et al. Anticancer properties of bacterial cellulose membrane containing ethanolic extract of Epilobium angustifolium L. Front. Bioeng. Biotechnol. 2023, 11, 1133345. [Google Scholar] [CrossRef] [PubMed]
- Hiermann, A.; Bucar, F. Studies of Epilobium angustifolium extracts on growth of accessory sexual organs in rats. J. Ethnopharmacol. 1997, 55, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zong, W.; Tao, X.; Liu, S.; Feng, Z.; Lin, Y.; Liao, Z.; Chen, M. Evaluation of the therapeutic effect against benign prostatic hyperplasia and the active constituents from Epilobium angustifolium L. J. Ethnopharmacol. 2019, 232, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Vitalone, A.; McColl, J.; Thome, D.; Costa, L.G.; Tita, B. Characterization of the effect of Epilobium extracts on human cell proliferation. Pharmacology 2003, 69, 79–87. [Google Scholar] [CrossRef]
- Kiss, A.; Kowalski, J.; Melzig, M.F. Effect of Epilobium angustifolium L. extracts and polyphenols on cell proliferation and neutral endopeptidase activity in selected cell lines. Pharmazie 2006, 61, 66–69. [Google Scholar] [PubMed]
- Stolarczyk, M.; Piwowarski, J.P.; Granica, S.; Stefańska, J.; Naruszewicz, M.; Kiss, A.K. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of Epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion. Phytother. Res. 2013, 27, 1842–1848. [Google Scholar] [CrossRef]
- Maruška, A.; Ugenskienė, R.; Raulinaitytė, D.; Juozaitytė, E.; Kaškonienė, V.; Drevinskas, T.; Stelmakienė, A.; Akuneca, I.; Makaravičius, T.; Tiso, N.; et al. Analysis of antiproliferative effect of Chamerion angustifolium water extract and its fractions on several breast cancer cell lines. Adv. Med. Sci. 2017, 62, 158–164. [Google Scholar] [CrossRef]
- Piwowarski, J.P.; Bobrowska-Korczak, B.; Stanisławska, I.; Bielecki, W.; Wrzesień, R.; Granica, S.; Krupa, K.; Kiss, A.K. Evaluation of the effect of Epilobium angustifolium aqueous extract on LNCaP cell proliferation in in vitro and in vivo models. Planta Med. 2017, 83, 1159–1168. [Google Scholar] [CrossRef]
- Juan, H.; Sametz, W.; Hiermann, A. Anti-inflammatory effects of a substance extracted from Epilobium angustifolium. Agents Actions 1988, 23, 106–107. [Google Scholar] [CrossRef] [PubMed]
- Szwajgier, D.; Baranowska-Wójcik, E.; Wirginia Kukula-Koch, W.; Kowalik, K.; Polak-Berecka, M.; Waśko, A. Evolution of the anticholinesterase, antioxidant, and anti-inflammatory activity of Epilobium angustifolium L. infusion during in vitro digestion. J. Funct. Foods 2021, 85, 104645. [Google Scholar] [CrossRef]
- Lin, P.; Wang, X.; Zhou, N.; Wu, Y.; Wang, Z.; Wu, L.; Li, J.; Shang, X. Chemical characterization of the anti-inflammatory activity fraction of Epilobium angustifolium. Eur. Food Res. Technol. 2022, 248, 35–44. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Maruška, A.; Akuņeca, I.; Stankevičius, M.; Ragažinskienė, O.; Bartkuvienė, V.; Kornyšova, O.; Briedis, V.; Rasa Ugenskienė, R. Screening of antioxidant activity and volatile compounds composition of Chamerion angustifolium (L.) Holub ecotypes grown in Lithuania. Nat. Prod. Res. 2016, 30, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.Q.; Zhou, S.Y.; Mao, J.X.; Liu, S.; Lan, X.Z.; Liao, Z.H.; Chen, M. HPLC-ESI-MS/MS analysis of phenolics and in vitro antioxidant activity of Epilobium angustifolium L. Nat. Prod. Res. 2018, 32, 1432–1435. [Google Scholar] [CrossRef] [PubMed]
- Lasinskas, M.; Jariene, E.; Vaitkeviciene, N.; Kulaitiene, J.; Adamaviciene, A.; Hallmann, E. The Impact of Solid-Phase Fermentation on Flavonoids, Phenolic Acids, Tannins and Antioxidant Activity in Chamerion angustifolium (L.) Holub (Fireweed) Leaves. Plants 2023, 12, 277. [Google Scholar] [CrossRef] [PubMed]
- Tita, B.; Abdel-Haq, H.; Vitalone, A.; Mazzanti, G.; Saso, L. Analgesic properties of Epilobium angustifolium, evaluated by the hot plate test and the writhing test. Farmaco 2001, 56, 341–343. [Google Scholar] [CrossRef]
- Ruszová, E.; Cheel, J.; Pávek, S.; Moravcová, M.; Hermannová, M.; Matějková, I.; Spilková, J.; Velebný, V.; Kubala, L. Epilobium angustifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protectionin vivo. Gen. Physiol. Biophys. 2013, 32, 347. [Google Scholar] [CrossRef]
- Karakaya, S.; Süntar, I.; Yakinci, O.F.; Sytar, O.; Ceribasi, S.; Dursunoglu, B.; Ozbek, H.; Guvenalp, Z. In vivo bioactivity assessment on Epilobium species: A particular focus on Epilobium angustifolium and its components on enzymes connected with the healing process. J. Ethnopharmacol. 2020, 262, 113207. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Ziemlewska, A.; Bujak, T.; Nizioł-Łukaszewska, Z.; Hordyjewicz-Baran, Z. Cosmetic and Dermatological Properties of Selected Ayurvedic Plant Extracts. Molecules 2021, 26, 614. [Google Scholar] [CrossRef]
- Nowak, A.; Zagórska-Dziok, M.; Ossowicz-Rupniewska, P.; Makuch, E.; Duchnik, W.; Kucharski, Ł.; Adamiak-Giera, U.; Prowans, P.; Czapla, N.; Bargiel, P.; et al. Epilobium angustifolium L. Extracts as Valuable Ingredients in Cosmetic and Dermatological Products. Molecules 2021, 26, 3456. [Google Scholar] [CrossRef] [PubMed]
- Majtan, J.; Bucekova, M.; Jesenak, M. Natural Products and Skin Diseases. Molecules 2021, 26, 4489. [Google Scholar] [CrossRef]
- Kiss, A.K.; Bazylko, A.; Filipek, A.; Granica, S.; Jaszewska, E.; Kiarszys, U.; Kośmider, A.; Piwowarski, J. Oenothein B’s contribution to the anti-inflammatory and antioxidant activity of Epilobium sp. Phytomedicine 2011, 18, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Granica, S.; Bazylko, A.; Kiss, A.K. Determination of Macrocyclic Ellagitannin Oenothein B in Plant Materials by HPLC-DAD-MS: Method Development and Validation. Phytochem. Anal. 2012, 23, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Baert, N.; Kim, J.; Karonen, M.; Salminen, J.P. Interpopulation and inter-organ distribution of the main polyphenolic compounds of Epilobium angustifolium. Phytochemistry 2017, 134, 54–63. [Google Scholar] [CrossRef]
- Gryszczyńska, A.; Dreger, M.; Piasecka, A.; Kachlicki, P.; Witaszak, N.; Sawikowska, A.; Ożarowski, M.; Opala, B.; Łowicki, Z.; Pietrowiak, A.; et al. Qualitative and quantitative analyses of bioactive compounds from ex vitro Chamaenerion angustifolium (L.) (Epilobium angustifolium) herb in different harvest times. Ind. Crops Prod. 2018, 123, 208–220. [Google Scholar] [CrossRef]
- Dreger, M.; Seidler-Łożykowska, K.; Szalata, M.; Adamczak, A.; Wielgus, K. Phytochemical variability during vegetation of Chamerion angustifolium (L.) Holub genotypes derived from in vitro cultures. Plant Cell Tiss. Organ. Cult. 2021, 147, 619–633. [Google Scholar] [CrossRef]
