Prevalence of Diabetes and Its Association with Atherosclerotic Cardiovascular Disease Risk in Patients with Familial Hypercholesterolemia: An Analysis from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Study Strengths and Limitations
5. Materials and Methods
5.1. Study Design
5.2. Statistical Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.J.; Defesche, J.C.; et al. Familial Hypercholesterolaemia Is Underdiagnosed and Undertreated in the General Population: Guidance for Clinicians to Prevent Coronary Heart Disease: Consensus Statement of the European Atherosclerosis Society. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khera, A.V.; Won, H.H.; Peloso, G.M.; Lawson, K.S.; Bartz, T.M.; Deng, X.; van Leeuwen, E.M.; Natarajan, P.; Emdin, C.A.; Bick, A.G.; et al. Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. J. Am. Coll. Cardiol. 2016, 67, 2578–2589. [Google Scholar] [CrossRef] [PubMed]
- Sjouke, B.; Kusters, D.M.; Kindt, I.; Besseling, J.; Defesche, J.C.; Sijbrands, E.J.G.; Van Lennep, J.E.R.; Stalenhoef, A.F.H.; Wiegman, A.; De Graaf, J.; et al. Homozygous Autosomal Dominant Hypercholesterolaemia in the Netherlands: Prevalence, Genotype-Phenotype Relationship, and Clinical Outcome. Eur. Heart J. 2015, 36, 560–565. [Google Scholar] [CrossRef] [Green Version]
- Zamora, A.; Masana, L.; Comas-Cufí, M.; Vila, À.; Plana, N.; García-Gil, M.; Alves-Cabratosa, L.; Marrugat, J.; Roman, I.; Ramos, R. Familial Hypercholesterolemia in a European Mediterranean Population-Prevalence and Clinical Data from 2.5 Million Primary Care Patients. J. Clin. Lipidol. 2017, 11, 1013–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 Th Edition. Diabetes Res. Clin. Pract. 2019, 157. [Google Scholar] [CrossRef] [Green Version]
- Sharif, H.; Akash, M.S.H.; Rehman, K.; Irshad, K.; Imran, I. Pathophysiology of Atherosclerosis: Association of Risk Factors and Treatment Strategies Using Plant-Based Bioactive Compounds. J. Food Biochem. 2020, 44, e13449. [Google Scholar] [CrossRef]
- Akash, M.S.H.; Fiayyaz, F.; Rehman, K.; Sabir, S.; Rasool, M.H. Gut Microbiota and Metabolic Disorders: Advances in Therapeutic Interventions. Crit. Rev. Immunol. 2019, 39, 223–237. [Google Scholar] [CrossRef]
- Hirano, T. Pathophysiology of Diabetic Dyslipidemia. J. Atheroscler. Thromb. 2018, 25, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Paquette, M.; Brisson, D.; Dufour, R.; Khoury, É.; Gaudet, D.; Baass, A. Cardiovascular Disease in Familial Hypercholesterolemia: Validation and Refinement of the Montreal-FH-SCORE. J. Clin. Lipidol. 2017, 11, 1161–1167.e3. [Google Scholar] [CrossRef]
- Perez-Calahorra, S.; Civeira, F.; Guallar-Castilló, N.P.; Pinto, X.; Banegas, J.R.; Pedro-Botet, J.; Suarez-Tembra, M.; Mauri, M.; Soler, C.; Rodriguez-Artalejo, F.; et al. Behavioural Cardiovascular Risk Factors and Prevalence of Diabetes in Subjects with Familial Hypercholesterolaemia. Eur. J. Prev. Cardiol. 2020, 27, 1649–1660. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.W.F.; Meigs, J.B.; Sullivan, L.; Fox, C.S.; Nathan, D.M.; D’Agostino, R.B. Prediction of Incident Diabetes Mellitus in Middle-Aged Adults: The Framingham Offspring Study. Arch. Intern. Med. 2007, 167, 1068–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, M.H.; Bae, J.C.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Oh, K.W.; Park, S.W.; Kim, S.W.; Lee, W.Y. Association of Lipid and Lipoprotein Profiles with Future Development of Type 2 Diabetes in Nondiabetic Korean Subjects: A 4-Year Retrospective, Longitudinal Study. J. Clin. Endocrinol. Metab. 