Synthesis, In Vitro α-Glucosidase Inhibitory Activity and Molecular Docking Study of New Benzotriazole-Based Bis-Schiff Base Derivatives
Abstract
:1. Introduction
2. Result and Discussion
2.1. Chemistry
2.2. In Vitro α-Glucosidase Inhibition Profile
Structure-Activity Relationship (SAR) for α-Glucosidase Enzyme
2.3. Molecular Docking Study
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Benzotriazole Scaffolds
3.2.1. Formation of S-Substituted Benzotriazole Substrate (III)
3.2.2. Synthesis of Benzotriazole-Based Bis-Schiff Base Scaffolds (1–20)
3.3. Spectral Analysis
3.3.1. 2-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(3-methoxyphenyl)ethylidene) hydrazono)methyl)-4,6-dichlorophenol (1)
3.3.2. 1-((E)-2-(3-methoxyphenyl)-2-(((E)-3-nitrobenzylidene)hydrazono)ethyl)-1H-benzo[d] [1,2,3]triazole (2)
3.3.3. 1-((E)-2-(4-bromophenyl)-2-(((E)-3-nitrobenzylidene)hydrazono)ethyl)-1H-benzo[d] [1,2,3]triazole (3)
3.3.4. 1-((E)-2-(((E)-anthracen-9-ylmethylene)hydrazono)-2-(4-bromophenyl)ethyl)-1H-benzo[d] [1,2,3]triazole (4)
3.3.5. 2-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-bromophenyl)ethylidene) hydrazono) methyl)-4,6-dichlorophenol (5)
3.3.6. 1-((E)-2-(4-bromophenyl)-2-(((E)-4-nitrobenzylidene)hydrazono)ethyl)-1H-benzo[d] [1,2,3]triazole (6)
3.3.7. 1-((E)-2-(4-bromophenyl)-2-(((E)-naphthalen-2-ylmethylene)hydrazono)ethyl)-1H-benzo[d] [1,2,3]triazole (7)
3.3.8. 4-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-bromophenyl)ethylidene) hydrazono) methyl)benzaldehyde (8)
3.3.9. 2-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(3-nitrophenyl)ethylidene) hydrazono)methyl)-4,6-dichlorophenol (9)
3.3.10. 2-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-nitrophenyl)ethylidene) hydrazono)methyl)-4,6-dichlorophenol (10)
3.3.11. 1-((E)-2-(((E)-3-nitrobenzylidene)hydrazono)-2-(4-nitrophenyl)ethyl)-1H-benzo[d] [1,2,3]triazole (11)
3.3.12. 1-((E)-2-(((E)-4-nitrobenzylidene)hydrazono)-2-(4-nitrophenyl)ethyl)-1H-benzo[d] [1,2,3]triazole (12)
3.3.13. 2-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(2,4-dichlorophenyl)ethylidene) hydrazono)methyl)-4,6-dichlorophenol (13)
3.3.14. 1-((E)-2-(2,4-dichlorophenyl)-2-(((E)-3-nitrobenzylidene)hydrazono)ethyl)-1H-benzo[d] [1,2,3]triazole (14)
3.3.15. 1-((E)-2-(2,4-dichlorophenyl)-2-(((E)-4-nitrobenzylidene)hydrazono)ethyl)-1H-benzo[d] [1,2,3]triazole (15)
3.3.16. 4-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-bromophenyl)ethylidene) hydrazono)methyl)benzaldehyde (16)
3.3.17. 1-((E)-2-(4-bromophenyl)-2-(((E)-3,4-dichlorobenzylidene)hydrazono)ethyl)-1H-benzo[d] [1,2,3]triazole (17)
3.3.18. 4-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(3-bromophenyl)ethylidene) hydrazono) methyl)benzaldehyde (18)
3.3.19. 1-((E)-2-(((E)-3,4-dichlorobenzylidene)hydrazono)-2-(4-nitrophenyl)ethyl)-1H-benzo[d] [1,2,3]triazole (19)
3.3.20. 4-((E)-(((E)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-nitrophenyl)ethylidene) hydrazono)methyl)phenol (20)
3.4. α-Glucosidase Inhibition Assay
3.5. Molecular Docking Protocol
