New N-Alkylated Heterocyclic Compounds as Prospective NDM1 Inhibitors: Investigation of In Vitro and In Silico Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibacterial and Antifungal Activities
2.2. MEP Analysis of the Compounds 12, 14, Ampicillin, and Cefotaxime
2.3. ADME and Toxicity Predictions
ADME Predictions
2.4. Molecular Docking and Virtual Screening Studies
2.4.1. Docking against the NDM-1 β-lactamase (NDM1) Protein
2.4.2. Blind Docking/Virtual Screening against the NDM-1 β-lactamase (NDM1) Protein
3. Materials and Methods
3.1. Analytical Procedures
3.2. Chemistry
3.3. Biological Evaluation
3.3.1. Antibacterial Assay
3.3.2. Determination of the Minimum Inhibitory Concentration (MIC) and the Minimum Bactericidal Concentration (MBC)
3.3.3. Antifungal Assay
3.4. Computational Studies
3.4.1. In Silico ADME-Tox Predictions
3.4.2. DFT, Molecular Ligand–Protein Docking, and Virtual Screening Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Z.; Wanang, H.; Zhang, A.; Liu, X.; Zhou, W.; Yang, C.; Guddat, L.; Yang, H.; Schofield, C.J.; Rao, Z. Structures of Mycobacterium tuberculosis Penicillin-Binding Protein 3 in Complex with Five beta-Lactam Antibiotics Reveal Mechanism of Inactivation. Mol. Pharmacol. 2020, 97, 287–294. [Google Scholar] [CrossRef]
- Antipin, R.L.; Beshnova, D.A.; Petrov, R.A.; Shiryaeva, A.S.; Andreeva, I.P.; Grigorenko, V.G.; Rubtsova, M.Y.; Majouga, A.G.; Lamzin, V.S.; Egorov, A.M. Synthesis, SAR and molecular docking study of novel non-beta-lactam inhibitors of TEM type beta-lactamase. Bioorganic Med. Chem. Lett. 2017, 27, 1588–1592. [Google Scholar] [CrossRef]
- Kogut, M.; Harris, M. Effects of Streptomycin in Bacterial Cultures Growing at Different Rates; Interaction with Bacterial Ribosomes in vivo. Eur. J. Biochem. 1969, 9, 42–49. [Google Scholar] [CrossRef]
- Mazumdar, K.; Dastidar, S.G.; Park, J.H.; Dutta, N.K. The anti-inflammatory non-antibiotic helper compound diclofenac: An antibacterial drug target. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 881–891. [Google Scholar] [CrossRef]
- Chudobova, D.; Dastidar, S.G.; Park, J.H.; Dutta, N.K. Effect of Ampicillin, streptomycin, penicillin and tetracycline on metal resistant and non-resistant Staphylococcus aureus. Int. J. Environ. Res. Public Health 2014, 11, 3233–3255. [Google Scholar] [CrossRef]
- Hoerr, V.; Duggan, G.E.; Zbytnuik, L.; Poon, K.K.H.; Grobe, C.; Neugebauer, U.; Methling, K.; Loffler, B.; Vogel, H.J. Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics. BMC Microbiol. 2016, 16, 82. [Google Scholar] [CrossRef] [Green Version]
- Stern, A.L.; Van der Verren, S.E.; Näsvall, J.; Gutiérrez-de-Terán, H.; Selmer, M. Structural mechanism of AadA, a dual-specificity aminoglycoside adenylyltransferase from Salmonella enterica. J. Biol. Chem. 2018, 293, 11481–11490. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Hiott, L.M.; Barrett, J.B.; McMillan, E.A.; House, S.L.; Humayoun, S.B.; Adams, E.S.; Jackson, C.R.; Frye, J.G. Prevalence and characterization of Escherichia coli isolated from the Upper Oconee Watershed in Northeast Georgia. PLoS ONE 2018, 13, e0197005. [Google Scholar] [CrossRef] [Green Version]
- Bendaif, H.; Melhaoui, A.; Ramdani, M.; Elmsellem, H.; Douez, C.; El Ouadi, Y. Antibacterial activity and virtual screening by molecular docking of lycorine from Pancratium foetidum Pom (Moroccan endemic Amaryllidaceae). Microb. Pathog. 2018, 115, 138–145. [Google Scholar] [CrossRef]
