Current Treatment Options in Homozygous Familial Hypercholesterolemia
Abstract
:1. Introduction
2. Treatment of Patients with HoFH
3. Conventional Lipid Lowering Therapy
4. PCSK9 Inhibitors
4.1. Alirocumab and Evolocumab
4.2. Inclisiran
4.3. Lerodalcibep
5. Pharmacologic Agents Acting Independent of LDL-Receptors
5.1. Anti-Apo-B Therapies
5.1.1. Lomitapide
5.1.2. Mipomersen
5.2. ANGPTL3 Inhibitors
5.2.1. Evinacumab
5.2.2. RNA Based Treatments Targeting ANGPTL3
6. Interventions to Lower LDL Independent of LDL-Receptor
6.1. Lipoprotein Apheresis
6.2. Liver Transplantation
7. Future or near Future Aspects
7.1. CRISPR-Based Genome Editing
7.2. Gene Transfer
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kayikcioglu, M.; Kısmalı, E.; Can, L.; Payzin, S. Long-term follow-up in patients with homozygous familial hypercholesterolemia; 13-year experience of a university hospital lipid clinic. Turk. Kardiyol. Dernegi Arsivi-Arch. Turk. Soc. Cardiol. 2014, 42, 599–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, A.; Cuchel, M. Advancements in the Treatment of Homozygous Familial Hypercholesterolemia. J. Atheroscler. Thromb. 2022, 29, 1125–1135. [Google Scholar] [CrossRef]
- Tokgozoglu, L.; Kayikcioglu, M. Familial Hypercholesterolemia: Global Burden and Approaches. Curr. Cardiol. Rep. 2021, 23, 151. [Google Scholar] [CrossRef]
- Chemello, K.; García-Nafría, J.; Gallo, A.; Martín, C.; Lambert, G.; Blom, D. Lipoprotein metabolism in familial hypercholesterolemia. J. Lipid Res. 2021, 62, 100062. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.R.; Blom, D.J.; Marais, A.D.; Seed, M.; Pilcher, G.J.; Raal, F.J. Survival in homozygous familial hypercholesterolaemia is determined by the on-treatment level of serum cholesterol. Eur. Heart J. 2018, 39, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, A.; Catapano, A.L. Evinacumab: A new option in the treatment of homozygous familial hypercholesterolemia. Expert Opin. Biol. Ther. 2022, 22, 813–820. [Google Scholar] [CrossRef]
- Kayikcioglu, M.; Tokgozoglu, L.; Yilmaz, M.; Kaynar, L.; Aktan, M.; Durmuş, R.B.; Gokce, C.; Temizhan, A.; Ozcebe, O.I.; Akyol, T.K.; et al. A nation-wide survey of patients with homozygous familial hypercholesterolemia phenotype undergoing LDL-apheresis in Turkey (A-HIT 1 registry). Atherosclerosis 2018, 270, 42–48. [Google Scholar] [CrossRef]
- Tunçel, Ö.K.; Kayıkçıoğlu, M.; Pırıldar, Ş.; Yılmaz, M.; Kaynar, L.; Aktan, M.; Durmuş, R.B.; Gökçe, C.; Temizhan, A.; Özcebe, O.İ.; et al. Mental status and physical activity in patients with homozygous familial hypercholesterolemia: A subgroup analysis of a nationwide survey (A-HIT1 registry). J. Clin. Lipidol. 2020, 14, 361–370. [Google Scholar] [CrossRef]
- Kayikcioglu, M.; Kuman-Tunçel, O.; Pirildar, S.; Yílmaz, M.; Kaynar, L.; Aktan, M.; Durmus, R.B.; Gökçe, C.; Temizhan, A.; Özcebe, O.I.; et al. Clinical management, psychosocial characteristics, and quality of life in patients with homozygous familial hypercholesterolemia undergoing LDL-apheresis in Turkey: Results of a nationwide survey (A-HIT1 registry). J. Clin. Lipidol. 2019, 13, 455–467. [Google Scholar] [CrossRef]
- Tromp, T.R.; Cuchel, M. New algorithms for treating homozygous familial hypercholesterolemia. Curr. Opin. Infect. Dis. 2022, 33, 326–335. [Google Scholar] [CrossRef]
