Targeting Colorectal Cancer Cells with Niosomes Systems Loaded with Two Anticancer Drugs Models; Comparative In Vitro and Anticancer Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Drug-Free Niosomes Preparation and Optimization
2.2. Optimization of the Prepared Drug-Free Niosomes
2.3. Preparation and Evaluation of Drug-Loaded Niosomes
2.4. In Vitro Drug Release
2.5. Transmission Electron Microscopy (TEM)
2.6. Evaluation of the Anticancer Activity
2.6.1. Cytotoxicity Study against HT-29 Cells
2.6.2. Apoptosis Analysis
3. Materials and Methods
3.1. Materials
3.2. Experimental Design
3.3. Preparation of Drug-Free Niosomes
3.4. Particle Size and Z-Potential Analysis
3.5. Preparation of Drug-Loaded Niosomes
3.6. Evaluation of the Prepared Drug-Loaded Niosomes
3.6.1. Drug Entrapment Efficiency (EE%)
3.6.2. Measurement of the Particle Size and Z-Potential of Drug-Loaded Niosomes
3.6.3. In Vitro Drug Release Study
3.6.4. Transmission Electron Microscopy (TEM)
3.7. Evaluation of the Anticancer Activity for the Selected Paclitaxel-Niosomes and Oxaliplatin-Niosomes
3.7.1. Cytotoxicity Study against HT-29 Cells
3.7.2. Cell Apoptosis and Cell Cycle Assay of HT-29 Cells
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pacal, I.; Karaboga, D.; Basturk, A.; Akay, B.; Nalbantoglu, U. A comprehensive review of deep learning in colon cancer. Comput. Biol. Med. 2020, 126, 104003. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.J.; Meyerhardt, J.A.; Brown, J.C.; Campbell, K.L.; Feliciano, E.M.C.; Lee, C.; Ross, M.C.; Quinney, S.; Quesenberry, C.; Sternfeld, B. Recruitment strategies and design considerations in a trial of resistance training to prevent dose-limiting toxicities in colon cancer patients undergoing chemotherapy. Contemp. Clin. Trials 2020, 101, 106242. [Google Scholar] [CrossRef] [PubMed]
- Narvekar, M.; Xue, H.Y.; Eoh, J.Y.; Wong, H.L. Nanocarrier for poorly water-soluble anticancer drugs—Barriers of translation and solutions. Aaps Pharmscitech 2014, 15, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Nukatsuka, M.; Nakagawa, F.; Takechi, T. Efficacy of combination chemotherapy using a novel oral chemotherapeutic agent, TAS-102, with oxaliplatin on human colorectal and gastric cancer xenografts. Anticancer Res. 2015, 35, 4605–4615. [Google Scholar] [PubMed]
- Zoetemelk, M.; Ramzy, G.M.; Rausch, M.; Nowak-Sliwinska, P. Drug-drug interactions of irinotecan, 5-fluorouracil, folinic acid and oxaliplatin and its activity in colorectal carcinoma treatment. Molecules 2020, 25, 2614. [Google Scholar] [CrossRef]
- Petrelli, F.; Coinu, A.; Ghilardi, M.; Cabiddu, M.; Zaniboni, A.; Barni, S. Efficacy of oxaliplatin-based chemotherapy+ bevacizumab as first-line treatment for advanced colorectal cancer. Am. J. Clin. Oncol. 2015, 38, 227–233. [Google Scholar] [CrossRef]
- Ibrahim, A.; Hirschfeld, S.; Cohen, M.H.; Griebel, D.J.; Williams, G.A.; Pazdur, R. FDA drug approval summaries: Oxaliplatin. Oncologist 2004, 9, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019, 24, 40. [Google Scholar] [CrossRef] [Green Version]
