Brain Protection by Methylene Blue and Its Derivative, Azur B, via Activation of the Nrf2/ARE Pathway in Cisplatin-Induced Cognitive Impairment
Abstract
:1. Introduction
2. Results
2.1. Open Field
2.2. Morris Water Maze
2.2.1. Distance
2.2.2. Time
2.3. Gene Expression Level
2.4. The Amount of mtDNA Damage
2.5. Bacterial Composition of the Gut Microbiome
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Design of Experiment
4.3. The “Open Field” Test
4.4. The “Morris Water Maze” Test
4.5. Gene Expression Level Assessment
4.6. Measurement of mtDNA Damage
4.7. Assessing the Bacterial Composition of the Gut Microbiome
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cherdyntseva, N.V.; Kzhishkovskaya, Y.G.; Stakheeva, M.N.; Litvyakov, N.V.; Savelyeva, O.E.; Mitrofanova, I.V.; Stepanov, I.V.; Grachev, A.N.; Gerashchenko, T.S.; Zavyalova, M.V. The Immune System and the Effectiveness of Antitumor Treatment. 2015. Available online: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000522451 (accessed on 10 February 2022).
- Zhang, Y. Cell toxicity mechanism and biomarker. Clin. Transl. Med. 2018, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, B.H.; Vancamp, L.; Trosko, J.E.; Mansour, V.H. Platinum Compounds: A New Class of Potent Antitumour Agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef] [PubMed]
- Gelasco, A.; Lippard, S.J. NMR solution structure of a DNA dodecamer duplex containing a cis-diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. Biochemistry 1998, 37, 9230–9239. [Google Scholar] [CrossRef] [PubMed]
- Galea, A.M.; Murray, V. The interaction of cisplatin and analogues with DNA in reconstituted chromatin. Biochim. Biophys. Acta BBA-Gene Struct. Expr. 2002, 1579, 142–152. [Google Scholar] [CrossRef]
- Guimaraes, C.A.; Linden, R. Programmed cell deaths. Apoptosis and alternative deathstyles. J. Biol. Inorg. Chem. 2004, 271, 1638–1650. [Google Scholar] [CrossRef]
- Kole, A.J.; Knight, E.R.; Deshmukh, M. Activation of Apoptosis by Cytoplasmic Microinjection of Cytochrome c. J. Vis. Exp. 2011, 52, e2773. [Google Scholar] [CrossRef] [Green Version]
- Lomeli, N.; Di, K.; Czerniawski, J.; Guzowski, J.F.; Bota, D.A. Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radic. Biol. Med. 2017, 102, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Advances in Toxicological Research of the Anticancer Drug Cisplatin. Chem. Res. Toxicol. 2019, 32, 1469–1486. [Google Scholar] [CrossRef]
- Santos, N.A.G.D.; Ferreira, R.S.; Santos, A.C.D. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem. Toxicol. 2020, 136, 111079. [Google Scholar] [CrossRef]
- Kholodova, N.B.; Sotnikov, V.M.; Dobrovol’Skaia, N.I.; Ponkratova, I.A. Aspects of encephalopathy in oncologic patients after chemotherapy. Zhurnal Nevrol. I PsikhiatriiIm. SS Korsakova 2014, 114, 84–88. [Google Scholar] [CrossRef]
- Ongnok, B.; Chattipakorn, N.; Chattipakorn, S.C. Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions. Exp. Neurol. 2020, 324, 113118. [Google Scholar] [CrossRef]