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Funke, I.; Melzig, M.F. Traditionally used plants in diabetes therapy. Phytotherapeutics as inhibitors of a-amylase activity. Brazil. J. Pharm. 2006, 16, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Si, M.M.; Lou, J.S.; Zhou, C.X.; Shen, J.N.; Wu, H.H.; Yang, B.; He, Q.J.; Wu, H.S. Insulin releasing and alpha-glucosidase inhibitory activity of ethyl acetate fraction of Acorus calamus in vitro and in vivo. J. Ethnopharmacol. 2010, 128, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.; Srivastava, S.P.; Bhatia, V.; Mishra, A.; Sonkar, A.K.; Narender, T.; Srivastava, A.K. Inhibition of alpha-glucosidase by Acacia nilotica prevents hyperglycemia along with improvement of diabetic complications via aldose reductase inhibition. J. Diabetes Metab. 2012, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Slama, G.; Elgrably, F.; Sola, A.; Mbemba, J.; Larger, E. Postprandial glycaemia: A plea for the frequent use of delta postprandial glycaemia in the treatment of diabetic patients. Diabetes Metab. 2006, 32, 187–192. [Google Scholar] [CrossRef]
- Atta-ur-Rahman; Choudhary, M.I.; Basha, F.Z.; Abbas, G.; Khan, S.N.; Ali, S.S.A. Science at the interface of chemistry and biology: Discoveries of a-glucosidase inhibitors and antiglycation agents. Pure Appl. Chem. 2007, 79, 2263–2268. [Google Scholar] [CrossRef]
- Chiba, S. Molecular mechanism in a-glucosidase and glucoamylase. Bio. Sci. Biotech. Biochem. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Kim, K.Y.; Nam, K.A.; Kurihara, H.; Kim, S.M. Potent aglucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochem. 2008, 69, 2820–2825. [Google Scholar] [CrossRef]
- Lafridi, H.; Almalki, F.A.; Ben Hadda, T.; Berredjem, M.; Kawsar, S.M.A.; Alqahtani, A.M.; Esharkawy, E.R.; Lakhrissi, B.; Zgou, H. In silico evaluation of molecular interactions between macrocyclic inhibitors with the HCV NS3 protease. Docking and identification of antiviral pharmacophore site. J. Biomol. Struct. Dyn. 2022, 1–14. [Google Scholar] [CrossRef]
- Rakib, A.; Sami, S.A.; Mimi, N.J.; Chowdhury, M.d.M.; Eva, T.A.; Nainu, F.; Paul, A.; Shahriar, A.; Tareq, A.M.; Emon, N.U.; et al. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput. Biol. Med. 2020, 124, 103967. [Google Scholar] [CrossRef]
- Braun, C.; Brayer, G.D.; Withers, S.G. Mechanism-based inhibition of yeast alpha-glucosidase and human pancreatic alphaamylase by a new class of inhibitors: 2-deoxy-2,2-difluoro alphaglycosides. J. Biol. Chem. 1995, 270, 26778–26781. [Google Scholar] [CrossRef]
- Dwek, R.A.; Butters, T.D.; Platt, F.M.; Zitzmann, N. Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug Discov. 2002, 1, 65–75. [Google Scholar] [CrossRef]
- Chalkha, M.; Nakkabi, A.; Ben Hadda, T.; Berredjem, M.; Moussaoui, A.E.; Bakhouch, M.; Saadi, M.; ElAmmari, L.; Almalki, F.A.; Laaroussi, H.; et al. Crystallographic study, biological assessment and POM/Docking studies of pyrazoles-sulfonamide hybrids (PSH): Identification of a combined Antibacterial/Antiviral pharmacophore sites leading to in-silico screening the anti-Covid-19 activity. J. Mol. Struct. 2022, 1267, 133605. [Google Scholar] [CrossRef]