- Semrad, T.J.; Fahrni, A.R.; Gong, I.Y.; Khatri, V.P. Integrating chemotherapy into the management of oligometastatic colorectal cancer: Evidence-based approach using clinical trial findings. Ann. Surg. Oncol. 2015, 22, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Kumari, S.; Kondapi, A.K. Evaluation of antiproliferative activity, safety and biodistribution of oxaliplatin and 5-fluorouracil loaded lactoferrin nanoparticles for the management of colon adenocarcinoma: An in vitro and an in vivo study. Pharm. Res. 2018, 35, 178. [Google Scholar] [CrossRef]
- Zhou, J.; Chang, L.; Guan, Y.; Yang, L.; Xia, X.; Cui, L.; Yi, X.; Lin, G. Application of circulating tumor DNA as a non-invasive tool for monitoring the progression of colorectal cancer. PLoS ONE 2016, 11, e0159708. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Qu, H.; Zhu, W.; Xu, K.; Xu, A.; Jia, B.; Qing, Y.; Li, H.; Wei, H.-J.; Zhao, H.-Y. Low-dose paclitaxel inhibits tumor cell growth by regulating glutaminolysis in colorectal carcinoma cells. Front. Pharmacol. 2017, 8, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einzig, A.I.; Neuberg, D.; Wiernik, P.H.; Grochow, L.B.; Ramirez, G.; O’Dwyer, P.J.; Petrelli, N.J. Phase II trial of paclitaxel in patients with advanced colon cancer previously untreated with cytotoxic chemotherapy: An eastern cooperative oncology group trial (PA286). Am. J. Ther. 1996, 3, 750–754. [Google Scholar] [CrossRef]
- Ye, J.; Jiang, X.; Dong, Z.; Hu, S.; Xiao, M. Low-concentration PTX And RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis in mutant p53 hypopharyngeal squamous carcinoma. Cancer Manag. Res. 2019, 11, 9783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugam, T.; Joshi, N.; Ahamad, N.; Deshmukh, A.; Banerjee, R. Enhanced absorption, and efficacy of oral self-assembled paclitaxel nanocochleates in multi-drug resistant colon cancer. Int. J. Pharm. 2020, 586, 119482. [Google Scholar] [CrossRef] [PubMed]
- Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm. 2002, 235, 179–192. [Google Scholar] [CrossRef]
- Kang, L.; Gao, Z.; Huang, W.; Jin, M.; Wang, Q. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm. Sin. B 2015, 5, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Laraib, U.; Sargazi, S.; Rahdar, A.; Khatami, M.; Pandey, S. Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review. Int. J. Biol. Macromol. 2021, 195, 356–383. [Google Scholar] [CrossRef]
- ud Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291. [Google Scholar] [CrossRef] [Green Version]
- Dehaghi, M.H.; Haeri, A.; Keshvari, H.; Abbasian, Z.; Dadashzadeh, S. Dorzolamide loaded niosomal vesicles: Comparison of passive and remote loading methods. Iran. J. Pharm. Res. 2017, 16, 413. [Google Scholar]
- Kulkarni, P.; Rawtani, D.; Barot, T. Formulation and optimization of long acting dual niosomes using box-Behnken experimental design method for combinative delivery of ethionamide and D-cycloserine in tuberculosis treatment. Colloids Surf. A Physicochem. Eng. Asp. 2019, 565, 131–142. [Google Scholar] [CrossRef]