- Yoshida, T.; Yoshimura, M.; Amakura, Y. Chemical and biological significance of oenothein B and related ellagitannin oligomers with macrocyclic structure. Molecules 2018, 23, 552. [Google Scholar] [CrossRef]
- Sobolewska, D.; Galanty, A.; Granica, S.; Podolak, I.; Olszewska, M.A.; Owczarek, A.; Paulino, N.; Michalska, K. In vitro cytotoxic activity of Cuphea ingrata Cham. & Schltdl. extracts related to the oenothein B content. Nat. Prod. Res. 2022, 37, 1693–1697. [Google Scholar] [CrossRef]
- Chen, Y.; Qin, Q.; Chen, H.; Huang, Q.; Song, M.; Xiao, S.; Cao, L.; Cao, Y. The anti-proliferative activity and cellular antioxidant activity of oenothein B and its content in different Eucalyptus species and region. Future Food J. Food Agric. Soc. 2023, 3, 392–398. [Google Scholar] [CrossRef]
- Baert, N.; Karonen, M.; Salminen, J.P. Isolation, characterisation and quantification of the main oligomeric macrocyclic ellagitannins in Epilobium angustifolium by ultra-high-performance chromatography with diode array detection and electrospray tandem mass spectrometry. J. Chromatogr. A 2015, 1419, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, A. Tannins medical/pharmacological and related applications: A critical review. Sustain. Chem. Pharm. 2021, 22, 100481. [Google Scholar] [CrossRef]
- Monschein, M.; Jaindl, K.; Buzimkić, S.; Bucar, F. Content of phenolic compounds in wild populations of Epilobium angustifolium growing at different altitudes. Pharm. Biol. 2015, 53, 1576–1582. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Huang, H.; Mo, X.; Zhu, Y.; Chen, X.; Li, X.; Peng, X.; Xu, Z.; Chen, L.; Rong, S.; et al. Quercetin-3-O-Glucuronide Alleviates Cognitive Deficit and Toxicity in Aβ1-42-Induced AD-Like Mice and SH-SY5Y Cells. Mol. Nutr. Food Res. 2021, 65, 2000660. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Reyes, D.; Casanova, A.G.; González-Paramás, A.M.; Martín, Á.; Santos-Buelga, C.; Morales, A.I.; López-Hernández, F.J.; Prieto, M. Protective Effect of Quercetin 3-O-Glucuronide against Cisplatin Cytotoxicity in Renal Tubular Cells. Molecules 2022, 15, 1319. [Google Scholar] [CrossRef] [PubMed]
- Ha, A.T.; Rahmawati, L.; You, L.; Hossain, M.A.; Kim, J.-H.; Cho, J.Y. Anti-Inflammatory, Antioxidant, Moisturizing, and Antimelanogenesis Effects of Quercetin 3-O-β-D-Glucuronide in Human Keratinocytes and Melanoma Cells via Activation of NF-κB and AP-1 Pathways. Int. J. Mol. Sci. 2022, 23, 433. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Proestos, C.; Oreopoulou, V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods 2020, 9, 534. [Google Scholar] [CrossRef]
- Liu, W.; Li, J.; Zhang, X.; Zu, Y.; Yang, Y.; Liu, W.; Xu, Z.; Gao, H.; Sun, X.; Jiang, X.; et al. Current Advances in Naturally Occurring Caffeoylquinic Acids: Structure, Bioactivity, and Synthesis. J. Agric. Food Chem. 2020, 68, 10489–10516. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Stankevičius, M.; Drevinskas, T.; Akuneca, I.; Kaškonas, P.; Bimbiraitė-Survilienė, K.; Maruška, A.; Ragažinskienė, O.; Kornyšova, O.; Briedis, V.; et al. Evaluation of phytochemical composition of fresh and dried raw material of introduced Chamerion angustifolium L. using chromatographic, spectrophotometric and chemometric techniques. Phytochemistry 2015, 115, 184–193. [Google Scholar] [CrossRef]
- Zeng, Q.Y.; Wu, J.; Lin, P.C. Chemical Composition and Antimicrobial Activity of the Essential Oil from Epilobium angustifolium. Chem. Nat. Compd. 2016, 52, 1113–1115. [Google Scholar] [CrossRef]
- Nowak, A.; Duchnik, W.; Makuch, E.; Kucharski, Ł.; Ossowicz-Rupniewska, P.; Cybulska, K.; Sulikowski, T.; Moritz, M.; Klimowicz, A. Epilobium angustifolium L. Essential Oil—Biological Activity and Enhancement of the Skin Penetration of Drugs—In Vitro Study. Molecules 2021, 26, 7188. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.C.; Deng, L.Q.; Guo, X.; Xiao, G.J.; Jiang, Y.B.; Wang, G.W.; Liao, Z.H.; Chen, M. Angustifoline A, A New Alkaloid from Epilobium angustifolium. Chem. Nat. Compd. 2021, 57, 903–906. [Google Scholar] [CrossRef]
- Frolova, T.S.; Salnikova, O.I.; Dudareva, T.A.; Kukina, T.P.; Sinitsyna, O.I. Isolation of pomolic acid from Chamaenerion angustifolium and the evaluation of its potential genotoxicity in bacterial test systems. Russ. J. Bioorganic Chem. 2014, 40, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Volova, T.; Prudnikova, S.V.; Shumilova, A.A.; Perianova, O.V.; Zharkov, S.M.; Kuzmin, A.; Kondratenka, O.; Kiryukhin, B.; Shidlovskiy, I.P.; et al. Bio-hybridization of nanobactericides with cellulose films for effective treatment against members of ESKAPE multi-drug-resistant pathogens. Appl. Nanosci. 2018, 8, 1101–1110. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M.; Trząskowska, M. Fortification of low-nitrite canned pork with willow herb (Epilobium angustifolium L.). Int. J. Food Sci. Technol. 2022, 57, 4194–4210. [Google Scholar] [CrossRef]
- Jones, N.P.; Arnason, J.T.; Abou-Zaid, M.; Akpagana, K.; Sanchez-Vindas, P.; Smith, M.L. Antifungal activity of extracts from medicinal plants used by First Nations Peoples of eastern Canada. J. Ethnopharmacol. 2000, 73, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Battinelli, L.; Tita, B.; Evandri, M.G.; Mazzanti, G. Antimicrobial activity of Epilobium spp. extracts. Farmaco 2001, 56, 345–348. [Google Scholar] [CrossRef]
- Borchardt, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Fulcher, R.G.; Ehlke, N.J.; Biesboer, D.D.; Russell, F.B. Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. J. Med. Plant Res. 2008, 2, 98–110. [Google Scholar]
- Borchardt, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Fulcher, R.G.; Ehlke, N.J.; Biesboer, D.D.; Bey, R.F. Antioxidant and antimicrobial activity of seed from plants of the Mississippi river basin. J. Med. Plant Res. 2008, 2, 81–093. [Google Scholar]
- Webster, D.; Taschereau, P.; Belland, R.J.; Sand, C.; Rennie, R.P. Antifungal activity of medicinal plant extracts; preliminary screening studies. J. Ethnopharmacol. 2008, 115, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Bartfay, W.J.; Bartfay, E.; Johnson, J.G. Gram-negative and Gram-positive antibacterial properties of the whole plant extract of willow herb (Epilobium angustifolium). Biol. Res. Nurs. 2012, 14, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Kosalec, I.; Kopjar, N.; Kremer, D. Antimicrobial activity of willowherb (Epilobium angustifolium L.) leaves and flowers. Curr. Drug Targets 2013, 14, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Çepni Yüzbaşıoğlu, E.; Bona, M.; Şerbetçi, T.; Gürel, F. Evaluation of quorum sensing modulation by plant extracts originating from Turkey. Plant Biosyst. 2018, 152, 376–385. [Google Scholar] [CrossRef]