- Akman, T.; Akman, L.; Erbaş, O.; Terek, M.C.; Taskiran, D.; Ozsaran, A. The Preventive Effect of Oxytocin to Cisplatin-Induced Neurotoxicity: An Experimental Rat Model. BioMed Res. Int. 2015, 2015, 167235. [Google Scholar] [CrossRef]
- Vindya, N.S.; Mohamad, A.; Razdan, R. Allantoin attenuates deficits of behavioural and motor nerve conduction in an animal model of cisplatin-induced neurotoxicity in rats. Anim. Model Exp. Med. 2019, 2, 114–120. [Google Scholar]
- Almutairi, M.M.; Alanazi, W.; Alshammari, M.A.; Alotaibi, M.R.; Alhoshani, A.R.; Al-Rejaie, S.S.; Hafez, M.M.; Al-Shabanah, O.A. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model. BMC Complement. Altern. Med. 2017, 17, 472. [Google Scholar] [CrossRef] [Green Version]
- Sharawy, N.; Rashed, L.; Youakim, M.F. Evaluation of multi-neuroprotective effects of erythropoietin using cisplatin induced peripheral neurotoxicity model. Exp. Toxicol. Pathol. 2015, 67, 315–322. [Google Scholar] [CrossRef]
- Gong, S.; Feng, Y.; Zeng, Y.; Zhang, H.; Pan, M.; He, F.; Wu, R.; Chen, J.; Lu, J.; Zhang, S.; et al. Gut microbiota accelerates cisplatin-induced acute liver injury associated with robust inflammation and oxidative stress in mice. J. Transl. Med. 2021, 19, 147. [Google Scholar] [CrossRef]
- Chambers, L.M.; Esakov, E.; Braley, C.; Sangwan, N.; Vargas, R.; Rose, P.; Lathia, J.; Michener, C.; Reizes, O. Cisplatin chemotherapy impacts the gut microbiome in a preclinical murine model of epithelial ovarian cancer. Gynecol. Oncol. 2020, 159, 108. [Google Scholar] [CrossRef]
- Wu, C.-H.; Ko, J.-L.; Liao, J.-M.; Huang, S.-S.; Lin, M.-Y.; Lee, L.-H.; Chang, L.-Y.; Ou, C.-C. D-methionine alleviates cisplatin-induced mucositis by restoring the gut microbiota structure and improving intestinal inflammation. Ther. Adv. Med. Oncol. 2019, 11, 1021. [Google Scholar] [CrossRef] [Green Version]
- Morais, L.H.; Schreiber, H.L.; Mazmanian, S.K. The gut microbiota-brain axis in behaviourand brain disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef]
- Rebillard, A.; Rioux-Leclercq, N.; Muller, C.; Bellaud, P.; Jouan, F.; Meurette, O.; Jouan, E.; Vernhet, L.; Le Quément, C.; Carpinteiro, A.; et al. Acid sphingomyelinase deficiency protects from cisplatin-induced gastrointestinal damage. Oncogene 2008, 27, 6590–6595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patankar, J.V.; Becker, C. Cell death in the gut epithelium and implications for chronic inflammation. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Solas, M.; I Milagro, F.; Ramírez, M.J.; Martínez, J.A. Inflammation and gut-brain axis link obesity to cognitive dysfunction: Plausible pharmacological interventions. Curr. Opin. Pharmacol. 2017, 37, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Tucker, D.; Lu, Y.; Zhang, Q. From Mitochondrial Function to Neuroprotection—an Emerging Role for Methylene Blue. Mol. Neurobiol. 2017, 55, 5137–5153. [Google Scholar] [CrossRef]