- Muzzalupo, R.; Tavano, L.; La Mesa, C. Alkyl glucopyranoside-based niosomes containing methotrexate for pharmaceutical applications: Evaluation of physico-chemical and biological properties. Int. J. Pharm. 2013, 458, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Kanaani, L. Effects of cisplatin-loaded niosomal nanoparticleson BT-20 human breast carcinoma cells. Asian Pac. J. Cancer Prev. 2017, 18, 365. [Google Scholar]
- Barani, M.; Hajinezhad, M.R.; Sargazi, S.; Rahdar, A.; Shahraki, S.; Lohrasbi-Nejad, A.; Baino, F. In vitro and in vivo anticancer effect of pH-responsive paclitaxel-loaded niosomes. J. Mater. Sci. Mater. Med. 2021, 32, 147. [Google Scholar] [CrossRef]
- Hao, Y.-M. Entrapment and release difference resulting from hydrogen bonding interactions in niosome. Int. J. Pharm. 2011, 403, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Pachuau, L.; Roy, P.K.; Zothantluanga, J.H.; Ray, S.; Das, S. Encapsulation of bioactive compound and its therapeutic potential. In Bioactive Natural Products for Pharmaceutical Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 687–714. [Google Scholar]
- Verma, A.; Tiwari, A.; Saraf, S.; Panda, P.K.; Jain, A.; Jain, S.K. Emerging potential of niosomes in ocular delivery. Expert Opin. Drug Deliv. 2020, 18, 55–71. [Google Scholar] [CrossRef]
- Heidari, F.; Akbarzadeh, I.; Nourouzian, D.; Mirzaie, A.; Bakhshandeh, H. Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. Adv. Powder Technol. 2020, 31, 4768–4781. [Google Scholar] [CrossRef]
- Pourmoghadasiyan, B.; Tavakkoli, F.; Beram, F.M.; Badmasti, F.; Mirzaie, A.; Kazempour, R.; Rahimi, S.; Larijani, S.F.; Hejabi, F.; Sedaghatnia, K. Nanosized paclitaxel-loaded niosomes: Formulation, in vitro cytotoxicity, and apoptosis gene expression in breast cancer cell lines. Mol. Biol. Rep. 2022, 49, 3597–3608. [Google Scholar] [CrossRef]
- Malla, S.; Neupane, R.; Boddu, S.H.; Abou-Dahech, M.S.; Pasternak, M.; Hussein, N.; Ashby, C.R., Jr.; Tang, Y.; Babu, R.J.; Tiwari, A.K. Application of nanocarriers for paclitaxel delivery and chemotherapy of cancer. In Paclitaxel; Elsevier: Amsterdam, The Netherlands, 2022; pp. 73–127. [Google Scholar]
- Li, H.; Yan, L.; Tang, E.K.; Zhang, Z.; Chen, W.; Liu, G.; Mo, J. Synthesis of TPGS/curcumin nanoparticles by thin-film hydration and evaluation of their anti-colon cancer efficacy in vitro and in vivo. Front. Pharmacol. 2019, 10, 769. [Google Scholar] [CrossRef] [Green Version]
- Weiszhár, Z.; Czúcz, J.; Révész, C.; Rosivall, L.; Szebeni, J.; Rozsnyay, Z. Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20. Eur. J. Pharm. Sci. 2012, 45, 492–498. [Google Scholar] [CrossRef]
- El-Menshawe, S.F.; Sayed, O.M.; Abou Taleb, H.A.; Saweris, M.A.; Zaher, D.M.; Omar, H.A. The use of new quinazolinone derivative and doxorubicin loaded solid lipid nanoparticles in reversing drug resistance in experimental cancer cell lines: A systematic study. J. Drug Deliv. Sci. Technol. 2020, 56, 101569. [Google Scholar] [CrossRef]