- Güven, K.; Matpan Bekler, F.; Yalaz, S.; Gül Güven, R.; Demirtaş Aksu, M.; Ipekçi, M.; Tuşari, F.R.; Polat, N. Evaluation of antibacterial effects of some traditional plants against pathogen microorganisms. Banat’s J. Biotechnol. 2020, 11, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, C.; Chiavaroli, A.; Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Brunetti, L.; Petrucci, M.; Politi, M.; Menghini, L.; Leone, S.; et al. Phenolic Content and Antimicrobial and Anti-Inflammatory Effects of Solidago virga-aurea, Phyllanthus niruri, Epilobium angustifolium, Peumus boldus, and Ononis spinosa Extracts. Antibiotics 2020, 9, 783. [Google Scholar] [CrossRef]
- Feshchenko, H.; Marchyshyn, S.; Budniak, L.; Slobodianiuk, L.; Basaraba, R. Study of Antibacterial and Antifungal Properties of the Lyophilized Extract of Fireweed (Chamaenerion angustifolium L.) Herb. PharmacologyOnLine 2021, 2, 1464–1472. [Google Scholar]
- Kavas Yüksel, A.; Dikici, E.; Yüksel, M.; Işık, M.; Tozoğlu, F.; Köksal, E. Phytochemical, Phenolic Profile, Antioxidant, Anticholinergic and Antibacterial Properties of Epilobium angustifolium (Onagraceae). Food Meas. 2021, 15, 4858–4867. [Google Scholar] [CrossRef]
- Nowak, A.; Cybulska, K.; Makuch, E.; Kucharski, Ł.; Różewicka-Czabańska, M.; Prowans, P.; Czapla, N.; Bargiel, P.; Petriczko, J.; Klimowicz, A. In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed (Epilobium angustifolium L.). Molecules 2021, 26, 329. [Google Scholar] [CrossRef]
- Turker, A.U.; Yildrim, A.B.; Tas, I.; Ozkan, E.; Turker, H. Evaluation of some traditional medicinal plants: Phytochemical profile, antibacterial and antioxidant potential. Rom. Biotechnol. Lett. 2021, 26, 2499–2510. [Google Scholar] [CrossRef]
- Arsene, M.M.J.; Viktorovna, P.I.; Parfait, K.; Rehailia, M.; Andreevna, S.L.; Sarra, S.; Vyacheslavovna, Y.N.; Alekseevna, K.A.; Davares, A.K.L.; Khelifi, I.; et al. Screening of the Antimicrobial Potential of Aqueous Extracts of Some Plants Collected from the City of Narafominsk, Moscow, Russia. J. Pharm. Res. Int. 2022, 34, 36–45. [Google Scholar] [CrossRef]
- Nowak, A.; Zagórska-Dziok, M.; Perużyńska, M.; Cybulska, K.; Kucharska, E.; Ossowicz-Rupniewska, P.; Piotrowska, K.; Duchnik, W.; Kucharski, Ł.; Sulikowski, T.; et al. Assessment of the Anti-Inflammatory, Antibacterial and Anti-Aging Properties and Possible Use on the Skin of Hydrogels Containing Epilobium angustifolium L. Extracts. Front. Pharmacol. 2022, 13, 896706. [Google Scholar] [CrossRef] [PubMed]
- Kowalik, K.; Polak-Berecka, M.; Prendecka-Wróbel, M.; Pigoń-Zając, D.; Niedźwiedź, I.; Szwajgier, D.; Baranowska-Wójcik, E.; Waśko, A. Biological Activity of an Epilobium angustifolium L. (Fireweed) Infusion after In Vitro Digestion. Molecules 2022, 27, 1006. [Google Scholar] [CrossRef] [PubMed]
- Neumann, N.; Honke, M.; Povydysh, M.; Guenther, S.; Schulze, C. Evaluating Tannins and Flavonoids from Traditionally Used Medicinal Plants with Biofilm Inhibitory Effects against MRGN E. coli. Molecules 2022, 27, 2284. [Google Scholar] [CrossRef]
- Vlase, A.-M.; Toiu, A.; Tomuță, I.; Vlase, L.; Muntean, D.; Casian, T.; Fizeșan, I.; Nadăș, G.C.; Novac, C.Ș.; Tămaș, M.; et al. Epilobium Species: From Optimization of the Extraction Process to Evaluation of Biological Properties. Antioxidants 2023, 12, 91. [Google Scholar] [CrossRef]
- Gavriil, A.; Zilelidou, E.; Papadopoulos, A.E.; Siderakou, D.; Kasiotis, K.M.; Haroutounian, S.A.; Gardeli, C.; Giannenas, I.; Skandamis, P.N. Evaluation of antimicrobial activities of plant aqueous extracts against Salmonella Typhimurium and their application to improve safety of pork meat. Sci. Rep. 2021, 11, 21971. [Google Scholar] [CrossRef]
- Santativongchai, P.; Tulayakul, P.; Jeon, B. Enhancement of the Antibiofilm Activity of Nisin against Listeria monocytogenes Using Food Plant Extracts. Pathogens 2023, 12, 444. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef]
- Jürgenson, S.; Matto, V.; Raal, A. Vegetational variation of phenolic compounds in Epilobium angustifolium. Nat. Prod. Res. 2012, 26, 1951–1953. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-Álvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Samai, Z.; Toudert, N.; Djilani, S.E.; Dadda, N.; Zakkad, F.; Hamel, T. Chemical Composition and in Vitro Antioxidant, Anti-Alzheimer, Anti-Diabetic, Anti-Tyrosinase, and Antimicrobial Properties of Essential Oils and Extracts Derived from Various Parts of the Algerian Calendula Suffruticosa Vahlsubsp. boissieri Lanza. Chem. Biodivers. 2023, 20, e202200620. [Google Scholar] [CrossRef] [PubMed]
- Khalili, S.; Saeidi Asl, M.R.; Khavarpour, M.; Vahdat, S.M.; Mohammadi, M. Comparative study on the effect of extraction solvent on total phenol, flavonoid content, antioxidant and antimicrobial properties of red onion (Allium cepa). Food Meas. 2022, 16, 3578–3588. [Google Scholar] [CrossRef]
- Moo-Huchin, V.M.; Canto-Pinto, J.C.; Cuevas-Glory, L.F.; Sauri-Duch, E.; Perez-Pacheco, E.; Betancur-Ancona, D. Effect of extraction solvent on the phenolic compounds content and antioxidant activity of ramon nut (Brosimum alicastrum). Chem. Pap. 2019, 73, 1647–1657. [Google Scholar] [CrossRef]
- Manso, T.; Lores, M.; de Miguel, T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics 2022, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghită, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef]
- Manandhar, S.; Luitel, S.; Dahal, R.K. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. J. Trop. Med. 2019, 2019, 1895340. [Google Scholar] [CrossRef]
- Kwansa-Bentum, B.; Okine, B.A.; Dayie, A.D.; Tetteh-Quarcoo, P.B.; Kotey, F.C.N.; Donkor, E.S.; Dayie, N.K.T.D. In Vitro effects of petroleum ether, dichloromethane, methanolic and aqueous leaf extracts of Eucalyptus grandis on selected multidrug-resistant bacteria. PLoS ONE 2023, 18, e0283706. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef]
- Jiménez, M.C.; Kowalski, L.; Souto, R.B.; Alves, I.A.; Viana, M.D.; Aragón, D.M. New drugs against multidrug-resistant Gram-negative bacteria: A systematic review of patents. Future Microbiol. 2022, 17, 1393–1408. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Bocquet, L.; Sahpaz, S.; Bonneau, N.; Beaufay, C.; Mahieux, S.; Samaillie, J.; Roumy, V.; Jacquin, J.; Bordage, S.; Hennebelle, T.; et al. Phenolic Compounds from Humulus lupulus as Natural Antimicrobial Products: New Weapons in the Fight against Methicillin Resistant Staphylococcus aureus, Leishmania mexicana and Trypanosoma brucei Strains. Molecules 2019, 24, 1024. [Google Scholar] [CrossRef] [PubMed]
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 11 May 2023).