- Matin, M.M.; Matin, P.; Rahman, M.R.; Ben Hadda, T.; Almalki, F.A.; Mahmud, S.; Ghoneim, M.M.; Alruwaily, M.; Alshehri, S. Triazoles and Their Derivatives: Chemistry, Synthesis, and Therapeutic Applications. Front. Mol. Biosci. 2022, 9, 864286. [Google Scholar] [CrossRef]
- Hosen, M.A.; Munia, N.S.; Al-Ghorbani, M.; Baashen, M.; Almalki, F.A.; Ben Hadda, T.; Ali, F.; Mahmud, S.; Abu Saleh, M.; Laaroussi, H.; et al. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorganic Chem. 2022, s, 105850. [Google Scholar] [CrossRef]
- Truscheit, E.; Frommer, W.; Junge, B.; Mu¨ller, L.; Schmidt, D.D.; Wingender, W. Chemistry and biochemistry of microbial aglucosidase inhibitors. Angew. Chem. Int. Ed. Engl. 1981, 20, 744–761. [Google Scholar] [CrossRef]
- Asati, K.C.; Srivastava, S.K.; Srivastava, S.D. Synthesis of 5-arylidene-2-aryl-3-(benzotriazoloacetamidyl)-1,3-thiazolidin-4-ones as analegesic and antimicrobial agents. Indian J. Chem. 2006, 45B, 526. [Google Scholar]
- Mulwad, V.V.; Mir, A.A. Synthesis and antibacterial screening of N-[coumarin-6-yl] spiro-indoloazetidin-2-ones/thiazolidin-4-ones. J. Korean Chem. Soc. 2008, 52, 649–656. [Google Scholar]
- Lebouvier, N.; Pagnies, F.; Duflos, M.; Pape, P.L.; Min Na, Y.; Guillaume, B.L.; Borgne, M.L. Synthesis and antifungal activities of new fluconazole analogues with azaheterocycle moiety. Bioorg. Med. Chem. Lett. 2006, 17, 3686. [Google Scholar] [CrossRef]
- Caliendo, G.; Di Carlo, R.; Greco, G.; Meli, R.; Novellino, E.; Perissutt, E.; Santagada, V. Synthesis and antiinflammatory—analgesic profile of 1-methyl-2-(4-X-benzoyl) imidazole-5-carboxylic acids. Eur. J. Med. Chem. 1995, 30, 77. [Google Scholar] [CrossRef]
- Entezari, M.; Safari, M.; Hekmati, M.; Hekmat, S.; Azin, A. Modification of carboxylated multiwall nanotubes with benzotriazole derivatives and study of their anticancer activities. Med. Chem. Res. 2014, 23, 487–495. [Google Scholar] [CrossRef]
- Pochaiah, B.; Meher, C.P.; Srujana, B.; Swarnalatha, P.; Rao, A.M. Synthesis of Some Novel Benzotriazole-1-yl-acetic acid substituted aryl hydrazide Derivatives as Anticonvulsant Agents. Asian J. Res. Chem. 2013, 6, 71–75. [Google Scholar]
- Hameed, S.; Kanwal, S.F.; Rafique, R.; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Venugopal, V.; Salar, U.; Taha, M.; Khan, K.M. Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity relationship, molecular docking, and kinetic studies. Eur. J. Med. Chem. 2019, 183, 111677. [Google Scholar]
- Rahim, F.; Zaman, K.; Taha, M.; Ullah, H.; Ghufran, M.; Wadood, A.; Rehman, W.; Uddin, N.; Shah, S.A.A.; Sajid, M.; et al. Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorg. Chem. 2020, 94, 103394. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, N.D.; Patil, S.V.; Bobade, V.D. Synthesis and biological evaluation of some novel thiazole substituted benzotriazole derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 3449–3454. [Google Scholar] [CrossRef]
- Ullah, H.; Rahim, F.; Taha, M.; Hussain, R.; Wadood, A.; Nawaz, M.; Wahab, Z.; Khan, K.M. Synthesis, In vitro α-Glucosidase Inhibitory Potential and Molecular Docking Studies of 2-Amino-1, 3, 4-Oxadiazole Derivatives. Med. Chem. 2020, 16, 724–734. [Google Scholar] [CrossRef]
