Phytochemical Composition and Cytoprotective Properties of the Endemic Sideritis sipylea Boiss Greek Species: A Valorization Study
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.1.1. Spectrophotometric Analysis
2.1.2. Ultra-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS) of S10, S20, and S50 Fractions
2.2. Radical Scavenger Activity
2.3. Iron Chelating and Reducing Activity
2.4. Inhibition of Advanced Glycation End-Product (AGE) Formation
2.5. Cytotoxicity of S10, S20, and S50 Fractions in Cell Lines
2.6. Cytoprotective Activity of S10, S20, and S50 Fractions towards the Oxidative Damage Induced by tBOOH
2.7. Sideritis sipylea Fractions Counteract tBOOH-Induced Oxidative Stress by Increasing GSH Levels
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Extraction Procedure
4.3. Phytochemical Analysis
4.3.1. Determination of Total Polyphenols, Tannins, and Flavonoids
4.3.2. Ultra-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS)
4.4. Radical Scavenging Activity
4.5. Iron Chelating and Reducing Activity
4.6. Inhibition of Advanced Glycation End-Product (AGE) Formation
4.7. Cytoprotective Activity under Oxidative Stress
4.7.1. Cell Culture
4.7.2. Cytotoxicity Assay
4.7.3. Cytoprotection towards the Oxidative Damage Induced by Tert-Butyl Hydroperoxide (tBOOH)
4.7.4. Determination of Intracellular Levels of Reactive Oxygen Species (ROS)
4.7.5. Chromatographic Determination of Intracellular Glutathione Levels
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, P. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1982. [Google Scholar]
- Güvenç, A.; Houghton, P.J.; Duman, H.; Coşkun, M.; Şahin, P. Antioxidant Activity Studies on Selected Sideritis Species Native to Turkey. Pharm. Biol. 2005, 43, 173–177. [Google Scholar] [CrossRef] [Green Version]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis Spp.: Uses, Chemical Composition and Pharmacological Activities—A Review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Strid, A.; Kit, T. Mountain Flora of Greece; Edinburgh University Press: Edinburgh, UK, 1991. [Google Scholar]
- Axiotis, E.; Halabalaki, M.; Skaltsounis, L.A. An Ethnobotanical Study of Medicinal Plants in the Greek Islands of North Aegean Region. Front. Pharmacol. 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Tsioutsiou, E.E.; Giordani, P.; Hanlidou, E.; Biagi, M.; De Feo, V.; Cornara, L. Ethnobotanical Study of Medicinal Plants Used in Central Macedonia, Greece. Evid. Based Complement. Altern. Med. 2019, 2019, 4513792. [Google Scholar] [CrossRef] [PubMed]
- Vokou, D.; Katradi, K.; Kokkini, S. Ethnobotanical Survey of Zagori (Epirus, Greece), a Renowned Centre of Folk Medicine in the Past. J. Ethnopharmacol. 1993, 39, 187–196. [Google Scholar] [CrossRef]
- Petrakou, K.; Iatrou, G.; Lamari, F.N. Ethnopharmacological Survey of Medicinal Plants Traded in Herbal Markets in the Peloponnisos, Greece. J. Herb. Med. 2019, 19, 100305. [Google Scholar] [CrossRef]
- Gürbüz, I.; Özkan, A.M.; Yesilada, E.; Kutsal, O. Anti-Ulcerogenic Activity of Some Plants Used in Folk Medicine of Pinarbasi (Kayseri, Turkey). J. Ethnopharmacol. 2005, 101, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Aboutabl, E.A.; Nassar, M.I.; Elsakhawy, F.M.; Maklad, Y.A.; Osman, A.F.; El-Khrisy, E.A.M. Phytochemical and Pharmacological Studies on Sideritis taurica Stephan Ex Wild. J. Ethnopharmacol. 2002, 82, 177–184. [Google Scholar] [CrossRef]