- Ranjutha, V.; Chen, Y.; Al-Keridis, L.A.; Patel, M.; Alshammari, N.; Adnan, M.; Sahreen, S.; Gopinath, S.C.B.; Sasidharan, S. Synergistic Antimicrobial Activity of Ceftriaxone and Polyalthia longifolia Methanol (MEPL) Leaf Extract against Methicillin-Resistant Staphylococcus aureus and Modulation of mecA Gene Presence. Antibiotics 2023, 12, 477. [Google Scholar] [CrossRef] [PubMed]
- Werler, N.; Guentas, L.; Colot, J.; Hnawia, E.; Matsui, M.; Nour, M. Antimicrobial activity of Xylopia pancheri Baill. Leaf extract against susceptible and resistant Staphylococcus aureus. Phytother. Res. 2023, 37, 2741–2744. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Rodríguez, J.C.; Borrás-Rocher, F.; Barrajón-Catalán, E.; Micol, V. The antimicrobial capacity of Cistus salviifolius and Punica granatum plant extracts against clinical pathogens is related to their polyphenolic composition. Sci. Rep. 2021, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Puljula, E.; Walton, G.; Woodward, M.J.; Karonen, M. Antimicrobial Activities of Ellagitannins against Clostridiales perfringens, Escherichia coli, Lactobacillus plantarum and Staphylococcus aureus. Molecules 2020, 25, 3714. [Google Scholar] [CrossRef] [PubMed]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers 2022, 14, 742. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, A.; Klekotka, U.; Zambrzycka, M.; Zambrowski, G.; Święcicka, I.; Kalska-Szostko, B. Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chem. 2023, 400, 133960. [Google Scholar] [CrossRef]
- Yang, G.; Xie, J.; Hong, F.; Cao, Z.; Yang, X. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydr. Polym 2012, 87, 839–845. [Google Scholar] [CrossRef]
- Shaaban, M.T.; Zayed, M.; Salama, H.S. Antibacterial Potential of Bacterial Cellulose Impregnated with Green Synthesized Silver Nanoparticle against S. aureus and P. aeruginosa. Curr. Microbiol. 2023, 80, 75. [Google Scholar] [CrossRef]
- Sukweenadhi, J.; Setiawan, K.I.; Avanti, C.; Kartini, K.; Rupa, E.J.; Yang, D.-C. Scale-up of green synthesis and characterization of silver nanoparticles using ethanol extract of Plantago major L. leaf and its antibacterial potential. S. Afr. J. Chem. Eng. 2021, 38, 1–8. [Google Scholar] [CrossRef]
- Ssekatawa, K.; Byarugaba, D.K.; Angwe, M.K.; Wampande, E.M.; Ejobi, F.; Nxumalo, E.; Maaza, M.; Sackey, J.; Kirabira, J.B. Phyto-Mediated Copper Oxide Nanoparticles for Antibacterial, Antioxidant and Photocatalytic Performances. Front. Bioeng. Biotechnol. 2022, 10, 820218. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.S.; Javed, N.; Alam, S.; Rishishwar, P.; Rishishwar, S.; Ali, S.; Nayak, A.K.; Beg, S. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater. Sci. Eng. C 2019, 99, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Huq, M.A.; Akter, S. Characterization and Genome Analysis of Arthrobacter bangladeshi sp. nov., Applied for the Green Synthesis of Silver Nanoparticles and Their Antibacterial Efficacy against Drug-Resistant Human Pathogens. Pharmaceutics 2021, 13, 1691. [Google Scholar] [CrossRef] [PubMed]
- Noga, M.; Milan, J.; Frydrych, A.; Jurowski, K. Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int. J. Mol. Sci. 2023, 24, 5133. [Google Scholar] [CrossRef]
- Aneke, C.I.; Otranto, D.; Cafarchia, C. Therapy and Antifungal Susceptibility Profile of Microsporum canis. J. Fungi 2018, 4, 107. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Ferrara, F.; Boccellino, M.; Ponzo, A.; Cimmino, C.; Comberiati, E.; Zovi, A.; Clemente, S.; Sabbatucci, M. Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines 2023, 11, 1063. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Maeda, M.; Alshahni, M.M.; Tanaka, R.; Yaguchi, T.; Bontems, O.; Salamin, K.; Fratti, M.; Monod, M. Terbinafine Resistance of Trichophyton Clinical Isolates Caused by Specific Point Mutations in the Squalene Epoxidase Gene. Antimicrob. Agents Chemother. 2017, 61, e00115-17. [Google Scholar] [CrossRef]
- Moreno-Sabater, A.; Normand, A.-C.; Bidaud, A.-L.; Cremer, G.; Foulet, F.; Brun, S.; Bonnal, C.; Aït-Ammar, N.; Jabet, A.; Ayachi, A.; et al. Terbinafine Resistance in Dermatophytes: A French Multicenter Prospective Study. J. Fungi 2022, 8, 220. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Chen, C.; Han, H.S.; Kano, R. The first report of terbinafine resistance Microsporum canis from a cat. J. Vet. Med. Sci. 2018, 80, 898–900. [Google Scholar] [CrossRef]
- Kano, R.; Hsiao, Y.H.; Han, H.S.; Chen, C.; Hasegawa, A.; Kamata, H. Resistance Mechanism in a Terbinafine-Resistant Strain of Microsporum canis. Mycopathologia 2018, 183, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Kano, R.; Watanabe, M.; Tsuchihashi, H.; Ogawa, T.; Ogawa, Y.; Komiyama, E.; Hirasawa, Y.; Hiruma, M.; Ikeda, S. Antifungal Susceptibility Testing for Microsporum canis from Cats in Japan. Med. Mycol. J. 2023, 64, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Głowacka, A.; Mianowany, M.; Trojanowska, D.; Budak, A. Estimation of antifungal activity of the small-flowered willow (Epilobium parviflorum Schreb.) aqueos extract against dermatophytes from species of Trichopyton mentagrophytes. Postępy Fitoter. 2013, 3, 163–166. [Google Scholar]
- Stan, D.; Enciu, A.-M.; Mateescu, A.L.; Ion, A.C.; Brezeanu, A.C.; Stan, D.; Tanase, C. Natural Compounds with Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. [Google Scholar] [CrossRef]
- Cota, D.; Patil, D. Antibacterial potential of ellagic acid and gallic acid against IBD bacterial isolates and cytotoxicity against colorectal cancer. Nat. Prod. Res. 2022, 15, 1998–2002. [Google Scholar] [CrossRef]
- Sieniawska, E. Activities of Tannins—From In Vitro Studies to Clinical Trials. Nat. Prod. Commun. 2015, 10, 1877–1884. [Google Scholar] [CrossRef]