- Gureev, A.P.; Syromyatnikov, M.Y.; Ignatyeva, D.A.; Valuyskikh, V.V.; Solodskikh, S.A.; Panevina, A.V.; Gryaznova, M.V.; Kokina, A.V.; Popov, V.N. Effect of long-term methylene blue treatment on the composition of mouse gut microbiome and its relationship with the cognitive abilities of mice. PLoS ONE 2020, 15, e0241784. [Google Scholar] [CrossRef]
- Sadovnikova, I.S.; Gureev, A.P.; Ignatyeva, D.A.; Gryaznova, M.V.; Chernyshova, E.V.; Krutskikh, E.P.; Novikova, A.G.; Popov, V.N. Nrf2/ARE Activators Improve Memory in Aged Mice via Maintaining of Mitochondrial Quality Control of Brain and the Modulation of Gut Microbiome. Pharmaceuticals 2021, 14, 607. [Google Scholar] [CrossRef]
- Sekeres, M.J.; Winocur, G.; Moscovitch, M. The hippocampus and related neocortical structures in memory transformation. Neurosci. Lett. 2018, 680, 39–53. [Google Scholar] [CrossRef]
- Cowan, N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 2008, 169, 323–338. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.M.; Linley, P.A.; Maltby, J.; Kashdan, T.B.; Hurling, R. Using personal and psychological strengths leads to increases in well-being over time: A longitudinal study and the development of the strengths use questionnaire. Personal. Individ. Differ. 2011, 50, 15–19. [Google Scholar] [CrossRef]
- Bliss, T.V.P.; Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973, 232, 331–356. [Google Scholar] [CrossRef]
- Gureev, A.P.; Popov, V.N.; Starkov, A.A. Crosstalk between the mTOR and Nrf2/ARE signaling pathways as a target in the improvement of long-term potentiation. Exp. Neurol. 2020, 328, 113285. [Google Scholar] [CrossRef]
- Zakria, M.; Ahmad, N.; Al Kury, L.T.; Alattar, A.; Uddin, Z.; Siraj, S.; Ullah, S.; Alshaman, R.; Khan, M.I.; Shah, F.A. Melatonin rescues the mice brain against cisplatin-induced neurodegeneration, an insight into antioxidant and anti-inflammatory effects. NeuroToxicology 2021, 87, 1–10. [Google Scholar] [CrossRef]
- Shabani, M.; Larizadeh, M.H.; Parsania, S.; Hajali, V.; Shojaei, A. Evaluation of Destructive Effects of Exposure to Cisplatin During Developmental Stage: No Profound Evidence for Sex Differences in Impaired Motor and Memory Performance. Int. J. Neurosci. 2012, 122, 439–448. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, H.; Xu, H.; Zheng, Y.; Wu, T.; Lian, Y. Ginsenoside Rb1 ameliorates cisplatin-induced learning and memory impairments. J. Ginseng. Res. 2019, 43, 499–507. [Google Scholar] [CrossRef]
- Oz, M.; Atalik, K.E.N.; Yerlikaya, F.H.; Demir, E.A. Curcumin alleviates cisplatin-induced learning and memory impairments. Neurobiol. Learn. Mem. 2015, 123, 43–49. [Google Scholar] [CrossRef]
- Kandeil, M.A.; Gomaa, S.B.; Mahmoud, M.O. The effect of some natural antioxidants against cisplatin-induced neurotoxicity in rats: Behavioral testing. Heliyon 2020, 6, e04708. [Google Scholar] [CrossRef]