- Tomou, E.M.; Lytra, K.; Chrysargyris, A.; Christofi, M.D.; Miltiadous, P.; Corongiu, G.L.; Tziouvelis, M.; Tzortzakis, N.; Skaltsa, H. Polar Constituents, Biological Effects and Nutritional Value of Sideritis sipylea Boiss. Nat. Prod. Res. 2021, 1–5. [Google Scholar] [CrossRef]
- Basile, A.; Senatore, F.; Gargano, R.; Sorbo, S.; Del Pezzo, M.; Lavitola, A.; Ritieni, A.; Bruno, M.; Spatuzzi, D.; Rigano, D.; et al. Antibacterial and Antioxidant Activities in Sideritis italica (Miller) Greuter et Burdet Essential Oils. J. Ethnopharmacol. 2006, 107, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Aligiannis, N.; Kalpoutzakis, E.; Chinou, I.B.; Mitakou, S.; Gikas, E.; Tsarbopoulos, A. Composition and Antimicrobial Activity of the Essential Oils of Five Taxa of Sideritis from Greece. J. Agric. Food Chem. 2001, 49, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Dulger, B.; Gonuz, A.; Aysel, V. Inhibition of Clotrimazole-Resistant Candida Albicans by Some Endemic Sideritis Species from Turkey. Fitoterapia 2006, 77, 404–405. [Google Scholar] [CrossRef] [PubMed]
- Todorova, M.; Trendafilova, A. Sideritis scardica Griseb., an Endemic Species of Balkan Peninsula: Traditional Uses, Cultivation, Chemical Composition, Biological Activity. J. Ethnopharmacol. 2014, 152, 256–265. [Google Scholar] [CrossRef]
- Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Pahnke, J. Sideritis Spp. Extracts Enhance Memory and Learning in Alzheimer’s β-Amyloidosis Mouse Models and Aged C57Bl/6 Mice. J. Alzheimer’s Dis. 2016, 31, 967–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knörle, R. Extracts of Sideritis scardica as Triple Monoamine Reuptake Inhibitors. J. Neural Transm. 2012, 119, 1477–1482. [Google Scholar] [CrossRef]
- Committee on Herbal Medicinal Products (HMPC). European Union Herbal Monograph on Sideritis scardica Griseb.; Sideritis Clandestina (Bory & Chaub) Hayek; Sideritis Raeseri Boiss. & Heldr.; Sideritis Syriaca, L., Herba; EMA/HMPC/39453/2015; HMPC: London, UK, 2015. [Google Scholar]
- Charami, M.-T.; Lazari, D.; Kariotis, A.; Skaltsa, H.; Hadjipavlou-Litina, D.; Souleles, C. Antioxidant and Antiinflammatory Activities of Sideritis perfoliata Subsp. Perfoliata (Lamiaceae). Phytother. Res. 2008, 22, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, C.N.; Kefalas, P.G.; Kokkalou, E.L. Antioxidant Activity of Flavonoids from Sideritis raeseri. J. Ethnopharmacol. 2005, 96, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Aslan, İ.; Kılıç, T.; Gören, A.C.; Topçu, G. Toxicity of Acetone Extract of Sideritis trojana and 7-Epicandicandiol, 7-Epicandicandiol Diacetate and 18-Acetylsideroxol against Stored Pests Acanthoscelides obtectus (Say), Sitophilus granarius (L.) and Ephestia kuehniella (Zell.). Ind. Crops Prod. 2006, 23, 171–176. [Google Scholar] [CrossRef]
- Axiotis, E.; Petrakis, E.A.; Halabalaki, M.; Mitakou, S. Phytochemical Profile and Biological Activity of Endemic Sideritis sipylea Boiss. in North Aegean Greek Islands. Molecules 2020, 25, 2022. [Google Scholar] [CrossRef]