- Pei, X.; Xiao, J.; Wei, G.; Zhang, Y.; Lin, F.; Xiong, Z.; Lu, L.; Wang, X.; Pang, G.; Jiang, Y.; et al. Oenothein B inhibits human non-small cell lung cancer A549 cell proliferation by ROS-mediated PI3K/Akt/NF-κB signaling pathway. Chem. Biol. Interact. 2019, 298, 112–120. [Google Scholar] [CrossRef]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Li, T.; Liu, X.; Hao, Z.; Ding, S.; Panichayupakaranant, P.; Zhu, K.; Shen, J. Plant Natural Flavonoids against Multidrug Resistant Pathogens. Adv. Sci. 2021, 8, 2100749. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef]
- Farha, A.K.; Yang, Q.-Q.; Kim, G.; Li, H.-B.; Zhu, F.; Liu, H.-Y.; Gan, R.-Y.; Corke, H. Tannins as an alternative to antibiotics. Food Biosci. 2020, 38, 100751. [Google Scholar] [CrossRef]
- Moilanen, J.; Karonen, M.; Tähtinen, P.; Jacquet, R.; Quideau, S.; Salminen, J.P. Biological activity of ellagitannins: Effects as antioxidants, prooxidants and metal chelators. Phytochemistry 2016, 125, 65–72. [Google Scholar] [CrossRef]
- Anstett, D.N.; Cheval, I.; D’Souza, C.; Salminen, J.P.; Johnson, M.T.J. Ellagitannins from the Onagraceae Decrease the Performance of Generalist and Specialist Herbivores. J. Chem. Ecol. 2019, 45, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yashida, T.; Hatano, T.; Ito, H.; Hirai, Y. Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol. Immunol. 2004, 48, 251–261. [Google Scholar] [CrossRef]
- Franco, A.M.; Tocci, N.; Guella, G.; Dell’Agli, M.; Sangiovanni, E.; Perenzoni, D.; Vrhovsek, U.; Mattivi, F.; Manca, G. Myrtle Seeds (Myrtus communis L.) as a Rich Source of the Bioactive Ellagitannins Oenothein B and Eugeniflorin D2. ACS Omega 2019, 4, 15966–15974. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhou, A.; Liu, Z.; Xiao, J.; Wang, Y.; Cao, Y.; Wang, L. Inhibitory mechanism of lactoferrin on antibacterial activity of oenothein B: Isothermal titration calorimetry and computational docking simulation. J. Sci. Food Agric. 2020, 100, 2494–2501. [Google Scholar] [CrossRef] [PubMed]
- Gansukh, E.; Nile, A.; Kim, D.H.; Oh, J.W.; Nile, S.N. New insights into antiviral and cytotoxic potential of quercetin and its derivatives—A biochemical perspective. Food Chem. 2021, 334, 127508. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Aderogba, M.A.; Ndhlala, A.R.; Rengasamy, K.R.R.; Van Staden, J. Antimicrobial and Selected In Vitro Enzyme Inhibitory Effects of Leaf Extracts, Flavonols and Indole Alkaloids Isolated from Croton menyharthii. Molecules 2013, 18, 12633–12644. [Google Scholar] [CrossRef]
- Motlhatlego, K.E.; Abdalla, M.A.; Leonard, C.M.; Eloff, J.N.; McGaw, L.J. Inhibitory effect of Newtonia extracts and myricetin-3-o-rhamnoside (myricitrin) on bacterial biofilm formation. BMC Complement. Med. Ther. 2020, 20, 358. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Thebti, A.; Meddeb, A.; Ben Salem, I.; Bakary, C.; Ayari, S.; Rezgui, F.; Essafi-Benkhadir, K.; Boudabous, A.; Ouzari, H.-I. Antimicrobial Activities and Mode of Flavonoid Actions. Antibiotics 2023, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Chew, Y.L.; Mahadi, A.M.; Wong, K.M.; Goh, J.K. Anti-methicillin-resistance Staphylococcus aureus (MRSA) compounds from Bauhinia kockiana Korth. And their mechanism of antibacterial activity. BMC Complement. Altern. Med. 2018, 18, 70. [Google Scholar] [CrossRef]
- Tian, Q.M.; Wei, S.M.; Su, H.R.; Zheng, S.M.; Xu, S.Y.; Liu, M.J.; Bo, R.N.; Li, J.G. Bactericidal activity of gallic acid against multi-drug resistance Escherichia coli. Microb. Pathog. 2022, 173, 105824. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gómez, R.; López-Solís, R.; Obreque-Slier, E.; Toledo-Araya, H. Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. LWT 2013, 54, 331–335. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial Activity and Mechanism of Action of Chlorogenic Acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Le, Y.-J.; He, L.-Y.; Li, S.; Xiong, C.-J.; Lu, C.-H.; Yang, X.-Y. Chlorogenic acid exerts antibacterial effects by affecting lipid metabolism and scavenging ROS in Streptococcus pyogenes. FEMS Microbiol. Lett. 2022, 369, fnac061. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhang, Y.; Fu, S.; Li, Z.; Zhang, J.; Xu, Y.; Han, X.; Miao, J. Application of Chlorogenic acid as a substitute for antibiotics in Multidrug-resistant Escherichia coli-induced mastitis. Int. Immunopharmacol. 2023, 114, 109536. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Xu, Y.; Zhang, B.; Xia, X. Antimicrobial effect and mode of action of chlorogenic acid on Staphylococcus aureus. Eur. Food Res. Technol. 2014, 238, 589–596. [Google Scholar] [CrossRef]
- Su, M.; Liu, F.; Luo, Z.; Wu, H.; Zhang, X.; Wang, D.; Zhu, Y.; Sun, Z.; Xu, W.; Ying, M. The Antibacterial Activity and Mechanism of Chlorogenic Acid against Foodborne Pathogen Pseudomonas aeruginosa. Foodborne Pathog. Dis. 2019, 16, 823–830. [Google Scholar] [CrossRef]
No. | Plant Material/ Extractant | Experimental Method | Microbial Species | Effect | Reference |
---|---|---|---|---|---|
1 | Roots/EtOH, H2O-EtOH (1:1) | Disk diffusion method | Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Microsporum gypseum, Saccharomyces cerevisiae, Trichophyton mentagrophytes | Great antifungal activity against M. gypseum, T. mentagrophytes, S. cerevisiae, and C. albicans. The effect comparable to or even stronger than the positive control (berberine). | [57] |
2 | Aerial parts/80% MeOH | Cylinder diffusion method | Aspergillus niger, Candida albicans, Escherichia coli, Staphylococcus aureus | Significant antibacterial effect against E. coli and S. aureus. Slight or lack of antifungal activity against C. albicans and A. niger. | [58] |