- Alexandre, H.L.; Kuzin, P.; Kelly, J.A.; Knox, J.R. Binding of Cephalothin and Cefotaxime to D-Ala-D-Ala-Peptidase Reveals a Functional Basis of a Natural Mutation in a Low-Affinity Penicillin-Binding Protein and in Extended-Spectrum P-Lactamases. Biochemistry 1995, 34, 9532–9540. [Google Scholar]
- Pacifici, G.M.; Marchini, G. Clinical Pharmacology of Cefotaxime in Neonates and Infants: Effects and Pharmacokinetics. Int. J. Pediatr. 2017, 5, 6111–6138. [Google Scholar]
- Wangoye, K.; Mwesigye, J.; Tungotyo, M.; Twinomujuni Samba, S. Chronic wound isolates and their minimum inhibitory concentrations againgst third generation cephalosporins at a tertiary hospital in Uganda. Sci. Rep. 2022, 12, 1195. [Google Scholar] [CrossRef]
- Shahbaz, K. Cephalosporins: Pharmacology and chemistry. Pharm. Biol. Eval. 2017, 4, 234–238. [Google Scholar] [CrossRef]
- Mohamed, S.B.; Adlan, T.A.; Khalafalla, N.A.; Abdall, N.I.; Ali, Z.S.A.; Ka, A.M.; Hassan, M.M.; Elnour, M.A.B. Proteomics and Docking Study Targeting Penicillin-Binding Protein and Penicillin-Binding Protein2a of Methicillin-Resistant Staphylococcus aureus Strain SO-1977 Isolated from Sudan. Evol. Bioinform. 2019, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dhara, L.; Tripathi, A.; Pal, A. Molecular characterization and in silico analysis of naturally occurring TEM beta-lactamase variants among pathogenic Enterobacteriaceae infecting Indian patients. BioMed Res. Int. 2013, 2013, 783540. [Google Scholar] [CrossRef] [Green Version]
- Danishuddin, M.; Khan, A.U. Molecular modeling and docking analysis of beta-lactamases with inhibitors: A comparative study. Silico Biol. 2011, 11, 273–280. [Google Scholar]
- Thakur, P.K.; Kumar, J.; Ray, D.; Anjum, F.; Hassan, M.I. Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. J. Nat. Sci. Biol. Med. 2013, 4, 51–56. [Google Scholar]
- Temple, M.E.; Nahata, M.C. Treatment of listeriosis. Ann. Pharmacother. 2000, 34, 656–661. [Google Scholar] [CrossRef]
- Ahrén, I.L.; Karlsson, E.; Forsgren, A.; Riesbeck, K. Comparison of the antibacterial activities of Ampicillin, ciprofloxacin, clarithromycin, telithromycin and quinupristin/dalfopristin against intracellular non-typeable Haemophilus influenzae. J. Antimicrob. Chemother. 2002, 50, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, R.; Rolinson, G.N. Activity of Ampicillin in vitro compared with other antibiotics. J. Clin. Pathol. 1964, 17, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Rao, L.; Tian, R.; Chen, X. Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases. ACS Nano 2020, 14, 2569–2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lungu, B.; O’Bryan, C.A.; Muthaiyan, A.; Milillo, S.R.; Johnson, M.G.; Crandall, P.G.; Ricke, S.C. Listeria monocytogenes: Antibiotic resistance in food production. Foodborne Pathog. Dis. 2011, 8, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Koster, S.; van Pee, K.; Hudel, M.; Leustik, M.; Rhinow, D.; Kuhlbrandt, W.; Chakraborty, T.; Yildiz, O. Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation. Nat. Commun. 2014, 5, 3690. [Google Scholar] [CrossRef] [Green Version]
- Radoshevich, L.; Cossart, P. Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 32–46. [Google Scholar] [CrossRef]