- Shabani, M.; Nazeri, M.; Parsania, S.; Razavinasab, M.; Zangiabadi, N.; Esmaeilpour, K.; Abareghi, F. Walnut consumption protects rats against cisplatin-induced neurotoxicity. NeuroToxicology 2012, 33, 1314–1321. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Alizadeh, A.; Heydari, P.; Kafami, M.; Hosseini, M.; Beheshti, F.; Marefati, N.; Ghanbarabadi, M. Effect of vitamin E on cisplatin-induced memory impairment in male rats. Acta Neuropsychiatr. 2020, 33, 43–48. [Google Scholar] [CrossRef]
- Hussien, M.; Yousef, M.I. Impact of ginseng on neurotoxicity induced by cisplatin in rats. Environ. Sci. Pollut. Res. Int. 2021, 1–13. [Google Scholar] [CrossRef]
- Ma, J.; Huo, X.; Jarpe, M.B.; Kavelaars, A.; Heijnen, C.J. Pharmacological inhibition of HDAC6 reverses cognitive impairment and tau pathology as a result of cisplatin treatment. Acta Neuropathol. Commun. 2018, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Chiu, G.S.; Boukelmoune, N.; Chiang, A.C.; Peng, B.; Rao, V.; Kingsley, C.; Liu, H.-L.; Kavelaars, A.; Kesler, S.R.; Heijnen, C.J. Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice. Oncotarget 2018, 9, 35581–35597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahdan, S.A.; Elsherbiny, D.A.; Azab, S.S.; El-Demerdash, E. Piceatannol ameliorates behavioural, biochemical and histological aspects in cisplatin-induced peripheral neuropathy in rats. Basic Clin. Pharmacol. Toxicol. 2021, 129, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Chiu, G.S.; Maj, M.A.; Rizvi, S.; Dantzer, R.; Vichaya, E.G.; Laumet, G.; Kavelaars, A.; Heijnen, C.J. Pifithrin-µ Prevents Cisplatin-Induced Chemobrain by Preserving Neuronal Mitochondrial Function. Cancer Res. 2017, 77, 742–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Deeb, O.S.; Soliman, G.M.; Elesawy, R.O. Linagliptin, the dipeptidyl peptidase-4 enzyme inhibitor, lessens CHOP and GRP78 biomarkers levels in cisplatin-induced neurobehavioral deficits: A possible restorative gateway. J. Biochem. Mol. Toxicol. 2020, 34, e22541. [Google Scholar] [CrossRef]
- Salih, N.A.; Al-Baggou, B.K. Effect of memantine hydrochloride on cisplatin-induced neurobehavioral toxicity in mice. Acta Neurol. Belg. 2020, 120, 71–82. [Google Scholar] [CrossRef]
- Borbélyová, V.; Renczés, E.; Chovanec, M.; Mego, M.; Celec, P. Transient effects of chemotherapy for testicular cancer on mouse behaviour. Sci. Rep. 2020, 10, 10224. [Google Scholar] [CrossRef]
- John, T.; Lomeli, N.; Bota, D.A. Systemic cisplatin exposure during infancy and adolescence causes impaired cognitive function in adulthood. Behav. Brain Res. 2017, 319, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Cankara, F.N.; Günaydın, C.; Çelik, Z.B.; Şahin, Y.; Pekgöz, Ş.; Erzurumlu, Y.; Gülle, K. Agomelatine confers neuroprotection against cisplatin-induced hippocampal neurotoxicity. Metab. Brain Dis. 2021, 36, 339–349. [Google Scholar] [CrossRef]
- Bazer, D.; Kowalska, A. NCMP-15. CNS lymphoma: The great mimicker. NeuroOncology 2020, 22 (Suppl. 2), ii126. [Google Scholar] [CrossRef]
- Jangra, A.; Kwatra, M.; Singh, T.; Pant, R.; Kushwah, P.; Ahmed, S.; Dwivedi, D.; Saroha, B.; Lahkar, M. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus. Eur. J. Pharmacol. 2016, 791, 51–61. [Google Scholar] [CrossRef]