- Tu, Y.S.; Sun, D.M.; Zhang, J.J.; Jiang, Z.Q.; Chen, Y.X.; Zeng, X.H.; Huang, D.E.; Yao, N. Preparation and characterisation of andrographolide niosomes and its anti-hepatocellular carcinoma activity. J. Microencapsul. 2014, 31, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Haley, B.; Frenkel, E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 2008, 26, 57–64. [Google Scholar] [CrossRef]
- Tavano, L.; Vivacqua, M.; Carito, V.; Muzzalupo, R.; Caroleo, M.C.; Nicoletta, F. Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids Surf. B Biointerfaces 2013, 102, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wei, M.; He, S.; Yuan, W.-E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Ritwiset, A.; Krongsuk, S.; Johns, J.R. Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: A molecular dynamics simulation study. Appl. Surf. Sci. 2016, 380, 23–31. [Google Scholar] [CrossRef]
- Hinz, H.; Kuttenreich, H.; Meyer, R.; Renner, M.; Fründ, R.; Koynova, R.; Boyanov, A.; Tenchov, B. Stereochemistry and size of sugar head groups determine structure and phase behavior of glycolipid membranes: Densitometric, calorimetric, and X-ray studies. Biochemistry 1991, 30, 5125–5138. [Google Scholar] [CrossRef]
- Liu, T.; Guo, R.; Hua, W.; Qiu, J. Structure behaviors of hemoglobin in PEG 6000/Tween 80/Span 80/H2O niosome system. Colloids Surf. A Physicochem. Eng. Asp. 2007, 293, 255–261. [Google Scholar] [CrossRef]
- Essa, E.A. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian J. Pharm. 2010, 4, 227. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Teaima, M.H.; El Mohamady, A.M.; El-Nabarawi, M.A.; Mohamed, A.I. Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery. Drug Dev. Ind. Pharm. 2020, 46, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.K.; Mishra, J.; Mishra, A.K. Introducing Tween-curcumin niosomes: Preparation, characterization and microenvironment study. Soft Matter 2020, 16, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, S.; Saini, V.; Bala, S. Formulation and characterization of drug loaded nonionic surfactant vesicles (niosomes) for oral bioavailability enhancement. Sci. World J. 2014, 2014, 959741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, P.; Goodyear, B.; Haq, A.; Puri, V.; Michniak-Kohn, B. Evaluations of quality by design (QbD) elements impact for developing niosomes as a promising topical drug delivery platform. Pharmaceutics 2020, 12, 246. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Pyne, A.; Pal, P.; Dhara, S.; Sarkar, N. Effect of Vitamin E and a long-chain alcohol n-octanol on the carbohydrate-based nonionic amphiphile sucrose monolaurate formulation of newly developed niosomes and application in cell imaging. ACS Omega 2017, 2, 7637–7646. [Google Scholar] [CrossRef]
- Aziz, D.E.; Abdelbary, A.A.; Elassasy, A.I. Implementing central composite design for developing transdermal diacerein-loaded niosomes: Ex vivo permeation and in vivo deposition. Curr. Drug Deliv. 2018, 15, 1330–1342. [Google Scholar] [CrossRef]