- İncazli, S.P.B.; Özer, S.P.; Kayikçioğlu, M.M. Evaluation of the Effectiveness of Individually Tailored Lifestyle Intervention in Patients With Familial Hypercholesterolemia. J. Cardiovasc. Nurs. 2022, 37, 465–474. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Stefanutti, C. Lomitapide–a Microsomal Triglyceride Transfer Protein Inhibitor for Homozygous Familial Hypercholesterolemia. Curr. Atheroscler. Rep. 2020, 22, 38. [Google Scholar] [CrossRef]
- Raal, F.J.; Pilcher, G.J.; Panz, V.R.; van Deventer, H.E.; Brice, B.C.; Blom, D.J.; Marais, A.D. Reduction in Mortality in Subjects With Homozygous Familial Hypercholesterolemia Associated With Advances in Lipid-Lowering Therapy. Circulation 2011, 124, 2202–2207. [Google Scholar] [CrossRef] [Green Version]
- Wiegman, A.; Gidding, S.S.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Cuchel, M.; Ose, L.; Averna, M.; Boileau, C.; Borén, J.; et al. Familial hypercholesterolaemia in children and adolescents: Gaining decades of life by optimizing detection and treatment. Eur. Heart J. 2015, 36, 2425–2437. [Google Scholar] [CrossRef] [Green Version]
- Othman, R.A.; Myrie, S.B.; Mymin, D.; Roullet, J.-B.; Steiner, R.D.; Jones, P.J. Effect of ezetimibe on low- and high-density lipoprotein subclasses in sitosterolemia. Atherosclerosis 2017, 260, 27–33. [Google Scholar] [CrossRef] [Green Version]
- I Kramer, A.; E Akioyamen, L.; Lee, S.; Bélanger, A.; Ruel, I.; Hales, L.; Genest, J.; Brunham, L.R. Major adverse cardiovascular events in homozygous familial hypercholesterolaemia: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2021, 29, 817–828. [Google Scholar] [CrossRef]
- Ray, K.K.; Dhalwani, N.; Sibartie, M.; Bridges, I.; Ebenbichler, C.; Perrone-Filardi, P.; Villa, G.; Vogt, A.; Bruckert, E. Low-density lipoprotein cholesterol levels exceed the recommended European threshold for PCSK9i initiation: Lessons from the HEYMANS study. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 8, 447–460. [Google Scholar] [CrossRef]
- Stein, E.A.; Honarpour, N.; Wasserman, S.M.; Xu, F.; Scott, R.; Raal, F.J. Effect of the Proprotein Convertase Subtilisin/Kexin 9 Monoclonal Antibody, AMG 145, in Homozygous Familial Hypercholesterolemia. Circulation 2013, 128, 2113–2120. [Google Scholar] [CrossRef] [Green Version]
- Raal, F.J.; Honarpour, N.; Blom, D.J.; Hovingh, G.K.; Xu, F.; Scott, R.; Wasserman, S.M.; A Stein, E. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): A randomised, double-blind, placebo-controlled trial. Lancet 2015, 385, 341–350. [Google Scholar] [CrossRef]
- Santos, R.D.; Stein, E.A.; Hovingh, G.K.; Blom, D.J.; Soran, H.; Watts, G.F.; López, J.A.G.; Bray, S.; Kurtz, C.E.; Hamer, A.W.; et al. Long-Term Evolocumab in Patients With Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2020, 75, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Blom, D.J.; Harada-Shiba, M.; Rubba, P.; Gaudet, D.; Kastelein, J.J.; Charng, M.-J.; Pordy, R.; Donahue, S.; Ali, S.; Dong, Y.; et al. Efficacy and Safety of Alirocumab in Adults With Homozygous Familial Hypercholesterolemia: The ODYSSEY HoFH Trial. J. Am. Coll. Cardiol. 2020, 76, 131–142. [Google Scholar] [CrossRef] [PubMed]