- Lv, H.; Ning, B. Pathogenesis of bloodstream infection in children with blood cancer. Exp. Ther. Med. 2013, 5, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Anufrieva, N.V.; Faleev, N.G.; Morozova, E.A.; Bazhulina, N.P.; Revtovich, S.V.; Timofeev, V.P.; Tkachev, Y.V.; Nikulin, A.D.; Demidkina, T.V. The role of active site tyrosine 58 in Citrobacter freundii methionine γ-lyase. Biochim. Biophys. Acta 2015, 1854, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Morozova, E.A.; Bazhulina, N.P.; Anufrieva, N.V.; Mamaeva, D.V.; Tkachev, Y.V.; Streltsov, S.A.; Timofeev, V.P.; Faleev, N.G.; Demidkina, T.V. Kinetic and spectral parameters of interaction of Citrobacter freundii methionine γ-lyase with amino acids. Biochemistry 2010, 75, 1272–1280. [Google Scholar] [CrossRef]
- Revtovich, S.V.; Morozova, E.A.; Kulikova, V.V.; Anufrieva, N.V.; Osipova, T.I.; Koval, V.S.; Nikylin, A.D.; Demidkima, T.V. Crystal structure of mutant form Cys115His of Citrobacter freundii methionine γ-lyase complexed with L-norleucine. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 1123–1128. [Google Scholar] [CrossRef]
- Liu, L.H.; Wang, N.Y.; Wu, A.Y.; Lin, C.C.; Lee, C.M.; Liu, C.P. Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. J. Microbiol. Immunol. Infect. 2018, 51, 565–572. [Google Scholar] [CrossRef]
- Munoz, P.; Bouza, E.; Cuenca-Estrella, M.; Eiros, J.M.; Perez, M.J.; Sanchez-Somolinos, M.; Rincon, C.; Hortal, J.; Pelaez, T. Saccharomyces cerevisiae fungemia: An emerging infectious disease. Clin. Infect. Dis. 2005, 40, 1625–1634. [Google Scholar] [CrossRef]
- Fidel, P.L.; Vazquez, J.A.; Sobel, J.D. Candida glabrata: Review of Epidemiology, Pathogenesis, and Clinical Disease with Comparison toC. Albicans. Clin. Microbiol. Rev. 1999, 12, 80–96. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Jin, F.; Lu, W.; Zhu, J.; Li, C.; Wang, W.; Tang, Y.; Jiang, H.; Huang, J.; Liu, G.; et al. Synthesis, structure-activity relationship, and pharmacophore modeling studies of pyrazole-3-carbohydrazone derivatives as dipeptidyl peptidase IV inhibitors. Chem. Biol. Drug Des. 2012, 79, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Tighadouini, S.; Benabbes, R.; Tillard, M.; Eddike, D.; Haboubi, K.; Karrouchi, K.; Radi, S. Synthesis, crystal structure, DFT studies and biological activity of (Z)-3-(3-bromophenyl)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxyprop-2-en-1-one. Chem. Cent. J. 2018, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.; Al-Majid, A.M.; Al-Qahtany, B.M.; Ali, M.; Teleb, M.; Al-agamy, M.H.; Naz, S.; Ul-Haq, Z. Synthesis, antimicrobial activity, pharmacophore modeling and molecular docking studies of new pyrazole-dimedone hybrid architectures. Chem. Cent. J. 2018, 12, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karrouchi, K.; Radi, S.; Ramli, Y.; Taoufik, J.; Mabkhot, Y.N.; Al-Aizari, F.A.; Ansar, M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018, 23, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.B.P.; Gulati, K.; Joshi, N.; Deb, D.K.; Rambabu, D.; Kaminsky, W.; Poluri, K.M.; Kollipara, M.R. Synthesis and biological studies of ruthenium, rhodium and iridium metal complexes with pyrazole-based ligands displaying unpredicted bonding modes. Inorg. Chim. Acta 2017, 462, 223–235. [Google Scholar]
- Bekhit, A.A.; Hymete, A.; Asfaw, H.; Ael, D.B. Synthesis and biological evaluation of some pyrazole derivatives as anti-malarial agents. Arch. Pharm. 2012, 345, 147–154. [Google Scholar] [CrossRef]
- El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem. 2018, 143, 1463–1473. [Google Scholar] [CrossRef]
- Brahmbhatt, G.C.; Sutariya, T.R.; Atara, H.D.; Parmar, N.J.; Gupta, V.K.; Lagunes, I.; Padrón, J.M.; Murumkar, P.R.; Yadav, M.R. New pyrazolyl-dibenzo[b,e][1,4]diazepinones: Room temperature one-pot Synthesis and biological evaluation. Mol. Divers. 2020, 24, 355–377. [Google Scholar] [CrossRef]