3 | Aerial parts EtOH | Broth microdilution method (MIC, MCC) | Bacillus subtilis, Candida albicans, C. glabrata, C. krusei, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Microsporum canis, M. gypseum, Pseudomonas aeruginosa, Salmonella enteritidis, Shigella flexneri, Staphylococcus aureus, Streptococcus pyogenes, S. sanguis, Trichophyton mentagrophytes, T. rubrum | Very strong antifungal activity against Microsporum canis and strong antibacterial effect against K. pneumoniae. | [59] |
4 | Leaves, flowers, flowering aerial parts/H2O-EtOH (80:20) | Disk diffusion method | Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus | Activity of leaf and flowering part extracts against all microorganisms tested. The strongest effect against C. albicans and S. aureus. | [60] |
5 | Seeds/50% MeOH | Disk diffusion method | Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus | Poor activity only against S. aureus. | [61] |
6 | Roots/H2O | Broth microdilution method (MIC) | Aspergillus flavus, A. fumigatus, Candida albicans, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis, C. tropicalis, Cryptococcus neoformans, Epidermophyton floccosum, Fusarium solani, Microsporum canis, Rhizopus sp., Saccharomyces cerevisiae, Trichophyton mentagrophytes, T. rubrum, T. tonsurans | Strong antifungal effect, especially against C. glabrata, C. lusitaniae, and S. cerevisiae strains. | [62] |
7 | Whole plant/crude extract (Fytokem, SK, Canada) | Broth microdilution method (absorbance measurement) | Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus aureus | Activity against all bacteria tested. More effective than tetracycline against Gram-negative bacteria: E. coli and P. aeruginosa. | [63] |
8 | Leaves, flowers without stems/96% EtOH | Disk diffusion method, Broth microdilution method (MIC), Cell viability test (C. albicans) | Bacillus subtilis, Candida albicans, C. dubliniensis, C. tropicalis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Saccharomyces cerevisiae, Staphylococcus aureus | Weak antimicrobial activity, usually similar for both types of extracts (leaves and flowers). | [64] |
9 | Aerial parts/75% MeOH | Disk diffusion method, Quorum sensing (QS) inhibition activity assay | Chromobacterium violaceum | Dose-dependent QS inhibition activity. Reduction of violacein production by 41% at 250 μg/mL and 57% at 500 μg/mL concentration of plant extract. | [65] |
10 | Flowering aerial parts/EtOH, MeOH | Well diffusion method, Broth microdilution method (MIC, MBC) | Bacillus cereus, B. subtilis, Candida albicans, C. krusei, C. tropicalis, Enterococcus faecalis, E. hirae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella Typhimurium, Staphylococcus aureus | Moderate antibacterial activity against B. cereus and B. subtilis, low—against S. aureus and P. vulgaris. No antifungal effect against Candia spp. | [13] |
11 | Local market, Turkey/99% EtOH, H2O, 95% HE, 99.7% MeOH | Disk diffusion method | Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus | Broad differentiation between antibacterial activity of particular extracts. The greatest sensitivity of P. aeruginosa, K. pneumoniae, and S. aureus to MeOH extract, while E. coli to EtOH and MeOH extracts. | [66] |
12 | OMEGA PHARMA Srl (Cantù, Italy)/H2O | Broth microdilution method (MIC) | Arthroderma crocatum, A. currey, A. gypseum, A. insingulare, A. quadrifidum, Bacillus cereus, B. subtilis, Candida albicans, C. parapsilosis, C. tropicalis, Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhi, Staphylococcus aureus, Trichophyton erinacei, T. mentagrophytes, T. rubrum, T. tonsurans | Strong antimicrobial activity, especially against T. tonsurans, T. rubrum, A. crocatum, A. currey, A. insingulare, C. tropicalis. | [67] |
13 | Flowering aerial parts/no data | Well diffusion method, Broth microdilution method (MIC, MBC) | Bacillus cereus, Candida spp., Escherichia coli, Staphylococcus aureus | Strong antibacterial activity of 30 and 50% solution of extract against B. cereus and S. aureus. | [68] |
14 | Flowering aerial parts/EtOH | Disk diffusion method, Broth microdilution method (MIC) | Escherichia coli, Salmonella Typhimurium, Staphylococcus aureus | Low antibacterial effect compared to ciprofloxacin (disk diffusion method), while significant activity determined by the broth microdilution method. | [69] |
15 | Flowering aerial parts/70% EtOH | Well diffusion method | Bacillus pseudomycoides, B. subtilis, B. thuringiensis, Enterococcus faecalis, E. faecium, Pseudomonas aeruginosa, P. fluorescens, Serratia lutea, S. marcescens, Streptococcus pneumoniae | Strong antibacterial activity against S. lutea, S. marcescens, as well as B. pseudomycoides and B. subtilis. | [70] |
16 | Aerial parts/H2O, MeOH | Disk diffusion method | Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella Typhimurium, Serratia marcescens, Staphylococcus aureus, S. epidermidis, Streptococcus pyogenes | Strong antibacterial activity against S. aureus, S. epidermis, S. pyogenes, and P. vulgaris. | [71] |
17 | Flowers/H2O | Well diffusion method, Broth microdilution method (MIC, MBC) | Candida albicans, Escherichia coli, Staphylococcus aureus | Strong antimicrobial activity against S. aureus, E. coli, and C. albicans. | [72] |
18 | Flowering aerial parts/70% EtOH, 70% iPrOH, H2O in hydrogels | Well diffusion method | Bacillus subtilis, B. pseudomycoides, Enterococcus faecalis, E. faecium, Escherichia coli, Pseudomonas fluorescens, Sarcina lutea, Serratia marcescens, Staphylococcus aureus, Streptococcus epidermidis, S. pneumoniae | Moderate activity against S. pneumoniae, E. faecalis, E. faecium, S. lutea, and E. coli. | [73] |
19 | No data/infusion | In vitro digested infusion model. Optical density (OD600) with a Bioscreen C system | Bifidobacterium adolescentis, B. longum, Enterobacter cloacae, Enterococcus faecalis, Escherichia coli, Lactobacillus rhamnosus | No growth inhibition of L. rhamnosus, Bifidobacterium sp. contrary to E. coli. | [74] |