- Wang, C.; Cui, B.; Guo, L.; Wang, A.; Zhao, X.; Wang, Y.; Sun, C.; Zeng, Z.; Zhi, H.; Chen, H. Fabrication and evaluation of lambda-cyhalothrin nanosuspension by one-step melt emulsification technique. Nanomaterials 2019, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- De Silva, L.; Fu, J.-Y.; Htar, T.T.; Muniyandy, S.; Kasbollah, A.; Kamal, W.H.B.W.; Chuah, L.-H. Characterization, optimization, and in vitro evaluation of Technetium-99m-labeled niosomes. Int. J. Nanomed. 2019, 14, 1101. [Google Scholar] [CrossRef] [Green Version]
- Alzubaidi, A.F.; El-Helw, A.-R.M.; Ahmed, T.A.; Ahmed, O.A. The use of experimental design in the optimization of risperidone biodegradable nanoparticles: In vitro and in vivo study. Artif. Cells Nanomed. Biotechnol. 2017, 45, 313–320. [Google Scholar] [CrossRef]
- Mohamed, M.I.; Kassem, M.A.; Khalil, R.M.; Younis, M.; Danvish, A.; Salama, A.; Wagdi, M. Enhancement of the anti-inflammatory efficacy of betamethasone valerate via niosomal encapsulation. Biointerface Res. Appl. Chem. 2021, 11, 14640–14660. [Google Scholar]
- Junyaprasert, V.B.; Teeranachaideekul, V.; Supaperm, T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. Aaps Pharmscitech 2008, 9, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Owodeha-Ashaka, K.; Ilomuanya, M.O.; Iyire, A. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery. Prog. Biomater. 2021, 10, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Pei, Y. Stealth PEG-PHDCA niosomes: Effects of chain length of PEG and particle size on niosome surface properties, in vitro drug release, phagocytic uptake, in vivo pharmacokinetics and antitumor activity. J. Pharm. Sci. 2006, 95, 1873–1887. [Google Scholar]
- Aboul-Einien, M.H.; Kandil, S.M.; Abdou, E.M.; Diab, H.M.; Zaki, M.S. Ascorbic acid derivative-loaded modified aspasomes: Formulation, in vitro, ex vivo and clinical evaluation for melasma treatment. J. Liposome Res. 2020, 30, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Arzani, G.; Haeri, A.; Daeihamed, M.; Bakhtiari-Kaboutaraki, H.; Dadashzadeh, S. Niosomal carriers enhance oral bioavailability of carvedilol: Effects of bile salt-enriched vesicles and carrier surface charge. Int. J. Nanomed. 2015, 10, 4797. [Google Scholar]
- Devi, S.G.; Udupa, N. Niosomal sumartriptan succinate for nasal administration. Indian J. Pharm. Sci. 2000, 62, 479. [Google Scholar]
- Tummala, S.; Gowthamarajan, K.; Satish Kumar, M.; Wadhwani, A. Oxaliplatin immuno hybrid nanoparticles for active targeting: An approach for enhanced apoptotic activity and drug delivery to colorectal tumors. Drug Deliv. 2016, 23, 1773–1787. [Google Scholar] [CrossRef] [Green Version]
- Jadon, P.S.; Gajbhiye, V.; Jadon, R.S.; Gajbhiye, K.R.; Ganesh, N. Enhanced oral bioavailability of griseofulvin via niosomes. Aaps Pharmscitech 2009, 10, 1186–1192. [Google Scholar] [CrossRef] [Green Version]
- Bayindir, Z.S.; Yuksel, N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J. Pharm. Sci. 2010, 99, 2049–2060. [Google Scholar] [CrossRef]
- Choi, J.U.; Maharjan, R.; Pangeni, R.; Jha, S.K.; Lee, N.K.; Kweon, S.; Lee, H.K.; Chang, K.-Y.; Choi, Y.K.; Park, J.W. Modulating tumor immunity by metronomic dosing of oxaliplatin incorporated in multiple oral nanoemulsion. J. Control. Release 2020, 322, 13–30. [Google Scholar] [CrossRef]