- France, M.; Rees, A.; Datta, D.; Thompson, G.; Capps, N.; Ferns, G.; Ramaswami, U.; Seed, M.; Neely, D.; Cramb, R.; et al. HEART UK medical scientific and research committee. HEART UK statement on the management of homozygous familial hypercholesterolaemia in the United Kingdom. Atherosclerosis. 2016, 255, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donoghue, M.L.; Giugliano, R.P.; Wiviott, S.D.; Atar, D.; Keech, A.C.; Kuder, J.F.; Im, K.; Murphy, S.A.; Flores-Arredondo, J.H.; López, J.A.G.; et al. Long-Term Evolocumab in Patients With Established Atherosclerotic Cardiovascular Disease. Circulation 2022, 146, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Kayikcioglu, M.; Tokgozoglu, L.; Tuncel, O.K.; Pirildar, S.; Can, L. Negative impact of COVID-19 pandemic on the lifestyle and management of patients with homozygous familial hypercholesterolemia. J. Clin. Lipidol. 2020, 14, 751–755. [Google Scholar] [CrossRef]
- Wright, R.S.; Ray, K.K.; Raal, F.J.; Kallend, D.G.; Jaros, M.; Koenig, W.; Leiter, L.A.; Landmesser, U.; Schwartz, G.G.; Friedman, A.; et al. Pooled Patient-Level Analysis of Inclisiran Trials in Patients With Familial Hypercholesterolemia or Atherosclerosis. J. Am. Coll. Cardiol. 2021, 77, 1182–1193. [Google Scholar] [CrossRef]
- Hovingh, G.K.; Lepor, N.E.; Kallend, D.; Stoekenbroek, R.M.; Wijngaard, P.L.; Raal, F.J. Inclisiran Durably Lowers Low-Density Lipoprotein Cholesterol and Proprotein Convertase Subtilisin/Kexin Type 9 Expression in Homozygous Familial Hypercholesterolemia: The ORION-2 Pilot Study. Circulation 2020, 141, 1829–1831. [Google Scholar] [CrossRef]
- Hussain, M.M.; Rava, P.; Walsh, M.; Rana, M.; Iqbal, J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. 2012, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Cuchel, M.; A Meagher, E.; Theron, H.D.T.; Blom, D.J.; Marais, A.D.; A Hegele, R.; Averna, M.R.; Sirtori, C.R.; Shah, P.K.; Gaudet, D.; et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: A single-arm, open-label, phase 3 study. Lancet 2012, 381, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Nohara, A.; Otsubo, Y.; Yanagi, K.; Yoshida, M.; Ikewaki, K.; Harada-Shiba, M.; Jurecka, A. Safety and Efficacy of Lomitapide in Japanese Patients with Homozygous Familial Hypercholesterolemia (HoFH): Results from the AEGR-733-301 Long-Term Extension Study. J. Atheroscler. Thromb. 2019, 26, 368–377. [Google Scholar] [CrossRef]
- Blom, D.J.; Averna, M.; Meagher, E.A.; Theron, H.D.T.; Sirtori, C.R.; Hegele, R.A.; Shah, P.K.; Gaudet, D.; Stefanutti, C.; Vigna, G.; et al. Long-Term Efficacy and Safety of the Microsomal Triglyceride Transfer Protein Inhibitor Lomitapide in Patients With Homozygous Familial Hypercholesterolemia. Circulation 2017, 136, 332–335. [Google Scholar] [CrossRef] [Green Version]
- D’Erasmo, L.; Gallo, A.; Cefalù, A.B.; Di Costanzo, A.; Saheb, S.; Giammanco, A.; Averna, M.; Buonaiuto, A.; Iannuzzo, G.; Fortunato, G.; et al. Long-term efficacy of lipoprotein apheresis and lomitapide in the treatment of homozygous familial hypercholesterolemia (HoFH): A cross-national retrospective survey. Orphanet J. Rare Dis. 2021, 16, 381. [Google Scholar] [CrossRef]
- Kayikcioglu, M. LDL Apheresis and Lp (a) Apheresis: A Clinician’s Perspective. Curr. Atheroscler. Rep. 2021, 23, 15. [Google Scholar] [CrossRef]
- Underberg, J.A.; Cannon, C.P.; Larrey, D.; Makris, L.; Blom, D.; Phillips, H. Long-term safety and efficacy of lomitapide in patients with homozygous familial hypercholesterolemia: Five-year data from the Lomitapide Observational Worldwide Evaluation Registry (LOWER). J. Clin. Lipidol. 2020, 14, 807–817. [Google Scholar] [CrossRef]