- Sargın, S.A.; Akçicek, E.; Selvi, S. An Ethnobotanical Study of Medicinal Plants Used by the Local People of Alaşehir (Manisa) in Turkey. J. Ethnopharmacol. 2013, 150, 860–874. [Google Scholar] [CrossRef] [PubMed]
- Sargin, S.A.; Selvi, S.; López, V. Ethnomedicinal Plants of Sarigöl District (Manisa), Turkey. J. Ethnopharmacol. 2015, 171, 64–84. [Google Scholar] [CrossRef]
- Loğoğlu, E.; Arslan, S.; Oktemer, A.; Sakõyan, I. Biological Activities of Some Natural Compounds from Sideritis sipylea Boiss. Phytother. Res. 2006, 20, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Nakiboglu, M.; Urek, R.O.; Kayali, H.A.; Tarhan, L. Antioxidant Capacities of Endemic Sideritis sipylea and Origanum sipyleum from Turkey. Food Chem. 2007, 104, 630–635. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Di Sotto, A.; Locatelli, M.; Macone, A.; Toniolo, C.; Cesa, S.; Carradori, S.; Eufemi, M.; Mazzanti, G.; Di Giacomo, S. Hypoglycemic, Antiglycation, and Cytoprotective Properties of a Phenol-Rich Extract from Waste Peel of Punica granatum L. var. Dente di Cavallo DC2. Molecules 2019, 24, 3103. [Google Scholar] [CrossRef] [Green Version]
- Sarikurkcu, C.; Locatelli, M.; Mocan, A.; Zengin, G.; Kirkan, B. Phenolic Profile and Bioactivities of Sideritis perfoliate L.: The Plant, Its Most Active Extract, and Its Broad Biological Properties. Front. Pharmacol. 2020, 10, 1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, L.; Xiang, Q.; Zhan, S.; Song, Y.; Wang, K.; Zhao, K.; Li, S.; Shao, Z.; Yang, C.; Zhang, Y. Restoration of Autophagic Flux Rescues Oxidative Damage and Mitochondrial Dysfunction to Protect against Intervertebral Disc Degeneration. Oxid. Med. Cell. Longev. 2019, 2019, 7810320. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jiang, T.; Lu, Q.; Xu, K.; He, J.; Xie, L.; Chen, Z.; Zheng, Z.; Ye, L.; Xu, K.; et al. Berberine attenuated the cytotoxicity induced by t-BHP via inhibiting oxidative stress and mitochondria dysfunction in PC-12 cells. Cell. Mol. Neurobiol. 2020, 40, 587–602. [Google Scholar] [CrossRef]
- Aneva, I.; Zhelev, P.; Kozuharova, E.; Danova, K.; Nabavi, S.F.; Behzad, S. Genus Sideritis, section Empedoclia in southeastern Europe and Turkey—Studies in ethnopharmacology and recent progress of biological activities. Daru 2019, 27, 407–421. [Google Scholar] [CrossRef]
- Sissi, S.; Di Giacomo, S.; Ferrante, C.; Angelini, P.; Macone, A.; Giusti, A.M.; Toniolo, C.; Vitalone, A.; Abdellah, A.; Larhsini, M.; et al. Characterization of the Phytochemical Composition and Bioactivities of Anacyclus maroccanus Ball. and Anacyclus radiatus Loisel Aerial Parts: Preliminary Evidence for the Possible Development of Moroccan Plants. Molecules 2022, 27, 692. [Google Scholar] [CrossRef]
- Ibraliu, A.; Trendafilova, B.A.; Anđelković, B.D.; Qazimi, B.; Gođevac, D.M.; Shengjergji, D.; Bebeci, E.; Stefkov, G.; Zdunic, G.; Aneva, I.I.; et al. Comparative Study of Balkan Sideritis Species from Albania, Bulgaria and Macedonia. Eur. J. Med. Plants 2015, 5, 328–340. [Google Scholar] [CrossRef]