- Gokhale, J.P.; Mahajan, H.S.; Surana, S.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed. Pharmacother. 2019, 112, 108622. [Google Scholar] [CrossRef] [PubMed]
- Zaki, N.M. Augmented cytotoxicity of hydroxycamptothecin-loaded nanoparticles in lung and colon cancer cells by chemosensitizing pharmaceutical excipients. Drug Deliv. 2014, 21, 265–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batrakova, E.V.; Kabanov, A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release 2008, 130, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, F.; Derakhshandeh, K.; Jalalizadeh, A.; Mostafaie, A.; Hosseinzadeh, L. Encapsulation in PLGA-PEG enhances 9-nitro-camptothecin cytotoxicity to human ovarian carcinoma cell line through apoptosis pathway. Res. Pharm. Sci. 2015, 10, 161. [Google Scholar]
- Yang, C.; Wu, T.; Qi, Y.; Zhang, Z. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 2018, 8, 464. [Google Scholar] [CrossRef]
- Fan, Z.; Jiang, B.; Shi, D.; Yang, L.; Yin, W.; Zheng, K.; Zhang, X.; Xin, C.; Su, G.; Hou, Z. Selective antitumor activity of drug-free TPGS nanomicelles with ROS-induced mitochondrial cell death. Int. J. Pharm. 2021, 594, 120184. [Google Scholar] [CrossRef]
- Dong, J.; Qin, Z.; Zhang, W.-D.; Cheng, G.; Yehuda, A.G.; Ashby, C.R., Jr.; Chen, Z.-S.; Cheng, X.-D.; Qin, J.-J. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist. Updates 2020, 49, 100681. [Google Scholar] [CrossRef]
- Zografi, G.; Schott, H.; Swarbrick, J. Interfacial phenomena. In Remington: The Science and Practice Pharmacy; Mark Publishing: Easton, PA, USA, 1995. [Google Scholar]
- Zhang, S.; Morris, M.E. Efflux transporters in drug excretion. In Drug Delivery: Principles and Applications; Wiley: Hoboken, NJ, USA, 2005; pp. 381–398. [Google Scholar]
- Biswas, S.; Torchilin, V.P. Nanopreparations for organelle-specific delivery in cancer. Adv. Drug Deliv. Rev. 2014, 66, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Demirbolat, G.M.; Altintas, L.; Yilmaz, S.; Degim, I.T. Development of orally applicable, combinatorial drug–loaded nanoparticles for the treatment of fibrosarcoma. J. Pharm. Sci. 2018, 107, 1398–1407. [Google Scholar] [CrossRef]
- Mahale, N.B.; Thakkar, P.D.; Mali, R.G.; Walunj, D.R.; Chaudhari, S.R. Niosomes: Novel sustained release nonionic stable vesicular systems—An overview. Adv. Colloid Interface Sci. 2012, 183–184, 46–54. [Google Scholar] [CrossRef]
- Jabalera, Y.; Garcia-Pinel, B.; Ortiz, R.; Iglesias, G.; Cabeza, L.; Prados, J.; Jimenez-Lopez, C.; Melguizo, C. Oxaliplatin–biomimetic magnetic nanoparticle assemblies for colon cancer-targeted chemotherapy: An in vitro study. Pharmaceutics 2019, 11, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, Y.; Ewert, K.K.; Fisher, W.S.; Steffes, V.M.; Li, Y.; Safinya, C.R. Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Sci. Rep. 2021, 11, 7311. [Google Scholar] [CrossRef] [PubMed]
- Durak, S.; Esmaeili Rad, M.; Alp Yetisgin, A.; Eda Sutova, H.; Kutlu, O.; Cetinel, S.; Zarrabi, A. Niosomal drug delivery systems for ocular disease—Recent advances and future prospects. Nanomaterials 2020, 10, 1191. [Google Scholar] [CrossRef] [PubMed]