20 | Leaves/DCM, MeOH, H2O | Disk diffusion method, Anti-biofilm assay | Bacillus subtilis, Candida maltosa, Escherichia coli (including strains forming biofilms), Pseudomonas aeruginosa, Staphylococcus aureus | Strong antimicrobial activity against C. maltose, significant—against S. aureus, E. coli, P. aeruginosa. Poor or no activity of DCM extract. Weak or moderate anti-biofilm activity. | [75] |
21 | Leaves/H2O | Broth microdilution method (MIC) | Bacillus cereus, B. subtilis, Clostridium sporogenes, Enterococcus faecalis, Escherichia coli, Lactobacillus rhamnosus, L. plantarum, Listeria innocua, L. monocytogenes, Salmonella Hofit, S. enterica, Staphylococcus aureus | Significant activity against S. aureus, L. monocytogenes, Bacillus spp., Lactobacillus spp. No activity against Gram-negative bacteria. Resistance of P. aeruginosa. | [56] |
22 | Leaves, flowering aerial parts/30% EtOH | Disk diffusion method, Broth microdilution method (MIC) | Bacillus cereus, Candida albicans, Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus | Moderate activity against B. cereus and E. faecalis. No activity against Gram-negative bacteria. | [76] |
23 | Aerial parts/H2O/silver nitrate nanoparticles | Well diffusion method, Broth microdilution method (MIC) | Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus (MRSA) | Strong antibacterial effect against MRSA. Significant activity against A. baumannii in well-diffusion assay. | [55] |
Genus | Species | Strains | Inhibition Zone | MIC/OD |
---|---|---|---|---|
Bacillus | cereus | PeruMycA 4 | 62.5–125 µg/mL [67] | |
NCTC 74 | 17.0–25.0 mm [68] | 30% solution [68] | ||
ATCC 11778 | 13.8–14.1 mm [76] | 0.25% solution [56], MIC50 = 1/64 (aerial parts), MIC50 = 1/128 (leaves) [76] | ||
NRRL B-3711 | activity found; no data [13] | 1.56 mg/mL [13] | ||
pseudomycoides | not specified | 6.0–11.5 mm [70], 10.0–13.0 mm [73] | ||
subtilis | ATCC 6633 | 13.5 mm [64], activity found; no data [13] | 325 µg/mL [59], 1.56 mg/mL [13], 4.6–6.1 mg/mL [64], 0.25% solution [56] | |
PeruMycA 6 | 125–250 µg/mL [67] | |||
ATCC 6059 | no activity [75] | 0.25% solution [56] | ||
not specified | 6.5–11.0 mm [70], 6.5–8.5 mm [73] | |||
thuringiensis | not specified | 5.5–9.0 mm [70] | ||
Clostridium | sporogenes | ATCC 11437 | no activity at 0.5% solution [56] | |
Bifidobacterium | adolescentis | DSM 20083 | no activity (OD) [74] | |
longum | DSM 20088 | no activity (OD) [74] | ||
Enterococcus | faecalis | ATCC 29212 | 16.0–17.0 mm [73], 7.9–8.4 mm [76], 5.0–7.0 mm [70], no activity [13] | MIC50 = 1/64 (aerial parts), MIC50= 1/128 (leaves) [76] |
ATCC 51229 | no activity 0.5% solution [56] | |||
JCM 1513 | stimulation of growth (OD) [74] | |||
clinically isolated strain | no activity [59] | |||
faecium | not specified | 14.5–16.0 mm [73], 5.0–7.0 mm [70] | ||
hirae | ATCC 9790 | no activity [13] | ||
Lactobacillus | rhamnosus | B-445, ŁOCK 0900 | no activity 0.5% solution [56], no activity (OD) [74] | |
plantarum | 299v | no activity 0.5% solution [56] | ||
Listeria | innocua | ATCC 33090 | 0.25% solution [56] | |
monocytogenes | ATCC 19111 | 0.25% solution [56], no activity [59] | ||
ATCC 13932 | 8.2–8.8 mm [76] | MIC50 = 1/64 (aerial parts), MIC50 = 1/128 (leaves) [76] | ||
ATCC 15313 | no activity 0.5% solution [56] | |||
ATCC 7644 | no activity 0.5% solution [56] | |||
IFM 1011 | no activity 0.5% solution [56] | |||
Micrococcus | luteus | clinically isolated strain | activity similar to vancomycin [63] | |
Staphylococcus | aureus | DSM 20231 | 4.0–10.0 mm [58] | |
ATCC 12600 | 11.0–17.0 mm [60], 7.0 mm [61] | |||
ATCC 6538P | 8.8–10.7 mm [76], 13.5–14.0 mm [64] | 325 µg/mL [59], 6.1 mg/mL [64]; MIC50 = 1/64 (aerial parts), MIC50 = 1/128 (leaves) [76] | ||
ATCC 6538 | 24.0 mm [72], 17.5–20.0 mm [68], 10.0 mm (MeOH) [75], 14.0 mm (H2O) [75] | 0.5 mg/mL [72], 125–250 µg/mL [67], 30% solution [68] | ||
4.4 | 0.15% solution [56] | |||
ATCC 6535 | 0.15% solution [56] | |||
ATCC 4538 | 0.15% solution [56] | |||
MFBF 124 (MRSA) | 14.5 mm [64] | 7.6 mg/mL [64] | ||
ATCC 25923 | 5.0–21.5 mm [66], 13.3–15.0 mm [71], 7.0 mm [69], activity found; no data [13] | 3.13–6.25 mg/mL [13], 156 µg/mL [69], 0.15% solution [56] | ||
clinically isolated strains | 325 µg/mL [59], less active than vancomycin [63] | |||
MRSA clinically isolated strain | 21.0 mm [55] | 0.625 µg/mL [55] | ||
not specified | 6.0–7.0 mm [73] | |||
epidermidis | ATCC 12228 | 18.2–18.4mm [71] | ||
Streptococcus | epidermidis | not specified | 6.0–8.5 mm [73] | |
pneumoniae | ATCC 49619 | 16.5–18.0 mm [73], 5.0–7.0 mm [70] | ||
pyogenes | ATCC 12345 | 325 µg/mL [59] | ||
ATCC 19615 | 14.0–16.4 [71] | - | ||
sanguis | CDC SS 910 | 325 µg/mL [59] | ||
Acinetobacter | baumannii | clinically isolated MDR 210 | 10.0 mm [55] | 1.25 µg/mL [55] |
clinically isolated MDR 211 | 14.0 mm [55] | 1.25 µg/mL [55] | ||
Chromobacterium | violaceum | CV12472 | no activity (for QS inhibition) [65] | |
Enterobacter | cloacae | ATCC 23355 | no activity [71] | |
PCM 533 | no activity [74] | |||
Escherichia | coli | ATCC 8739 | 4.0–10.0 mm [58] | |
ATCC 15221 | no activity [59] | |||
ATCC 8677 | 6.0–7.0 mm [60], no activity [60,61] | |||
ATCC 10535 | 13.5–14.5 mm [64] | 6.1–7.6 mg/mL [64] | ||
ATCC 10536 | no activity [76] | 62.5–125 µg/mL [67], no activity 0.5% solution [56] | ||
ATCC 11229 | (H2O) 11.0 mm [75], (MeOH) 13.0 mm [75] | |||
ATCC 35218 | no activity [13] | |||
MFBF P11 (p-fimbriae positive) | 14.5 mm [64] | 9.1–16.2 mg/mL [64] | ||
ATCC 25922 | 21.0 mm [72], 8.0 mm [69], ≤10 mm [68], 11.5–15.0 mm [66], no activity [13,71] | 156 µg/mL [69], 1.0 mg/mL [72], no activity for 30 and 50% solution [68] | ||
ATCC 25923 | no activity 0.5% solution [56] | |||
PeruMycA 2 | 125–250 µg/mL [67] | |||
PeruMycA 3 | 125–250 µg/mL [67] | |||
PBio 729 (MRGN) | no activity [75] | (MeOH) 50 µg/mL, (H2O) 100 µg/mL [75] | ||
PBio 730 (MRGN) | no activity [75] | (MeOH) 50 µg/mL, (H2O) 100 µg/mL [75] | ||