- Petreska, J.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Stefova, M. Phenolic compounds of mountain tea from the Balkans: LC/DAD/ESI/MSn profile and content. Nat. Prod. Commun. 2011, 6, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żyżelewicz, D.; Kulbat-Warycha, K.; Oracz, J.; Żyżelewicz, K. Polyphenols and Other Bioactive Compounds of Sideritis Plants and Their Potential Biological Activity. Molecules 2020, 25, 3763. [Google Scholar] [CrossRef]
- Lall, N.; Chrysargyris, A.; Lambrechts, I.; Fibrich, B.; Blom Van Staden, A.; Twilley, D.; de Canha, M.N.; Oosthuizen, C.B.; Bodiba, D.; Tzortzakis, N. Sideritis Perfoliata (Subsp. Perfoliata) Nutritive Value and Its Potential Medicinal Properties. Antioxidants 2019, 8, 521. [Google Scholar]
- Lytra, K.; Tomou, E.M.; Chrysargyris, A.; Christofi, M.D.; Miltiadous, P.; Tzortzakis, N.; Skaltsa, H. Bio-Guided Investigation of Sideritis cypria Methanol Extract Driven by in Vitro Antioxidant and Cytotoxic Assays. Chem. Biodivers. 2021, 18, e2000966. [Google Scholar] [CrossRef]
- Jang, H.I.; Do, G.M.; Lee, H.M.; Ok, H.M.; Shin, J.H.; Kwon, O. Schisandra chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats. Nutr. Res. Pract. 2014, 8, 272–277. [Google Scholar] [CrossRef] [Green Version]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Kaurane diterpenes from Sideritis spp. exert a cytoprotective effect against oxidative injury that is associated with modulation of the Nrf2 system. Phytochemistry 2013, 93, 116–123. [Google Scholar] [CrossRef]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Nrf2-dependent neuroprotective activity of diterpenoids isolated from Sideritis spp. J. Ethnopharmacol. 2013, 147, 645–652. [Google Scholar] [CrossRef]
- Celik, I.; Kaya, M.S. The antioxidant role of Sideritis caesarea infusion against TCA toxicity in rats. Br. J. Nutr. 2011, 105, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulou, C.G.; Kontogianni, V.G.; Linardaki, Z.I.; Iatrou, G.; Lamari, F.N.; Nerantzaki, A.A.; Gerothanassis, I.P.; Tzakos, A.G.; Margarity, M. Phytochemical composition of “mountain tea” from Sideritis clandestina subsp. clandestina and evaluation of its behavioral and oxidant/antioxidant effects on adult mice. Eur. J. Nutr. 2013, 52, 107–116. [Google Scholar]
- Tandogan, B.; Güvenç, A.; Çalış, İ.; Ulusu, N.N. In vitro effects of compounds isolated from Sideritis brevibracteata on bovine kidney cortex glutathione reductase. Acta Biochim. Pol. 2011, 58, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Fraisse, D.; Degerine-Roussel, A.; Bred, A.; Ndoye, S.F.; Vivier, M.; Felgines, C.; Senejoux, F. A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves. Molecules 2018, 23, 1574. [Google Scholar] [CrossRef] [Green Version]
- Di Sotto, A.; Vecchiato, M.; Abete, L.; Toniolo, C.; Giusti, A.M.; Mannina, L.; Locatelli, M.; Nicoletti, M.; Di Giacomo, S. Capsicum annuum L. var. Cornetto di Pontecorvo PDO: Polyphenolic profile and in vitro biological activities. J. Funct. Foods 2018, 40, 679–691. [Google Scholar] [CrossRef]
- Di Sotto, A.; Gullì, M.; Acquaviva, A.; Tacchini, M.; Di Simone, S.C.; Chiavaroli, A.; Recinella, L.; Leone, S.; Brunetti, L.; Orlando, G.; et al. Phytochemical and pharmacological profiles of the essential oil from the inflorescences of the Cannabis sativa L. Ind. Crops Prod. 2022, 183, 114980. [Google Scholar] [CrossRef]