- D’Erasmo, L.; Cefalù, A.B.; Noto, D.; Giammanco, A.; Averna, M.; Pintus, P.; Medde, P.; Vigna, G.B.; Sirtori, C.; Calabresi, L.; et al. Efficacy of Lomitapide in the Treatment of Familial Homozygous Hypercholesterolemia: Results of a Real-World Clinical Experience in Italy. Adv. Ther. 2017, 34, 1200–1210. [Google Scholar] [CrossRef]
- D’Erasmo, L.; Steward, K.; Cefalù, A.B.; Di Costanzo, A.; Boersma, E.; Bini, S.; Arca, M.; van Lennep, J.R.; Giammanco, A.; Averna, M.; et al. Efficacy and safety of lomitapide in homozygous familial hypercholesterolaemia: The pan-European retrospective observational study. Eur. J. Prev. Cardiol. 2021, 29, 832–841. [Google Scholar] [CrossRef]
- Ben-Omran, T.; Masana, L.; Kolovou, G.; Ariceta, G.; Nóvoa, F.J.; Lund, A.M.; Bogsrud, M.P.; Araujo, M.; Hussein, O.; Ibarretxe, D.; et al. Real-World Outcomes with Lomitapide Use in Paediatric Patients with Homozygous Familial Hypercholesterolaemia. Adv. Ther. 2019, 36, 1786–1811. [Google Scholar] [CrossRef] [Green Version]
- Musunuru, K.; Pirruccello, J.P.; Do, R.; Peloso, G.M.; Guiducci, C.; Sougnez, C.; Garimella, K.V.; Fisher, S.; Abreu, J.; Barry, A.J.; et al. Exome Sequencing, ANGPTL3 Mutations, and Familial Combined Hypolipidemia. N. Engl. J. Med. 2010, 363, 2220–2227. [Google Scholar] [CrossRef] [Green Version]
- Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; et al. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 211–221. [Google Scholar] [CrossRef]
- Raal, F.J.; Rosenson, R.S.; Reeskamp, L.F.; Hovingh, G.K.; Kastelein, J.J.; Rubba, P.; Ali, S.; Banerjee, P.; Chan, K.-C.; Gipe, D.A.; et al. Evinacumab for Homozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 383, 711–720. [Google Scholar] [CrossRef]
- Watts, G.; Schwabe, C.; Scott, R.; Gladding, P.; Sullivan, D.; Baker, J.; Clifton, P.; Hamilton, J.; Given, B.; Martin, J.S.; et al. RNAi inhibition of angiopoietin-like protein 3 (ANGPTL3) with ARO-ANG3 mimics the lipid and lipoprotein profile of familial combined hypolipidemia. Eur. Heart J. 2020, 41 (Suppl. S2), ehaa946.3331. [Google Scholar] [CrossRef]
- Graham, M.J.; Lee, R.G.; Brandt, T.A.; Tai, L.-J.; Fu, W.; Peralta, R.; Yu, R.; Hurh, E.; Paz, E.; McEvoy, B.W.; et al. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides. N. Engl. J. Med. 2017, 377, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Stefanutti, C.; Thompson, G.R. Lipoprotein Apheresis in the Management of Familial Hypercholesterolaemia: Historical Perspective and Recent Advances. Curr. Atheroscler. Rep. 2014, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tromp, T.R.; Hartgers, M.L.; Hovingh, G.K.; Vallejo-Vaz, A.J.; Ray, K.K.; Soran, H.; Freiberger, T.; Bertolini, S.; Harada-Shiba, M.; Blom, D.J.; et al. Worldwide experience of homozygous familial hypercholesterolaemia: Retrospective cohort study. Lancet 2022, 399, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Kroon, A.A.; Aengevaeren, W.R.; Van Der Werf, T.; Uijen, G.J.; Reiber, J.H.; Bruschke, A.V.; Stalenhoef, A.F. LDL-Apheresis Atherosclerosis Regression Study (LAARS). Circulation 1996, 93, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Ishigaki, Y.; Kawagishi, N.; Hasegawa, Y.; Sawada, S.; Katagiri, H.; Satomi, S.; Oikawa, S. Liver Transplantation for Homozygous Familial Hypercholesterolemia. J. Atheroscler. Thromb. 