- Troy, L.; McFarland, K.; Littman-Power, S.; Kelly, B.J.; Walpole, E.T.; Wyld, D.; Thomson, D. Cisplatin-based therapy: A neurological and neuropsychological review. Psychooncology 2000, 9, 29–39. [Google Scholar] [CrossRef]
- Yi, L.-T.; Dong, S.-Q.; Wang, S.-S.; Chen, M.; Li, C.-F.; Geng, D.; Zhu, J.-X.; Liu, Q.; Cheng, J. Curcumin attenuates cognitive impairment by enhancing autophagy in chemotherapy. Neurobiol. Dis. 2019, 136, 104715. [Google Scholar] [CrossRef]
- Amidi, A.; Hosseini, S.M.H.; Leemans, A.; Kesler, S.R.; Agerbaek, M.; Wu, L.; Zachariae, R. Changes in Brain Structural Networks and Cognitive Functions in Testicular Cancer Patients Receiving Cisplatin-Based Chemotherapy. J. Natl. Cancer Inst. 2017, 109, djx085. [Google Scholar] [CrossRef]
- Andres, A.L.; Gong, X.; Di, K.; Bota, D.A. Low-doses of cisplatin injure hippocampal synapses: A mechanism for ‘chemo’ brain? Exp. Neurol. 2014, 255, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Tang, A.H.; Neufeld, T.P.; Rubin, G.M.; A Müller, H. Transcriptional regulation of cytoskeletal functions and segmentation by a novel maternal pair-rule gene, lilliputian. Development 2001, 128, 801–813. [Google Scholar] [CrossRef]
- Ersahin, T.; Tuncbag, N.; Cetin-Atalay, R. The PI3K/AKT/mTOR interactive pathway. Mol. BioSyst. 2015, 11, 1946–1954. [Google Scholar] [CrossRef]
- Schratt, G.M.; Nigh, E.A.; Chen, W.G.; Hu, L.; Greenberg, M.E. BDNF Regulates the Translation of a Select Group of mRNAs by a Mammalian Target of Rapamycin-Phosphatidylinositol 3-Kinase-Dependent Pathway during Neuronal Development. J. Neurosci. 2004, 24, 7366–7377. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Yang, J.; Wang, P.-Y.; Li, Y.-J.; Xie, S.-Y.; Sun, R.-P. Cisplatin regulates SH-SY5Y cell growth through downregulation of BDNF via miR-16. Oncol. Rep. 2013, 30, 2343–2349. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, N.; Lu, B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci. Ther. 2019, 25, 859–875. [Google Scholar] [CrossRef]
- Fivenson, E.M.; Lautrup, S.H.; Sun, N.; Scheibye-Knudsen, M.; Stevnsner, T.; Nilsen, H.; Bohr, V.A.; Fang, E.F. Mitophagy in neurodegeneration and aging. Neurochem. Int. 2017, 109, 202–209. [Google Scholar] [CrossRef]
- Husain, K.; Morris, C.; Whitworth, C.; Trammell, G.; Rybak, L.; Somani, S. Protection by ebselen against cisplatin-induced nephrotoxicity: Antioxidant system. Mol. Cell. Biochem. 1998, 178, 127–133. [Google Scholar] [CrossRef]
- Garibay-Valdez, E.; Cicala, F.; Martinez-Porchas, M.; Gómez-Reyes, R.; Vargas-Albores, F.; Gollas-Galván, T.; Martínez-Córdova, L.R.; Calderón, K. Longitudinal variations in the gastrointestinal microbiome of the white shrimp. Litopenaeusvannamei. PeerJ 2021, 9, e11827. [Google Scholar] [CrossRef]
- Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 2017, 7, 13537. [Google Scholar] [CrossRef]
- Iljazovic, A.; Roy, U.; Gálvez, E.J.; Lesker, T.R.; Zhao, B.; Gronow, A.; Amend, L.; Will, S.E.; Hofmann, J.D.; Pils, M.C.; et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 2021, 14, 113–124. [Google Scholar] [CrossRef]