- Checconi, P.; Salzano, S.; Bowler, L.; Mullen, L.; Mengozzi, M.; Hanschmann, E.M.; Lillig, C.H.; Sgarbanti, R.; Panella, S.; Nencioni, L.; et al. Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress. PLoS ONE 2015, 10, e0127086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagórska-Dziok, M.; Bujak, T.; Ziemlewska, A.; Nizioł-Łukaszewska, Z. Positive Effect of Cannabis sativa L. Herb Extracts on Skin Cells and Assessment of Cannabinoid-Based Hydrogels Properties. Molecules 2021, 26, 802. [Google Scholar] [CrossRef]
- Di Giacomo, S.; Mariano, A.; Gullì, M.; Fraschetti, C.; Vitalone, A.; Filippi, A.; Mannina, L.; Scotto d’Abusco, A.; Di Sotto, A. Role of Caryophyllane Sesquiterpenes in the Entourage Effect of Felina 32 Hemp Inflorescence Phytocomplex in Triple Negative MDA-MB-468 Breast Cancer Cells. Molecules 2021, 26, 6688. [Google Scholar] [CrossRef] [PubMed]
- Di Giacomo, S.; Abete, L.; Cocchiola, R.; Mazzanti, G.; Eufemi, M.; Di Sotto, A. Caryophyllane sesquiterpenes inhibit DNA-damage by tobacco smoke in bacterial and mammalian cells. Food Chem. Toxicol. 2018, 111, 393–404. [Google Scholar] [CrossRef]
- Wu, W.; Li, K.; Ran, X.; Wang, W.; Xu, X.; Zhang, Y.; Wei, X.; Zhang, T. Combination of resveratrol and luteolin ameliorates α-naphthylisothiocyanate-induced cholestasis by regulating the bile acid homeostasis and suppressing oxidative stress. Food Funct. 2022, 13, 7098–7111. [Google Scholar] [CrossRef]
Sideritis sipylea Fractions | Total Polyphenols | Tannins | Flavonoids |
---|---|---|---|
μg TAE/mg | μg QE/mg | ||
S10 | 72.03 ± 0.02 | 31.07 ± 0.02 | 2216.40 ± 25.03 |
S20 | 70.03 ± 0.01 | 28.07 ± 0.02 * | 903.20 ± 15.02 *** |
S50 | 58.04 ± 0.01 ***°°° | 29.07 ± 0.01 | 746.40 ± 17.01 ***°°° |
Νο. | Compound | tR (min.) | [M-H]− m/z | Suggested Formula | Area (×107) | Ref. | ||
---|---|---|---|---|---|---|---|---|
S10 | S20 | S50 | ||||||
1 | Melittoside derivative | 0.90 | 569.1726 | C22H33O17 | 0.2 | 1.5 | 1.8 | [21] |
2 | Quinic acid | 1.04 | 191.0568 | C7H11O6 | - | - | 4.7 | [21] |
3 | Feruloylquinic acid | 1.11 | 367.1037 | C17H19O9 | 0.3 | - | - | [21] |
4 | Melittoside derivative | 1.46 | 569.1726 | C22H33O17 | 0.1 | 2.1 | 3.5 | [21] |
5 | Chlorogenic acid | 7.23 | 353.0880 | C16H17O9 | - | - | 5.4 | [21] |
6 | Iridoid derivative | 8.42 | 435.1491 | C18H27O12 | 14.6 | 1.1 | 0.3 | [26] |
7 | Echinacoside | 9.60 | 785.2509 | C35H45O20 | - | 3.7 | 0.9 | [21] |
8 | Lavandulifolioside | 9.70 | 755.2393 | C34H43O19 | 0.3 | 10.3 | 1.7 | [26] |
9 | Isoverbascoside | 9.90 | 623.1989 | C29H35O15 | 8.4 | 5.3 | 1.9 | [21] |
10 | Isoscutelarein 7-O-allosyl-(1→2)-glucoside | 10.24 | 609.1450 | C27H29O16 | 1.3 | 0.7 | - | [21] |
11 | Leucoseptoside A | 10.77 | 637.2142 | C30H37O15 | 0.2 | 0.1 | tr | [21] |
12 | Apigenin 7-O-glucoside | 10.90 | 431.0984 | C21H19O10 | 0.9 | 0.6 | 0.2 | [21] |
13 | Luteolin 7-O-allosyl-(1→2)-[6″-O-acetyl]-glucoside | 11.27 | 651.1570 | C29H31O17 | 8.2 | 1.3 | - | [21] |
14 | 4′-O-methylisoscutellarein 7-O-allosyl-(1→2)-glucoside | 11.88 | 623.1625 | C28H31O16 | 8.1 | 4.8 | 0.2 | [21,26] |