- Ullah, H.; Fayyaz, F.; Hussain, A.; Rahim, F.; Hayat, S.; Uddin, I.; Khan, F.; Zada, H.; Rehman, A.U.; Wadood, A.; et al. New oxadiazole bearing thiosemicarbazide analogues: Synthesis, anti-alzheimer inhibitory potential and their molecular docking study. Chem. Data Collect. 2022, 41, 100915. [Google Scholar] [CrossRef]
- Ramirez-Escudero, M.; Gimeno-Perez, M.; Gonzalez, B.; Linde, D.; Merdzo, Z.; Fernandez, L.M.; Sanz-Aparicio, J. Structural analysis of β-fructofuranosidase from Xanthophyllomycesdendrorhous reveals unique features and the crucial role of N-glycosylation in oligomerization and activity. J. Biol. Chem. 2016, 291, 6843–6857. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Ullah, H.; Rahim, F.; Nawaz, M.; Hussain, R.; Rasheed, L. Synthesis, in vitro α-amylase, α-glucosidase activities and molecular docking study of new benzimidazole bearing thiazolidinone derivatives. J. Mol. Struct. 2022, 1269, 133812. [Google Scholar] [CrossRef]
S.NO | Ring B | Ring C | α-Glucosidase Inhibition IC50 ± SEM [µM] |
---|---|---|---|
1 | 5.90 ± 0.20 | ||
2 | 6.70 ± 0.20 | ||
3 | 8.10 ± 0.20 | ||
4 | 28.30 ± 0.60 | ||
5 | 6.10 ± 0.10 | ||
6 | 9.80 ± 0.30 | ||
7 | 24.50 ± 0.50 | ||
8 | 19.70 ± 0.50 | ||
9 | 1.10 ± 0.05 | ||
10 | 1.40 ± 0.10 | ||
11 | 3.70 ± 0.20 | ||
12 | 4.30 ± 0.20 | ||
13 | 2.10 ± 0.10 | ||
14 | 6.80 ± 0.20 | ||
15 | 8.50 ± 0.30 | ||
16 | 13.40 ± 0.40 | ||
17 | 15.20 ± 0.50 | ||
18 | 10.20 ± 0.40 | ||
19 | 5.50 ± 0.20 | ||
20 | 2.90 ± 0.20 | ||
Standard Acarbose | 10.30 ± 0.20 µM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Rehman, W.; Rahim, F.; Hussain, R.; Khan, S.; Fazil, S.; Rasheed, L.; Taha, M.; Shah, S.A.A.; Abdellattif, M.H.; et al. Synthesis, In Vitro α-Glucosidase Inhibitory Activity and Molecular Docking Study of New Benzotriazole-Based Bis-Schiff Base Derivatives. Pharmaceuticals 2023, 16, 17. https://doi.org/10.3390/ph16010017
Khan I, Rehman W, Rahim F, Hussain R, Khan S, Fazil S, Rasheed L, Taha M, Shah SAA, Abdellattif MH, et al. Synthesis, In Vitro α-Glucosidase Inhibitory Activity and Molecular Docking Study of New Benzotriazole-Based Bis-Schiff Base Derivatives. Pharmaceuticals. 2023; 16(1):17. https://doi.org/10.3390/ph16010017
Chicago/Turabian StyleKhan, Imran, Wajid Rehman, Fazal Rahim, Rafaqat Hussain, Shoaib Khan, Srosh Fazil, Liaqat Rasheed, Muhammad Taha, Syed Adnan Ali Shah, Magda H. Abdellattif, and et al. 2023. "Synthesis, In Vitro α-Glucosidase Inhibitory Activity and Molecular Docking Study of New Benzotriazole-Based Bis-Schiff Base Derivatives" Pharmaceuticals 16, no. 1: 17. https://doi.org/10.3390/ph16010017
APA StyleKhan, I., Rehman, W., Rahim, F., Hussain, R., Khan, S., Fazil, S., Rasheed, L., Taha, M., Shah, S. A. A., Abdellattif, M. H., & Farghaly, T. A. (2023). Synthesis, In Vitro α-Glucosidase Inhibitory Activity and Molecular Docking Study of New Benzotriazole-Based Bis-Schiff Base Derivatives. Pharmaceuticals, 16(1), 17. https://doi.org/10.3390/ph16010017