- Larsen, J.M. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 2017, 151, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-F.; Gong, X.-L.; Chen, S.-X.; Wang, K.; Jiang, Y.-H. Deviations in the gut microbiota of neonates affected by maternal group B Streptococcus colonization. BMC Microbiol. 2021, 21, 140. [Google Scholar] [CrossRef]
- Barandouzi, Z.A.; Starkweather, A.R.; Henderson, W.; Gyamfi, A.; Cong, X.S. Altered Composition of Gut Microbiota in Depression: A Systematic Review. Front. Psychiatry 2020, 11, 541. [Google Scholar] [CrossRef]
- Schirmer, R.H.; Adler, H.; Pickhardt, M.; Mandelkow, E. Lest we forget you–methylene blue. Neurobiol. Aging 2011, 32, 2325.e7–2325.e16. [Google Scholar] [CrossRef]
- Martinez, J.L.; Jensen, R.A.; Vasquez, B.J.; McGuinness, T.; McGaugh, J.L. Methylene blue alters retention of inhibitory avoidance responses. Physiol. Psychol. 1978, 6, 387–390. [Google Scholar] [CrossRef] [Green Version]
- Callaway, N.L.; Riha, P.D.; Wrubel, K.M.; McCollum, D.; Gonzalez-Lima, F. Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats. Neurosci. Lett. 2002, 332, 83–86. [Google Scholar] [CrossRef]
- Rodriguez, P.; Zhou, W.; Barrett, D.W.; Altmeyer, W.; Gutierrez, J.E.; Li, J.; Lancaster, J.L.; Gonzalez-Lima, F.; Duong, T.Q. Multimodal Randomized Functional MR Imaging of the Effects of Methylene Blue in the Human Brain. Radiology 2016, 281, 516–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gureev, A.P.; Shaforostova, E.A.; Popov, V.N.; Starkov, A.A. Methylene blue does not bypass Complex III antimycin block in mouse brain mitochondria. FEBS Lett. 2019, 593, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Atamna, H.; Atamna, W.; Al-Eyd, G.; Shanower, G.; Dhahbi, J.M. Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue. Redox Biol. 2015, 6, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; An, C.; Gao, Y.; Leak, R.K.; Chen, J.; Zhang, F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog. Neurobiol. 2013, 100, 30–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gureev, A.P.; Sadovnikova, I.S.; Starkova, N.N.; Starkov, A.A.; Popov, V.N. p62-Nrf2-p62 Mitophagy Regulatory Loop as a Target for Preventive Therapy of Neurodegenerative Diseases. Brain Sci. 2020, 10, 847. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Takamatsu, H.; Liu, S.; Kataoka, K.; Huh, N.-H.; Sakaguchi, M. NRF2 Regulates PINK1 Expression under Oxidative Stress Conditions. PLoS ONE 2015, 10, e0142438. [Google Scholar] [CrossRef] [PubMed]
- Sha, C.; Barrans, S.; Cucco, F.; Bentley, M.A.; Care, M.A.; Cummin, T.; Kennedy, H.; Thompson, J.S.; Uddin, R.; Worrillow, L.; et al. Molecular High-Grade B-Cell Lymphoma: Defining a Poor-Risk Group That Requires Different Approaches to Therapy. J. Clin. Oncol. 2019, 37, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Bendavid, I.; Singer, P.; Theilla, M.; Themessl-Huber, M.; Sulz, I.; Mouhieddine, M.; Schuh, C.; Mora, B.; Hiesmayr, M. NutritionDay ICU: A 7 year worldwide prevalence study of nutrition practice in intensive care. Clin. Nutr. 2017, 36, 1122–1129. [Google Scholar] [CrossRef]