15 | 4′-O-methylisoscutellarein 7-O-allosyl-(1→2)-[6″-O-acetyl]-glucoside | 12.94 | 665.1728 | C30H33O17 | 23.7 | 8.3 | 1.4 | [21,26] |
16 | Apigenin 7-(6″-p-coumaroylglucoside) | 13.11 | 577.1356 | C30H25O12 | 1.1 | 0.7 | 0.3 | [21,26] |
17 | Apigenin 7-(4″-p-coumaroylglucoside) | 13.90 | 577.1356 | C30H25O12 | 3.3 | 1.2 | 0.8 | [21,26] |
18 | Apigenin | 14.20 | 269.0400 | C15H9O5 | tr | tr | tr | [21,26] |
19 | 4′-O-Methylisoscutellarein 7-O-[6″′-O-acetyl]-allosyl-(1→2)-[6″-O-acetyl]-glucoside | 14.88 | 707.1808 | C32H35O18 | - | tr | tr | [21] |
Assay | IC50 (CL a) µg/mL | |||
---|---|---|---|---|
S10 | S20 | S50 | Positive Control | |
DPPH scavenging activity | 156.7 (116.3–211.2) | 150.3 (133.2–169.6) | 324.7 (262.7–401.3) *° | 4.9 (3.67–6.46) b |
ABTS scavenging activity | 33.5 (25.2–44.5) | 41.8 (23.7–73.9) | 73.1 (67.9–78.6) ** | 2.1 (1.8–2.4) b |
NO scavenging activity | 204.4 (108.5–396.6) | ne c | ne | 85.4 (80.6–87.4) b |
Ferrous ion chelating activity | 188.9 (147.5–280.1) | ne | ne | 51.1 (32.9–61.7) d |
Ferric ion chelating activity | 273.0 (255.5–294.0) | ne | ne | 45.2 (13.1–75.5) d |
Ferric ion reducing activity | 30.33 (25.22–36.19) | 17.68 (15.03–20.82) * | 87.82 (74.36–126.8) *°° | 4.3 (3.1–5.5) b |
AGE formation inhibition | ne | ne | ne | 3.2 (2.7–3.6) e |
Treatment | GSH | GSSG |
---|---|---|
(µM) | ||
Control | 147.0 ± 1.8 | 48.2 ± 0.1 |
tBOOH [5 µM] | 120.7 ± 2.2 °°° | 158.3 ± 3.3 °°° |
S. sipylea 10 [100 µg/mL] | 167.3 ± 1.5 °°° | 60.9 ± 2.2 °°° |
S. sipylea 20 [100 µg/mL] | 80.5 ± 1.7 °°° | 49.0 ± 0.3 |
S. sipylea 50 [100 µg/mL] | 92.4 ± 2.0 °°° | 50.2 ± 0.3 |
S. sipylea 10 [100 µg/mL] + tBOOH [5 µM] | 179.6 ± 4.0 *** | 70.0 ± 3.6 *** |
S. sipylea 20 [100 µg/mL] + tBOOH [5 µM] | 104.0 ± 1.8 ** | 63.9 ± 0.2 *** |
S. sipylea 50 [100 µg/mL] + tBOOH [5 µM] | 119.8 ± 3.1 | 73.7 ± 1.6 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Giacomo, S.; Di Sotto, A.; Angelis, A.; Percaccio, E.; Vitalone, A.; Gullì, M.; Macone, A.; Axiotis, E.; Skaltsounis, A.L. Phytochemical Composition and Cytoprotective Properties of the Endemic Sideritis sipylea Boiss Greek Species: A Valorization Study. Pharmaceuticals 2022, 15, 987. https://doi.org/10.3390/ph15080987
Di Giacomo S, Di Sotto A, Angelis A, Percaccio E, Vitalone A, Gullì M, Macone A, Axiotis E, Skaltsounis AL. Phytochemical Composition and Cytoprotective Properties of the Endemic Sideritis sipylea Boiss Greek Species: A Valorization Study. Pharmaceuticals. 2022; 15(8):987. https://doi.org/10.3390/ph15080987
Chicago/Turabian StyleDi Giacomo, Silvia, Antonella Di Sotto, Apostolis Angelis, Ester Percaccio, Annabella Vitalone, Marco Gullì, Alberto Macone, Evangelos Axiotis, and Alexios Leandros Skaltsounis. 2022. "Phytochemical Composition and Cytoprotective Properties of the Endemic Sideritis sipylea Boiss Greek Species: A Valorization Study" Pharmaceuticals 15, no. 8: 987. https://doi.org/10.3390/ph15080987
APA StyleDi Giacomo, S., Di Sotto, A., Angelis, A., Percaccio, E., Vitalone, A., Gullì, M., Macone, A., Axiotis, E., & Skaltsounis, A. L. (2022). Phytochemical Composition and Cytoprotective Properties of the Endemic Sideritis sipylea Boiss Greek Species: A Valorization Study. Pharmaceuticals, 15(8), 987. https://doi.org/10.3390/ph15080987