2011, 96, E2050–E2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fall, T.; Xie, W.; Poon, W.; Yaghootkar, H.; Magi, R.; Knowles, J.W.; Lyssenko, V.; Weedon, M.; Frayling, T.M.; Ingelsson, E. Using Genetic Variants to Assess the Relationship Between Circulating Lipids and Type 2 Diabetes. Diabetes 2015, 64, 2676–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.; Swerdlow, D.I.; Preiss, D.; Fairhurst-Hunter, Z.; Keating, B.J.; Asselbergs, F.W.; Sattar, N.; Humphries, S.E.; Hingorani, A.D.; Holmes, M.V. Association of Lipid Fractions With Risks for Coronary Artery Disease and Diabetes. JAMA Cardiol. 2016, 1, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Dayar, E.; Pechanova, O. Targeted Strategy in Lipid-Lowering Therapy. Biomedicines 2022, 10, 1090. [Google Scholar] [CrossRef]
- Sattar, N.; Preiss, D.; Murray, H.M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.; Seshasai, S.R.K.; McMurray, J.J.; Freeman, D.J.; Jukema, J.W.; et al. Statins and Risk of Incident Diabetes: A Collaborative Meta-Analysis of Randomised Statin Trials. Lancet 2010, 375, 735–742. [Google Scholar] [CrossRef]
- Fuentes, F.; Alcala-Diaz, J.F.; Watts, G.F.; Alonso, R.; Muñiz, O.; Díaz-Díaz, J.L.; Mata, N.; Sanchez Muñoz-Torrero, J.F.; Brea, Á.; Galiana, J.; et al. Statins Do Not Increase the Risk of Developing Type 2 Diabetes in Familial Hypercholesterolemia: The SAFEHEART Study. Int. J. Cardiol. 2015, 201, 79–84. [Google Scholar] [CrossRef]
- Besseling, J.; Kastelein, J.J.P.; Defesche, J.C.; Hutten, B.A.; Hovingh, G.K. Association Between Familial Hypercholesterolemia and Prevalence of Type 2 Diabetes Mellitus. JAMA 2015, 313, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Climent, E.; Pérez-Calahorra, S.; Marco-Benedí, V.; Plana, N.; Sánchez, R.; Ros, E.; Ascaso, J.F.; Puzo, J.; Almagro, F.; Lahoz, C.; et al. Effect of LDL Cholesterol, Statins and Presence of Mutations on the Prevalence of Type 2 Diabetes in Heterozygous Familial Hypercholesterolemia. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Touloumi, G.; Karakosta, A.; Kalpourtzi, N.; Gavana, M.; Vantarakis, A.; Kantzanou, M.; Hajichristodoulou, C.; Chlouverakis, G.; Trypsianis, G.; Voulgari, P.V.; et al. High Prevalence of Cardiovascular Risk Factors in Adults Living in Greece: The EMENO National Health Examination Survey. BMC Public Health 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Skoumas, I.; Stefanadis, C. Five-Year Incidence of Cardiovascular Disease and Its Predictors in Greece: The ATTICA Study. Vasc. Med. 2008, 13, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsirona, S.; Katsaros, F.; Bargiota, A.; Polyzos, S.A.; Arapoglou, G.; Koukoulis, G.N. Prevalence and Determinants of Type 2 Diabetes Mellitus in a Greek Adult Population. Hormones 2016, 15, 88–98. [Google Scholar] [CrossRef]
- Gikas, A.; Sotiropoulos, A.; Panagiotakos, D.; Pastromas, V.; Paraskevopoulou, E.; Skliros, E.; Pappas, S. Rising Prevalence of Diabetes among Greek Adults: Findings from Two Consecutive Surveys in the Same Target Population. Diabetes Res. Clin. Pract. 2008, 79, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Pitsavost, C.; Chrysohoout, C.; Stefanadis, C. The Epidemiology of Type 2 Diabetes Mellitus in Greek Adults: The ATTICA Study. Diabet. Med. 2005, 22, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Bernard, S.; Ruel, I.; Blank, D.W.; Genest, J.; Baass, A. Diabetes Is Associated with an Increased Risk of Cardiovascular Disease in Patients with Familial Hypercholesterolemia. J. Clin. Lipidol. 