ATCC 11239 | 11.0–13.0 mm [75] | |||
clinically isolated MDR 55 | 16.0 mm [55] | 0.625 µg/mL [55] | ||
clinically isolated strain | more active than tetracycline [63] | |||
not specified | 13.0–15.0 mm [73] | 64 µg/mL [74] | ||
Klebsiella | pneumoniae | ATCC 10031 | 81 µg/mL [59] | |
ATCC 13883 | no activity [13,71] | |||
MDR 104 | 14.0 mm [55] | 0.625 µg/mL [55] | ||
MMLRD not specified | 13.0–23.5 mm [66] | |||
Proteus | mirabilis | MFBF 624 | no activity [64] | 15.1–16.2 mg/mL [64] |
vulgaris | RSKK 96029 | activity found; no data [13] | 3.13 mg/mL [13] | |
ATCC 13315 | 15.2–17.3 mm [71] | |||
Pseudomonas | aeruginosa | ATCC 27853 | 10.5–11.5 mm [64], 0.0–12.0 mm [75], no activity [13,71,76] | 162 µg/mL [59], 9.1 mg/mL [64] no activity [71] |
ATCC 9721 | 7.0 mm [60], no activity [60,61] | |||
PeruMycA 5 | 62.5–125 µg/mL [67] | |||
ATCC 2753 | 4.0–6.0 mm [70] | |||
clinically isolated MDR 40 | 9.0 mm [55] | 1.25 µg/mL [55] | ||
clinically isolated MDR 215 | 11.0 mm [55] | 1.25 µg/mL [55] | ||
MMLRD not specified | 4.0–25.5 mm [66] | |||
clinically isolated strain | more active than tetracycline [63] | |||
fluorescens | not specified | 6.0 mm [70], 7.0–8.5 mm [73] | ||
Salmonella | enterica | ATCC 29631 | 0.15% solution [56] | |
enteritidis | IAL 1132 | no activity [59] | ||
ATCC 13076 | no activity [76] | |||
Hofit | IFM 2318 | no activity 0.5% solution [56] | ||
Typhimurium | ATCC 14028 | 6.0 mm [69], no activity [13,71] | 312 µg/mL [69] | |
Typhi | PeruMycA 7 | 125–250 µg/mL [67] | ||
Sarcina | lutea | ATCC 9341 | 15.0–16.5 mm [73] | |
Serratia | lutea | ATCC 9341 | 8.0–16.0 mm [70] | |
marcescens | ATCC 8100 | no activity [71] | ||
not specified | 7.0–15.0 mm [70], 9.0–10.5 mm [73] | |||
Shigella | flexneri | CDC 9767 | no activity [59] | |
IAL 1517 | no activity [59] |
Genus | Species | Strains | Inhibition Zone | MIC |
---|---|---|---|---|
Arthroderma | crocatum | CCF 5300 | 15.62–31.25 µg/mL [67] | |
currey | CCF 5207 | 31.25–62.5 µg/mL [67] | ||
gypseum | CCF 6261 | 125–250 µg/mL [67] | ||
insingulare | CCF 5417 | 31.25–62.5 µg/mL [67] | ||
quadrifidum | CCF 5792 | 62.5–125 µg/mL [67] | ||
Epidermophyton | floccosum | NCM 335 | - | 3 mg/mL [62] |
clinically isolated strain | 3 mg/mL [62] | |||
Microsporum | canis | NCM 336 | 1 mg/mL [62] | |
clinically isolated strains | 10 µg/mL [59], no growth [62] | |||
gypseum | OMH FR323 | 18.9 mm [57] | ||
clinically isolated strains | 650 µg/mL [59], no growth [62] | |||
Trichophyton | erinacei | CCF 5930 | 125–250 µg/mL [67] | |
rubrum | CCF 4879 | 62.5–125 µg/mL [67] | ||
CCF 4933 | 15.62–31.25 µg/mL [67] | |||
clinically isolated strains | 650 µg/mL [59], no growth, 3000 mg/mL [62] | |||
mentagrophytes | OMH T2379 | 16.1 mm [57] | ||
CCF 4823 | 62.25–125 µg/mL [67] | |||
clinically isolated strains | 162–650 µg/mL [59], 3–6 mg/mL [62] | |||
tonsurans | NCM 334 | 3 mg/mL [62] | ||
CCF 4834 | 7.81–15.62 µg/mL [67] | |||
clinically isolated strain | no growth [62] | |||
Aspergillus | flavus | clinically isolated strains | no activity [62] | |
fumigatus | OMH FR2837 | no activity [57] | ||
NCM 338 | no activity [62] | |||
clinically isolated strains | no activity [62] | |||
niger | ATCC 16404 | no activity [58] | ||
Candida | albicans | ATCC 10231 | 15.0–20.0 mm [60], 16.0 mm [72], 10.0–11.7 mm [76], 1.0–3.0 mm [58], no activity [13,61,64] | 6.1–12.1 mg/mL [64], 4 mg/mL [72] MIC50 = 1/64 (leaves), MIC50 = 1/32 [76] |
ATCC 24433 | 0.8 mg/mL [62] | |||
ATCC 90028 | 0.4 mg/mL [62] | |||
Candida | albicans | ATCC 885–653 | 10.0–15.0 mm [68] | |
OGH 308–1329 | 13.5 mm [57] | |||
DBVPG 6379 | 125–250 µg/mL [67] | |||
DBVPG 6183 | 125–250 µg/mL [67] | |||
clinically isolated strains | 0.2–1.6 mg/mL [62], 325 µg/mL [59] | |||
dubliniensis | MFBF 501 | no activity [64] | 12.1 mg/mL [64] | |
glabrata | clinically isolated strains | 25–50 mg/mL [62], no activity [59] | ||
krusei | ATCC 6258 | no activity [13] | 0.2 mg/mL [62] | |
clinically isolated strains | 0.2 mg/mL [62], 325 µg/mL [59] | |||
maltosa | SBUG 700 | 18.0 mm (H2O), 25 mm (MeOH), no activity (DCM) [75] | ||
lusitaniae | clinically isolated strains | 0.05–0.2 mg/mL [62] | ||
parapsilosis | ATCC 90018 | 0.8 mg/mL [62] | ||
ATCC 22019 | 0.1 mg/mL [62] | |||
DBVPG 6551 | ≥250 µg/mL [67] | |||
clinically isolated strains | 0.1–0.4 mg/mL [62] | |||
tropicalis | ATCC 750 | no activity [64] | 1.6 mg/mL [62], 15.2 mg/mL [64] | |
Y-12968 | no activity [13] | |||
DBVPG 6184 | 31.25–62.5 µg/mL [67] | |||
clinically isolated strain | 1.6 mg/mL [62] | |||
spp. | ATCC 885–653 | ≤10.0–15.0 mm [68] | 30% solution [68] | |
Saccharomyces | cerevisiae | ATCC 48252 | 15.5 mm [57] | |
NCYC 87 | no activity [64] | 18.2 mg/mL [64] | ||
clinically isolated strains | 0.05 mg/mL [62] | |||
Cryptococcus | neoformans | OMH FR2704 | 11.5 mm [57] | |
clinically isolated strains | 0.4 mg/mL [62] | |||
Fusarium | solani | Pig pasture soil | no activity [62] | |
Rhizopus | sp. | NCM 337 | 25 mg/mL [62] | |
clinically isolated strain | 0.2 mg/mL [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreger, M.; Adamczak, A.; Foksowicz-Flaczyk, J. Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review. Pharmaceuticals 2023, 16, 1419. https://doi.org/10.3390/ph16101419
Dreger M, Adamczak A, Foksowicz-Flaczyk J. Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review. Pharmaceuticals. 2023; 16(10):1419. https://doi.org/10.3390/ph16101419
Chicago/Turabian StyleDreger, Mariola, Artur Adamczak, and Joanna Foksowicz-Flaczyk. 2023. "Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review" Pharmaceuticals 16, no. 10: 1419. https://doi.org/10.3390/ph16101419
APA StyleDreger, M., Adamczak, A., & Foksowicz-Flaczyk, J. (2023). Antibacterial and Antimycotic Activity of Epilobium angustifolium L. Extracts: A Review. Pharmaceuticals, 16(10), 1419. https://doi.org/10.3390/ph16101419