- Tufekci, K.U.; CiviBayin, E.; Genc, S.; Genc, K. The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson’s Disease. Parkinson’s Dis. 2011, 2011, 314082. [Google Scholar] [CrossRef] [Green Version]
- Warth, A.; Goeppert, B.; Bopp, C.; Schirmacher, P.; Flechtenmacher, C.; Burhenne, J. Turquoise to dark green organs at autopsy. Virchows Arch. 2009, 454, 341–344. [Google Scholar] [CrossRef]
- Petzer, A.; Harvey, B.H.; Wegener, G.; Petzer, J.P. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol. Appl. Pharmacol. 2012, 258, 403–409. [Google Scholar] [CrossRef]
- Biberoglu, K.; Yuksel, M.; Tacal, O. Azure B affects amyloid precursor protein metabolism in PS70 cells. Chem. Interact. 2018, 299, 88–93. [Google Scholar] [CrossRef]
- Pakavathkumar, P.; Sharma, G.; Kaushal, V.; Foveau, B.; Leblanc, A.C. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine. Sci. Rep. 2015, 5, 13730. [Google Scholar] [CrossRef]
- Čulo, F.; Sabolović, D.; Somogyi, L.; Marušić, M.; Berbiguier, N.; Galey, L. Anti-tumoral and anti-inflammatory effects of biological stains. Agents Actions 1991, 34, 424–428. [Google Scholar] [CrossRef]
- Haouzi, P.; McCann, M.; Tubbs, N. Azure B as a novel cyanide antidote: Preclinical in-vivo studies. Toxicol. Rep. 2020, 7, 1459–1464. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Tuohimaa, P. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur. J. Pharmacol. 2005, 508, 147–153. [Google Scholar] [CrossRef]
Group Name | Hole-Poking | Grooming (Time) | Grooming (Number) | Center (Time) | Center (Number) | Rearing | Defecation | Horizontal Activity |
---|---|---|---|---|---|---|---|---|
Control | 1 ± 0.7 | 15 ± 6.4 | 4.25 ± 0.9 | 14 ± 8.4 | 5.25 ± 2.9 | 21 ± 2.9 | 1.5 ± 0.7 | 104.5 ± 30.5 |
Saline injections | 2.1 ± 0.7 | 28.4 ± 0.4 | 8.25 ± 0.9 | 7.9 ± 1.7 | 3.1 ± 0.5 | 20.75 ± 6.4 | 1 ± 0.3 | 73.6 ± 16.8 |
Cisplatin injections | 2.2 ± 0.8 | 17.9 ± 5.4 | 6.3 ± 1.3 | 2.3 ± 1.1 | 1.3 ± 0.6 | 6.8 ± 1.6 | 0.5 ± 0.4 | 50.3 ± 14.9 |
Cisplatin + MB | 2.5 ± 0.6 | 77.3 ± 30.1 | 7.5 ± 1.1 | 4.1 ± 2.3 | 1.5 ± 0.8 | 8.5 ± 2.7 | 0.4 ± 0.2 | 63.1 ± 9.8 |
Cisplatin + AzB | 1.5 ± 0.4 | 15 ± 2.1 ** | 5.4 ± 0.5 | 4.75 ± 1.2 | 1.75 ± 0.4 | 7.75 ± 1.6 | 0.4 ± 0.4 | 54.1 ± 9.3 |
Acquisition. Start Located in the SW | ||||
---|---|---|---|---|
Day | Trial 1 | Trial 2 | Trial 3 | Trial 4 |
1 | N | E | SE | NW |
2 | SE | N | NW | E |
3 | NW | SE | E | N |
4 | E | NW | N | SE |
5 | N | SE | E | NW |
6 (Probe) | NE | - | - | - |
Reversal. Start located in the NE | ||||
Day | Trial 1 | Trial 2 | Trial 3 | Trial 4 |
1 | S | W | NW | SE |
2 | NW | S | SE | W |
3 | SE | NW | W | S |
4 | W | SE | S | NW |
5 | S | NW | W | SE |
6 (Probe) | SW | - | - | - |
Gene | Accession Number | Primers Sequence (5′–3′) |
---|---|---|
Nfe2l2 | NM_010902.4 | Forward = CTCTCTGAACTCCTGGACGG Reserve = GGGTCTCCGTAAATGGAAG |