2019, 13, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Degoma, E.M.; Ahmad, Z.S.; O’Brien, E.C.; Kindt, I.; Shrader, P.; Newman, C.B.; Pokharel, Y.; Baum, S.J.; Hemphill, L.C.; Hudgins, L.C.; et al. Treatment Gaps in Adults with Heterozygous Familial Hypercholesterolemia in the United States. Circ. Cardiovasc. Genet. 2016, 9, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallejo-Vaz, A.J.; Stevens, C.A.T.; Lyons, A.R.M.; Dharmayat, K.I.; Freiberger, T.; Hovingh, G.K.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; et al. Global Perspective of Familial Hypercholesterolaemia: A Cross-Sectional Study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet 2021, 398, 1713–1725. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, Y.; Xu, C.B. Statins and New-Onset Diabetes Mellitus: LDL Receptor May Provide a Key Link. Front. Pharmacol. 2017, 8, 372. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Hernández, R.M.; González-Lleó, A.M.; Tugores, A.; Brito-Casillas, Y.; Civeira, F.; Boronat, M.; Wägner, A. Hipercolesterolemia Familiar En Gran Canaria: Mutación Con Efecto Fundador y Alta Frecuencia de Diabetes. Clínica E Investig. En Arterioscler. 2021, 33, 247–253. [Google Scholar] [CrossRef]
- Lalić, K.; Rajković, N.; Popović, L.; Lukač, S.S.; Stošić, L.; Rasulić, I.; Lalić, N.M. The Effects of 3-Year Statin Therapy and the Achievement of LDL Cholesterol Target Values in Familial Hypercholesterolemia Patients: An Experience from Serbia. Atherosclerosis 2018, 277, 298–303. [Google Scholar] [CrossRef]
- Sun, D.; Cao, Y.X.; You, X.D.; Zhou, B.Y.; Li, S.; Guo, Y.L.; Zhang, Y.; Wu, N.Q.; Zhu, C.G.; Gao, Y.; et al. Clinical and Genetic Characteristics of Familial Hypercholesterolemia Patients with Type 2 Diabetes. J. Endocrinol. Invest. 2019, 42, 591–598. [Google Scholar] [CrossRef]
- Civeira, F.; Ros, E.; Jarauta, E.; Plana, N.; Zambon, D.; Puzo, J.; Martinez de Esteban, J.P.; Ferrando, J.; Zabala, S.; Almagro, F.; et al. Comparison of Genetic Versus Clinical Diagnosis in Familial Hypercholesterolemia. Am. J. Cardiol. 2008, 102, 1187–1193.e1. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Akram, A.; Kondapally Seshasai, S.R.; Cole, D.; Watts, G.F.; Hovingh, G.K.; Kastelein, J.J.P.; Mata, P.; Raal, F.J.; Santos, R.D.; et al. Pooling and Expanding Registries of Familial Hypercholesterolaemia to Assess Gaps in Care and Improve Disease Management and Outcomes: Rationale and Design of the Global EAS Familial Hypercholesterolaemia Studies Collaboration. Atheroscler. Suppl. 2016, 22, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Meneilly, G.S.; Elliott, T. Metabolic Alterations in Middle-Aged and Elderly Obese Patients with Type 2 Diabetes. Diabetes Care 1999, 22, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Brinck, J.; Hagström, E.; Nåtman, J.; Franzén, S.; Eeg-Olofsson, K.; Nathanson, D.; Eliasson, B. Cardiovascular Outcomes in Patients With Both Diabetes and Phenotypic Familial Hypercholesterolemia: A Nationwide Register-Based Cohort Study. Diabetes Care 2022, 45, 3040–3049. [Google Scholar] [CrossRef] [PubMed]
- Besseling, J.; Kindt, I.; Hof, M.; Kastelein, J.J.P.; Hutten, B.A.; Hovingh, G.K. Severe Heterozygous Familial Hypercholesterolemia and Risk for Cardiovascular Disease: A Study of a Cohort of 14,000 Mutation Carriers. Atherosclerosis 2014, 233, 219–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, A.C.M.; Van Aalst-Cohen, E.S.; Tanck, M.W.; Trip, M.D.; Lansberg, P.J.; Liem, A.H.; Roeters Van Lennep, H.W.O.; Sijbrands, E.J.G.; Kastelein, J.J.P. The Contribution of Classical Risk Factors to Cardiovascular Disease in Familial Hypercholesterolaemia: Data in 2400 Patients. J. Intern. Med. 2004, 256, 482–490. [Google Scholar] [CrossRef]