- Tavano, L.; Muzzalupo, R.; Mauro, L.; Pellegrino, M.; Andò, S.; Picci, N. Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir 2013, 29, 12638–12646. [Google Scholar] [CrossRef]
- Tavano, L.; Muzzalupo, R.; Trombino, S.; Cassano, R.; Pingitore, A.; Picci, N. Effect of formulations variables on the in vitro percutaneous permeation of Sodium Diclofenac from new vesicular systems obtained from Pluronic triblock copolymers. Colloids Surf. B Biointerfaces 2010, 79, 227–234. [Google Scholar] [CrossRef]
- Waddad, A.Y.; Abbad, S.; Yu, F.; Munyendo, W.L.L.; Wang, J.; Lv, H.; Zhou, J. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants. Int. J. Pharm. 2013, 456, 446–458. [Google Scholar] [CrossRef]
- Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics 2019, 11, 140. [Google Scholar] [CrossRef] [Green Version]
- Galaup, A.; Opolon, P.; Bouquet, C.; Li, H.; Opolon, D.; Bissery, M.-C.; Tursz, T.; Perricaudet, M.; Griscelli, F. Combined effects of docetaxel and angiostatin gene therapy in prostate tumor model. Mol. Ther. 2003, 7, 731–740. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Han, B.; Zhao, N.; Mu, M.; Wang, C.; Du, Y.; Wang, Y.; Tong, A.; Liu, Y. Improved anti-colorectal carcinomatosis effect of tannic acid co-loaded with oxaliplatin in nanoparticles encapsulated in thermosensitive hydrogel. Eur. J. Pharm. Sci. 2019, 128, 279–289. [Google Scholar] [CrossRef]
Runs | Factors (Independent Variables) | Responses (Dependent Variables) | ||||
---|---|---|---|---|---|---|
CHOL Ratio (w/w) | Surfactant Ratio (w/w) | Surfactant Type * | Particle Size (nm) | Z-Potential (mV) | PDI | |
F1 | 1.00 | 3.00 | Span 60 | 242.5 ± 22.4 | (−) 29.3 ± 1.8 | 0.158 ± 0.01 |
F2 | 1.00 | 4.00 | Span 60 | 198.2 ± 18.6 | (−) 31.4 ± 1.6 | 0.214 ± 0.04 |
F3 | 1.50 | 3.25 | Span 60 | 232.1 ± 15.7 | (−) 30.4 ± 2.1 | 0.256 ± 0.11 |
F4 | 2.00 | 3.00 | Span 60 | 293.3 ± 17.2 | (−) 30.2 ± 1.7 | 0.247 ± 0.21 |
F5 | 2.00 | 4.00 | Span 60 | 251.2 ± 20.3 | (−) 32.1 ± 1.9 | 0.165 ± 0.06 |
F6 | 1.00 | 3.00 | TPGS | 265.3 ± 18.4 | (−) 29.1 ± 1.7 | 0.146 ± 0.04 |
F7 | 1.00 | 3.50 | TPGS | 241.2 ± 16.7 | (−) 30.2 ± 2.2 | 0.132 ± 0.03 |
F8 | 1.50 | 3.00 | TPGS | 231.5 ± 18.2 | (−) 29.8 ± 2.4 | 0.189 ± 0.14 |
F9 | 2.00 | 4.00 | TPGS | 194.4 ± 15.5 | (−) 31.8 ± 1.9 | 0.175 ± 0.20 |
F10 | 2.00 | 3.00 | TPGS | 221.2 ± 21.3 | (−) 30.2 ± 1.6 | 0.211 ± 0.07 |
F11 | 2.00 | 3.50 | TPGS | 198.1 ± 17.8 | (−) 31.5 ± 1.8 | 0.241 ± 0.31 |
F12 | 1.00 | 4.00 | Tween 80 | 241.7 ± 19.8 | (−) 30.6 ± 2.4 | 0.257 ± 0.45 |
F13 | 1.00 | 3.00 | Tween 80 | 261.4 ± 22.6 | (−) 28.8 ± 2.1 | 0.237 ± 0.25 |
F14 | 1.50 | 3.00 | Tween 80 | 228.3 ± 19.5 | (−) 28.9 ± 1.5 | 0.198 ± 0.41 |
F15 | 1.50 | 3.50 | Tween 80 | 203.1 ± 17.9 | (−) 30.3 ± 1.8 | 0.269 ± 0.09 |
F16 | 2.00 | 4.00 | Tween 80 | 189.2 ± 13.4 | (−) 31.5 ± 2.2 | 0.222 ± 0.17 |
F17 | 2.00 | 3.00 | Tween 80 | 228.4 ± 16.4 | (−) 30.7 ± 2.1 | 0.243 ± 0.29 |
Source | Particle Size (nm) | Z-Potential (mV) | ||
---|---|---|---|---|
F | p-Value | F | p-Value | |