Bdnf | NM_007540.4 | Forward = AAGGACGCGGACTTGTACAC Reserve = CGCTAATACTGTCACACACGC |
Mtor | NM_020009.2 | Forward = AGATAAGCTCACTGGTCGGG Reserve = GTGGTTTTCCAGGCCTCAGT |
Akt1 | NM_009652.3 | Forward = TGATCAAGATGACAGCATGGAGTG Reserve = GATGATCCATGCGGGGCTT |
Gclc | NM_010295.2 | Forward = GCAGCTTTGGGTCGCAAGTAG Reserve = TGGGTCTCTTCCCAGCTCAGT |
Gpx | NM_008160.6 | Forward = AGTCCACCGTGTATGCCTTCT Reserve = GAGACGCGACATTCTCAATGA |
Sod2 | NM_013671.3 | Forward = CAGACCTGCCTTACGACTATGG Reserve = CTCGGTGGCGTTGAGATTGTT |
P62 | U17961.1 | Forward = GCCAGAGGAACAGATGGAGT Reserve = TCCGATTCTGGCATCTGTAG |
Prdx3 | NM_007452.2 | Forward = TGGCTTGATCGTAGGGGACT Reserve = GTGGTTTGGGCCACATGAAC |
Txnr2 | NM_013711.3 | Forward = GATCCGGTGGCCTAGCTTG Reserve = TCGGGGAGAAGGTTCCACAT |
Pink1 | NM_026880.2 | Forward = GAGCAGACTCCCAGTTCTCG Reserve = GTCCCACTCCACAAGGATGT |
Gapdh (reference) | NM_001289726.1 | Forward = GGCTCCCTAGGCCCCTCCTG Reserve = TCCCAACTCGGCCCCCAACA |
18s (reference) | NR_003278.3 | Forward = CGGCTACCACATCCAAGGAA Reserve = GCTGGAATTACTGTGGCT |
mtDNAFragments | Primers Sequence (5′–3′) |
---|---|
1 long | Forward = TAAATTTCGTGCCAGCCACC Reserve = ATGCTACCTTTGCACGGTCA |
2 long | Forward = ACGAGGGTCCAACTGTCTCTTA Reserve = CCGGCTGCGTATTCTACGTT |
3 long | Forward = CTAGCAGAAACAAACCGGGC Reserve = TTAGGGCTTTGAAGGCTCGC |
4 long | Forward = TCATTCTTCTACTATCCCCAATCC Reserve = TGGTTTGGGAGATTGGTTGATG |
5 long | Forward = CCCCAATCCCTCCTTCCAAC Reserve = GGTGGGGAGTAGCTCCTTCTT |
6 long | Forward = AAGAAGGAGCTACTCCCCACC Reserve = GTTGACACGTTTTACGCCGA |
short (reference) | Forward = ACGAGGGTCCAACTGTCTCTTA Reserve = AGCTCCATAGGGTCTTCTCGT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krutskikh, E.P.; Potanina, D.V.; Samoylova, N.A.; Gryaznova, M.V.; Sadovnikova, I.S.; Gureev, A.P.; Popov, V.N. Brain Protection by Methylene Blue and Its Derivative, Azur B, via Activation of the Nrf2/ARE Pathway in Cisplatin-Induced Cognitive Impairment. Pharmaceuticals 2022, 15, 815. https://doi.org/10.3390/ph15070815
Krutskikh EP, Potanina DV, Samoylova NA, Gryaznova MV, Sadovnikova IS, Gureev AP, Popov VN. Brain Protection by Methylene Blue and Its Derivative, Azur B, via Activation of the Nrf2/ARE Pathway in Cisplatin-Induced Cognitive Impairment. Pharmaceuticals. 2022; 15(7):815. https://doi.org/10.3390/ph15070815
Chicago/Turabian StyleKrutskikh, Ekaterina P., Daria V. Potanina, Natalia A. Samoylova, Mariya V. Gryaznova, Irina S. Sadovnikova, Artem P. Gureev, and Vasily N. Popov. 2022. "Brain Protection by Methylene Blue and Its Derivative, Azur B, via Activation of the Nrf2/ARE Pathway in Cisplatin-Induced Cognitive Impairment" Pharmaceuticals 15, no. 7: 815. https://doi.org/10.3390/ph15070815
APA StyleKrutskikh, E. P., Potanina, D. V., Samoylova, N. A., Gryaznova, M. V., Sadovnikova, I. S., Gureev, A. P., & Popov, V. N. (2022). Brain Protection by Methylene Blue and Its Derivative, Azur B, via Activation of the Nrf2/ARE Pathway in Cisplatin-Induced Cognitive Impairment. Pharmaceuticals, 15(7), 815. https://doi.org/10.3390/ph15070815