- Tada, H.; Okada, H.; Nohara, A.; Yamagishi, M.; Takamura, M.; Kawashiri, M.A. Effect of Cumulative Exposure to Low-Density Lipoprotein-Cholesterol on Cardiovascular Events in Patients With Familial Hypercholesterolemia. Circ. J. 2021, 85, 2073–2078. [Google Scholar] [CrossRef]
- Liu, M.-M.; Peng, J.; Guo, Y.-L.; Wu, N.-Q.; Zhu, C.-G.; Gao, Y.; Dong, Q.; Li, J.-J. Impact of Diabetes on Coronary Severity and Cardiovascular Outcomes in Patients with Heterozygous Familial Hypercholesterolaemia. Eur. J. Prev. Cardiol. 2021. [Google Scholar] [CrossRef]
- Akioyamen, L.E.; Genest, J.; Chu, A.; Inibhunu, H.; Ko, D.T.; Tu, J.V. Risk Factors for Cardiovascular Disease in Heterozygous Familial Hypercholesterolemia: A Systematic Review and Meta-Analysis. J. Clin. Lipidol. 2019, 13, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.N.; Stephenson, S.; Wu, L.L.; Riley, W.A.; Xin, Y.; Hunt, S.C. Evaluation of Coronary Risk Factors in Patients with Heterozygous Familial Hypercholesterolemia. Am. J. Cardiol. 2001, 87, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Miname, M.; Makdisse, M.; Filho, R.K.; Santos, R.D. Association of Peripheral Arterial and Cardiovascular Diseases inFamilial Hypercholesterolemia. Arq. Bras. Cardiol. 2014, 103, 118. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.; Pang, J.; Hooper, A.J.; Burnett, J.R.; Bell, D.A.; Bates, T.R.; Van Bockxmeer, F.M.; Watts, G.F. Elevated Lipoprotein(a), Hypertension and Renal Insufficiency as Predictors of Coronary Artery Disease in Patients with Genetically Confirmed Heterozygous Familial Hypercholesterolemia. Int. J. Cardiol. 2015, 201, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Pitsavos, C.H.; Chrysohoou, C.; Panagiotakos, D.B.; Kokkinos, P.; Skoumas, J.; Papaioannou, I.; Michaelides, A.P.; Singh, S.; Stefanadis, C.I. Exercise Capacity and Heart Rate Recovery as Predictors of Coronary Heart Disease Events, in Patients with Heterozygous Familial Hypercholesterolemia. Atherosclerosis 2004, 173, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Pérez De Isla, L.; Alonso, R.; Mata, N.; Fernández-Pérez, C.; Muñiz, O.; Díaz-Díaz, J.L.; Saltijeral, A.; Fuentes-Jiménez, F.; De Andrés, R.; Zambón, D.; et al. Predicting Cardiovascular Events in Familial Hypercholesterolemia: The SAFEHEART Registry (Spanish Familial Hypercholesterolemia Cohort Study). Circulation 2017, 135, 2133–2144. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizos, C.V.; Skoumas, I.; Rallidis, L.; Skalidis, E.; Tziomalos, K.; Garoufi, A.; Anagnostis, P.; Sfikas, G.; Kotsis, V.; Doumas, M.; et al. LDL Cholesterol Target Achievement in Heterozygous Familial Hypercholesterolemia Patients According to 2019 ESC/EAS Lipid Guidelines: Implications for Newer Lipid-Lowering Treatments. Int. J. Cardiol. 2021, 345, 119–124. [Google Scholar] [CrossRef]
- Vrablik, M.; Raslová, K.; Vohnout, B.; Blaha, V.; Satny, M.; Kyselak, O.; Vaclova, M.; Urbanek, R.; Maskova, J.; Soska, V.; et al. Real-Life LDL-C Treatment Goals Achievement in Patients with Heterozygous Familial Hypercholesterolemia in the Czech Republic and Slovakia: Results of the PLANET Registry. Atherosclerosis 2018, 277, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Perez De Isla, L.; Alonso, R.; Watts, G.F.; Mata, N.; Saltijeral Cerezo, A.; Muñiz, O.; Fuentes, F.; Diaz-Diaz, J.L.; De Andrés, R.; Zambón, D.; et al. Attainment of LDL-Cholesterol Treatment Goals in Patients With Familial Hypercholesterolemia: 5-Year SAFEHEART Registry Follow-Up. J. Am. Coll. Cardiol. 