2019, 26, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, M.; Brodlie, S.; Griesemer, A.; Kato, T.; Harren, P.; Gordon, B.; Parker, T.; Levine, D.; Tyberg, T.; Starc, T.; et al. Effects of Liver Transplantation on Lipids and Cardiovascular Disease in Children With Homozygous Familial Hypercholesterolemia. Am. J. Cardiol. 2016, 118, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Al Dubayee, M.; Kayikcioglu, M.; van Lennep, J.R.; Hergli, N.; Mata, P. Is Liver Transplant Curative in Homozygous Familial Hypercholesterolemia? A Review of Nine Global Cases. Adv. Ther. 2022, 39, 3042–3057. [Google Scholar] [CrossRef]
- Chadwick, A.C.; Evitt, N.; Lv, W.; Musunuru, K. Reduced Blood Lipid Levels With In Vivo CRISPR-Cas9 Base Editing of ANGPTL3. Circulation 2018, 137, 975–977. [Google Scholar] [CrossRef]
- Qiu, M.; Glass, Z.; Chen, J.; Haas, M.; Jin, X.; Zhao, X.; Rui, X.; Ye, Z.; Li, Y.; Zhang, F.; et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl. Acad. Sci. USA 2021, 118, e2020401118. [Google Scholar] [CrossRef]
- Musunuru, K.; Chadwick, A.C.; Mizoguchi, T.; Garcia, S.P.; DeNizio, J.E.; Reiss, C.W.; Wang, K.; Iyer, S.; Dutta, C.; Clendaniel, V.; et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021, 593, 429–434. [Google Scholar] [CrossRef]
- Kuzmin, D.A.; Shutova, M.V.; Johnston, N.R.; Smith, O.P.; Fedorin, V.V.; Kukushkin, Y.S.; van der Loo, J.C.; Johnstone, E.C. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 2021, 20, 173–174. [Google Scholar] [CrossRef]
- Cuchel, M.; Bajaj, A.; Carr, R.; Sikora, T.; Duell, P.B.; Tardif, J.-C.; Roeters van Lennep, J.E.; Linton, M.F.; Averna, M.; Cho, Y.; et al. Use of prophylactic steroids to mitigate potential T-cell response in AAV8-mediated hLDLR gene transfer in subjects with homozygous familial hypercholesterolemia. Presented at the ASGCT 23rd Annual Meeting, Virtual, 12–15 May 2020. [Google Scholar]
- Kassim, S.H.; Li, H.; Vandenberghe, L.H.; Hinderer, C.; Bell, P.; Marchadier, D.; Wilson, A.; Cromley, D.; Redon, V.; Yu, H.; et al. Gene Therapy in a Humanized Mouse Model of Familial Hypercholesterolemia Leads to Marked Regression of Atherosclerosis. PLoS ONE 2010, 5, e13424. [Google Scholar] [CrossRef] [Green Version]
- Greig, J.A.; Limberis, M.P.; Bell, P.; Chen, S.J.; Calcedo, R.; Rader, D.J.; Wilson, J.M. Non-Clinical Study Examining AAV8.TBG.hLDLR Vector-Associated Toxicity in Chow-Fed Wild-Type and LDLR+/- Rhesus Macaques. Hum. Gene Ther. Clin. Dev. 2017, 28, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Greig, J.A.; Limberis, M.P.; Bell, P.; Chen, S.J.; Calcedo, R.; Rader, D.J.; Wilson, J.M. Nonclinical Pharmacology/Toxicology Study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a Mouse Model of Homozygous Familial Hypercholesterolemia. Hum. Gene Ther. Clin. Dev. 2017, 28, 28–38. [Google Scholar] [CrossRef]
Agent | Mechanism of Action | Route & Dose | Effect on Lipoprotein Levels in HoFH | Clinical Study Results | Guideline Recommendations | Comment |
---|---|---|---|---|---|---|
LDL-R dependent | ||||||
Statins | -HMG-CoA reductase inhibition, -Reduce cholesterol synthesis, -Upregulate LDL-R -Increase LDL-C clearance | PO, Dose depends on the LDL-C target & type of statin | LDL-C 14–31%↓ | Lower both LDL-C & ASCVD risk in all statin trials in both primary & secondary prevention. | First line in HoFH with limited efficacy | - Cornerstone of LDL-C-lowering therapy in FH -More effective in ARH patients |