Model | 68.78 | <0.0001 | 12.67 | 0.0058 |
A: CHOL ratio | 23.40 | 0.0047 | 33.52 | 0.0022 |
B: Surfactant ratio | 236.62 | <0.0001 | 92.89 | 0.0002 |
C: Surfactant type | 31.81 | 0.0014 | 3.40 | 0.1168 |
AB | 1.86 | 0.2313 | 1.17 | 0.3288 |
AC | 178.48 | <0.0001 | 0.78 | 0.5055 |
BC | 3.05 | 0.1359 | 0.85 | 0.4817 |
A^2 | 49.58 | 0.0009 | 0.56 | 0.4872 |
B^2 | 12.94 | 0.0156 | 0.32 | 0.5939 |
Adequate precision | 29.912 | 12.934 | ||
R2 | 0.9934 | 0.9654 | ||
Adjusted R2 | 0.9790 | 0.8892 | ||
Predicted R2 | 0.8413 | 0.5883 | ||
SD | 4.11 | 0.34 | ||
%CV | 1.78 | 1.12 |
Drug Loaded (Molar Ratio) | Oxaliplatin–TPGS Niosomes | Paclitaxel–TPGS Niosomes | ||||||
---|---|---|---|---|---|---|---|---|
EE% | Particle Size (nm) | Z-Potential (mV) | PDI | EE% | Particle Size (nm) | Z-Potential (mV) | PDI | |
0.5 | 77.19 ±2.68 | 236.4 ± 22.3 | −31.7 ± 0.96 | 0.236 ± 0.07 | 83.82 ± 3.13 | 227.4 ± 16.3 | −30.91 ± 0.45 | 0.283 ± 0.04 |
1 | 90.57 ±2.05 | 278.5 ± 19.7 | −32.7 ± 1.01 | 0.264 ± 0.05 | 93.51 ± 2.97 | 251.6 ± 18. 1 | −31.69 ± 0.98 | 0.273 ± 0.08 |
2 | 91.03 ±2.80 | 285.8 ± 23.5 | −33.25 ± 1.41 | 0.295 ± 0.07 | 93.31 ± 3.31 | 258.6 ± 13.3 | −32.99 ± 1.08 | 0.287 ± 0.09 |
Formulation | Correlation Coefficient (R2) | |||
---|---|---|---|---|
Zero Order | 1st Order | Higuchi Diffusion | Korsmeyer–Peppas | |
Oxaliplatin–TPGS–niosomes | 0.6114 ± 0.034 | 0.8715 ± 0.027 | 0.8871 ± 0.021 | 0.8844 ± 0.011 |
Paclitaxel–TPGS–niosomes | 0.7164 ± 0.021 | 0.9006 ± 0.014 | 0.9475 ± 0.011 | 0.942 ± 0.015 |
Factors | Levels | ||
---|---|---|---|
Low (−1)–High (1) | |||
A (X1): Cholesterol (molar ratio) | 3 | 3.5 | 4 |
B (X2): Surfactant (molar ratio) | 1 | 1.5 | 2 |
C (X3): Surfactant type | Span 60 | TPGS | Tween 80 |
Responses | |||
(Y1): Particle size (PS) | Minimize | ||
(Y2): Zeta potential (Z-potential) | Maximize |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Far, S.W.; Abo El-Enin, H.A.; Abdou, E.M.; Nafea, O.E.; Abdelmonem, R. Targeting Colorectal Cancer Cells with Niosomes Systems Loaded with Two Anticancer Drugs Models; Comparative In Vitro and Anticancer Studies. Pharmaceuticals 2022, 15, 816. https://doi.org/10.3390/ph15070816
El-Far SW, Abo El-Enin HA, Abdou EM, Nafea OE, Abdelmonem R. Targeting Colorectal Cancer Cells with Niosomes Systems Loaded with Two Anticancer Drugs Models; Comparative In Vitro and Anticancer Studies. Pharmaceuticals. 2022; 15(7):816. https://doi.org/10.3390/ph15070816
Chicago/Turabian StyleEl-Far, Shaymaa Wagdy, Hadel A. Abo El-Enin, Ebtsam M. Abdou, Ola Elsayed Nafea, and Rehab Abdelmonem. 2022. "Targeting Colorectal Cancer Cells with Niosomes Systems Loaded with Two Anticancer Drugs Models; Comparative In Vitro and Anticancer Studies" Pharmaceuticals 15, no. 7: 816. https://doi.org/10.3390/ph15070816
APA StyleEl-Far, S. W., Abo El-Enin, H. A., Abdou, E. M., Nafea, O. E., & Abdelmonem, R. (2022). Targeting Colorectal Cancer Cells with Niosomes Systems Loaded with Two Anticancer Drugs Models; Comparative In Vitro and Anticancer Studies. Pharmaceuticals, 15(7), 816. https://doi.org/10.3390/ph15070816