2016, 67, 1278–1285. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; John Chapman, M.; Drexel, H.; Hoes, A.W.; Jennings, C.S.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur. Heart J. 2016, 37, 2999–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patoulias, D.; Papadopoulos, C.; Kassimis, G.; Karagiannis, A.; Doumas, M. Updated Meta-Analysis of Cardiovascular Outcome Trials Evaluating Cardiovascular Efficacy of Glucagon-Like Peptide-1 Receptor Agonists. Am. J. Cardiol. 2021, 159, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.S.; Qasim, A.N.; Mehta, N.N.; Wolfe, M.; Terembula, K.; Schwartz, S.; Iqbal, N.; Schutta, M.; Bagheri, R.; Reilly, M.P. Apolipoprotein B but Not LDL Cholesterol Is Associated With Coronary Artery Calcification in Type 2 Diabetic Whites. Diabetes 2009, 58, 1887. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.C.; Ahn, H.Y.; Park, S.W.; Park, C.Y. Apolipoprotein B and Non-HDL Cholesterol Are More Powerful Predictors for Incident Type 2 Diabetes than Fasting Glucose or Glycated Hemoglobin in Subjects with Normal Glucose Tolerance: A 3.3-Year Retrospective Longitudinal Study. Acta Diabetol. 2014, 51, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W. Apolipoprotein E: From Cardiovascular Disease to Neurodegenerative Disorders. J. Mol. Med. 2016, 94, 739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizos, C.V.; Athyros, V.; Bilianou, E.; Chrousos, G.; Garoufi, A.; Kolovou, G.; Kotsis, V.; Rallidis, L.; Skalidis, E.; Skoumas, I.; et al. An Insight into Familial Hypercholesterolemia in Greece: Rationale and Design of the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH). Hormones 2017, 16, 306–312. [Google Scholar] [CrossRef]
- Rizos, C.V.; Elisaf, M.S.; Skoumas, I.; Tziomalos, K.; Kotsis, V.; Rallidis, L.; Garoufi, A.; Athyros, V.G.; Skalidis, E.; Kolovou, G.; et al. Characteristics and Management of 1093 Patients with Clinical Diagnosis of Familial Hypercholesterolemia in Greece: Data from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH). Atherosclerosis 2018, 277, 308–313. [Google Scholar] [CrossRef]
- Rizos, C.V.; Florentin, M.; Skoumas, I.; Tziomalos, K.; Rallidis, L.; Kotsis, V.; Athyros, V.; Skalidis, E.; Kolovou, G.; Garoufi, A.; et al. Achieving Low-Density Lipoprotein Cholesterol Targets as Assessed by Different Methods in Patients with Familial Hypercholesterolemia: An Analysis from the HELLAS-FH Registry. Lipids Health Dis. 2020, 19, 114. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for Themanagement of Arterial Hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Committee, A.D.A.P.P. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S144–S174. [Google Scholar] [CrossRef]
T2DM | Non-T2DM | p Value (vs. Non-T2DM) | |||
---|---|---|---|---|---|
Number of patients | 123 | 1596 | |||
Gender (male/female) | 70/53 | 803/793 | |||
Age at registration (years) | 61.4 ± 11.1 | 50.0 ± 14.7 | <0.05 | ||
Age at diagnosis (years) | 53.9 ± 3.0 | 43.4 ± 15.9 | <0.05 | ||
DLCN score | 5 (4–7) | 5 (4–8) | NS | ||
Systolic blood pressure (mmHg) | 132 ± 14 | 128 ± 14 | <0.05 | ||
Diastolic blood pressure (mmHg) | 78 ± 10 | 77 ± 9 | NS | ||
Heart rate (bpm) | 73 ± 10 | 74 ± 10 | NS | ||
Prevalence of distinctive clinical findings (%) | Corneal arcus below the age of 45 years | 7.3% | 7.2% | NS | |
Tendon xanthomas | 7.3% | 5.4% | NS | ||
Xanthelasma | 5.7% | 5.8% | NS | ||
Body mass index (kg/m2) | 28.7 (25.2–31.8) | 26.8 (24.2–29.4) | <0.05 | ||
Hypertension (%) | 57.7 | 24.7 | <0.05 | ||
Waist circumference | Male (cm) | 100 (88–110) | 95 (88–103) | NS | |