Ezetimibe | -Inhibits NPCILI protein -Inhibits cholesterol absorption -Upregulate LDL-R -Increase LDL-C clearance | PO, 10 mg/day | LDL-C 5–14%↓ | Lowers both LDL-C & ASCVD outcomes on top of statins | Second line add on therapy for HoFH | -Approved for treatment of HeFH & HoFH patients either alone or in combination with statins -More effective in sitosterolemia |
Bile acid sequestrants(Cholestyramine, Colestipol & Colesevelam) | -Decrease reabsorption of bile acids -Reduce cholesterol content in hepatocytes -Upregulate LDL-R -Increase LDL-C clearance | PO, Daily | LDL-C 0–10%↓ | No RCT on FH | None for FH | -Mostly preferred in children and pregnant women -Effect is weak. -Not absorbed |
PCSK9 inhibitors (Alirocumab, Evolocumab) | -Monoclonal antibodies to PCSK9 -Inhibits PCSK9, -Upregulate LDL-R -Increase LDL-C clearance | Alirocumab SC, Biweekly 75–150 mg Evalocumab SC, Biweekly 140 mg, Monthly 420 mg | Alirocumab HoFH LDL-C 26%↓ Evalocumab HoFH LDL-C 15–32%↓ | -Reduced LDL-C & ASCVD outcomes in phase 3 studies. Alirocumab -ODYSSEY-HoFH Evalocumab -TESLA -HoFH short term -TAUSSING-HoFH&HeFH 4years sustained efficacy & safety | Treatment with a PCSK9 inhibitor is recommended in very-high-risk FH patients if the treatment goal is not achieved on maximal tolerated statin plus ezetimibe. | - Both are beneficial in HoFH patients with at least 2% of functional LDL-Rs. |
Inclisirian | -SiRNA inhibiting the translation of PCSK9 -Upregulate LDL-R -Increase LDL-C clearance | SC, 300 mg on Days 1, 90 then every 6 months | HoFH LDL-C 12–37%↓ | -Orion Trial Program -Orion-5 Phase 3 RCT on HoFH-ongoing | -Not in the GLs yet -Approved for adults with primary hypercholesterolemia or mixed dyslipidemia by EC December 2020 | -Enables infrequent dosing & sustained effect -Promising use in young FH individuals with an improved compliance |
LDL-R independent action | ||||||
Lomitapide | -Inhibits MTP, thereby interfering with the assembly of lipoproteins -Decrease ApoB | PO, 10–60 mg/day | LDL-C 24–52%↓ | -Effective in phase 3 -LOWER registry (5-year real life data) showed efficacy even in low doses (10–40 mg/d) | -Approved by EMA &FDA as an adjunct to LLT in patients with HoFH ≥ 18 years with/without apheresis | -Shown to either reduce the frequency of apheresis or replace apheresis |
Evinacumab | -Monoclonal antibody to ANGPTL3 | IV inf, monthly | LDL-C 47.1%↓ | -ECLIPSE study showed efficacy & safety in HoFH -ASCVD study not done yet. | -Not in the GLs yet - Approved by FDA for HoFH adults & children aged ≥ 12 years in December 2020 | -Effective also in Null variants -Advantage of monthly injections -Effective in lowering TGs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayikcioglu, M.; Tokgozoglu, L. Current Treatment Options in Homozygous Familial Hypercholesterolemia. Pharmaceuticals 2023, 16, 64. https://doi.org/10.3390/ph16010064
Kayikcioglu M, Tokgozoglu L. Current Treatment Options in Homozygous Familial Hypercholesterolemia. Pharmaceuticals. 2023; 16(1):64. https://doi.org/10.3390/ph16010064
Chicago/Turabian StyleKayikcioglu, Meral, and Lale Tokgozoglu. 2023. "Current Treatment Options in Homozygous Familial Hypercholesterolemia" Pharmaceuticals 16, no. 1: 64. https://doi.org/10.3390/ph16010064
APA StyleKayikcioglu, M., & Tokgozoglu, L. (2023). Current Treatment Options in Homozygous Familial Hypercholesterolemia. Pharmaceuticals, 16(1), 64. https://doi.org/10.3390/ph16010064