Female (cm) | 97 (87–104) | 89 (80–98) | <0.05 | ||
Men >102 cm (%) | 32.9 | 24.4 | NS | ||
Women >88 cm (%) | 58.5 | 46.2 | NS | ||
Smokers (%) | Active | 22.0 | 25.6 | NS | |
Former | 17.1 | 9.3 | <0.05 | ||
Never | 61.0 | 65.2 | NS |
T2DM | Non-T2DM | p Value (vs. Non-T2DM) | |||
---|---|---|---|---|---|
Parameter | At Diagnosis (n = 123) | On Treatment (n = 92) | At Diagnosis (n = 1596) | On Treatment (n = 1106) | |
Total cholesterol (mg/dL) | 319 ± 95 | 205 ± 57 | 328 ± 88 | 209 ± 54 | NS |
Triglycerides (mg/dL) | 151 (120–210) | 130 (101–197) | 130 (95–179) | 108 (79–150) | <0.05 |
HDL-C (mg/dL) | 45 ± 12 | 47 ± 18 | 51 ± 15 | 52 ± 16 | <0.05 |
Non-HDL-C (mg/dL) | 272 ± 96 | 157 ± 54 | 277 ± 89 | 156 ± 54 | NS |
LDL-C (mg/dL) | 236 ± 94 | 126 ± 49 | 247 ± 87 | 132 ± 50 | NS |
Lp (a) (mg/dL) | 28 (13–74) † | 28 (13–72) † | 27 (18–91) †† | 26 (10–61) †† | NS |
Treatment (%) | T2DM | Non-T2DM | p Value (vs. Non-T2DM) |
---|---|---|---|
Statin | 94.6 | 97.7 | NS |
Ezetimibe | 42.4 | 48.4 | NS |
Statin + ezetimibe | 39.1 | 47.4 | NS |
PCSK9i | 7.6 | 5.3 | NS |
Fibrate | 6.5 | 1.2 | <0.05 |
Bile acid sequestrants | 0.0 | 1.6 | NS |
n3 fatty acids | 2.2 | 1.5 | NS |
Sterols/stanols | 0.0 | 0.4 | NS |
Prevalence of ASCVD | T2DM Patients | Non-T2DM Patients | p Value (vs. Non-T2DM) |
---|---|---|---|
Total ASCVD | 55.3% | 23.3% | <0.05 |
Premature total ASCVD | 48.8% | 20.0% | <0.05 |
CAD | 48.8% | 20.7% | <0.05 |
MI | 39.0% | 15.3% | <0.05 |
Premature CAD | 43.9% | 18.5% | <0.05 |
Stroke | 8.9% | 2.7% | <0.05 |
Premature stroke | 2.4% | 0.9% | <0.05 |
PAD | 7.3% | 2.3% | <0.05 |
Premature PAD | 2.4% | 0.9% | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boutari, C.; Rizos, C.V.; Doumas, M.; Liamis, G.; Skoumas, I.; Rallidis, L.; Garoufi, A.; Kolovou, G.; Tziomalos, K.; Skalidis, E.; et al. Prevalence of Diabetes and Its Association with Atherosclerotic Cardiovascular Disease Risk in Patients with Familial Hypercholesterolemia: An Analysis from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH). Pharmaceuticals 2023, 16, 44. https://doi.org/10.3390/ph16010044
Boutari C, Rizos CV, Doumas M, Liamis G, Skoumas I, Rallidis L, Garoufi A, Kolovou G, Tziomalos K, Skalidis E, et al. Prevalence of Diabetes and Its Association with Atherosclerotic Cardiovascular Disease Risk in Patients with Familial Hypercholesterolemia: An Analysis from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH). Pharmaceuticals. 2023; 16(1):44. https://doi.org/10.3390/ph16010044
Chicago/Turabian StyleBoutari, Chrysoula, Christos V. Rizos, Michalis Doumas, George Liamis, Ioannis Skoumas, Loukianos Rallidis, Anastasia Garoufi, Genovefa Kolovou, Konstantinos Tziomalos, Emmanouil Skalidis, and et al. 2023. "Prevalence of Diabetes and Its Association with Atherosclerotic Cardiovascular Disease Risk in Patients with Familial Hypercholesterolemia: An Analysis from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH)" Pharmaceuticals 16, no. 1: 44. https://doi.org/10.3390/ph16010044
APA StyleBoutari, C., Rizos, C. V., Doumas, M., Liamis, G., Skoumas, I., Rallidis, L., Garoufi, A., Kolovou, G., Tziomalos, K., Skalidis, E., Kotsis, V., Sfikas, G., Lambadiari, V., Anagnostis, P., Bilianou, E., Anastasiou, G., Koutagiar, I., Kiouri, E., Attilakos, A., ... Liberopoulos, E. (2023). Prevalence of Diabetes and Its Association with Atherosclerotic Cardiovascular Disease Risk in Patients with Familial Hypercholesterolemia: An Analysis from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH). Pharmaceuticals, 16(1), 44. https://doi.org/10.3390/ph16010044