- Dai, H.; Chen, J.; Li, G.; Ge, S.; Shi, Y.; Fang, Y.; Ling, Y. Design, Synthesis, and bioactivities of novel oxadiazole-substituted pyrazole oximes. Bioorganic Med. Chem. Lett. 2017, 27, 950–953. [Google Scholar] [CrossRef]
- Aggarwal, R.; Kumar, V.; Kumar, R.; Singh, S.P. Approaches towards the Synthesis of 5-aminopyrazoles. Beilstein J. Org. Chem. 2011, 7, 179–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, R.; Kumar, S. 5-Aminopyrazole as precursor in design and Synthesis of fused pyrazoloazines. Beilstein J. Org. Chem. 2018, 14, 203–242. [Google Scholar] [CrossRef] [Green Version]
- Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: Synthesis, DFT calculations and molecular docking study. Heliyon 2020, 6, e03185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshaier, Y.A.; Barakat, A.; Al-Qahtany, B.M.; Al-Majid, A.M.; Al-Agamy, M.H. Synthesis of Pyrazole-Thiobarbituric Acid Derivatives: Antimicrobial Activity and Docking Studies. Molecules 2016, 21, 1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmbhatt, H.; Molnar, M.; Pavić, V. Pyrazole nucleus fused tri-substituted imidazole derivatives as antioxidant and antibacterial agents. Karbala Inter. J. Moder. Sci. 2018, 4, 200–206. [Google Scholar] [CrossRef]
- Abrigach, F.; Rokni, Y.; Takfaoui, A.; Khoutoul, M.; Doucet, H.; Asehraou, A.; Touzani, R. In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives. Biomed. Pharmacother. 2018, 103, 653–661. [Google Scholar] [CrossRef]
- Govender, H.; Mocktar, C.; Kumalo, H.M.; Koorbanally, N.A. Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 1074–1081. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Kumar, B.; Saravanan, A.; Victor, A.; Sivaraj, S.; Haridoss, M.; Priyadurairaj, P.; Hemalatha, C.N.; Muthukumar, V.A. Evalution and Molecular Docking of Benzimidazole and its Derivatives as a Potent Antibacterial Agent. Biomed. Pharmacol. J. 2019, 12, 1835–1847. [Google Scholar] [CrossRef]
- Grein, F.; Schneider, T.; Sahl, H.G. Docking on Lipid II—A Widespread Mechanism for Potent Bactericidal Activities of Antibiotic Peptides. J. Mol. Biol. 2019, 431, 3520–3530. [Google Scholar] [CrossRef]
- Hassan, A.S.; Askar, A.A.; Nossier, E.S.; Naglah, A.M.; Moustafa, G.O.; Al-Omar, M.A. Antibacterial Evaluation, In Silico Characters and Molecular Docking of Schiff Bases Derived from 5-aminopyrazoles. Molecules 2019, 24, 3130. [Google Scholar] [CrossRef] [Green Version]
- Al-Khafaji, K.; Taskin Tok, T. Understanding the mechanism of amygdalin’s multifunctional anti-cancer action using computational approach. J. Biomol. Struct. Dyn. 2021, 39, 1600–1610. [Google Scholar] [CrossRef] [PubMed]
- Ghorab, M.M.; Soliman, A.M.; Alsaid, M.S.; Askar, A.A. Synthesis, antimicrobial activity and docking study of some novel 4-(4,4-dimethyl-2,6-dioxocyclohexylidene)methylamino derivatives carrying biologically active sulfonamide moiety. Arab. J. Chem. 2020, 13, 545–556. [Google Scholar] [CrossRef]
- Rezki, N.; Al-blewi, F.F.; Al-Sodies, S.A.; Alnuzha, A.K.; Messali, M.; Ali, I.; Aouad, M.R. Synthesis, Characterization, DNA Binding, Anticancer, and Molecular Docking Studies of Novel Imidazolium-Based Ionic Liquids with Fluorinated Phenylacetamide Tethers. ACS Omega 2020, 5, 4807–4815. [Google Scholar] [CrossRef]
- Zhang, F.; Zhai, T.; Haider, S.; Liu, Y.; Huang, Z.J. Synergistic Effect of Chlorogenic Acid and Caffeic Acid with Fosfomycin on Growth Inhibition of a Resistant Listeria monocytogenes Strain. ACS Omega 2020, 5, 7537–7544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurung, A.B.; Ali, M.A.; Lee, J.; Al-Hemaid, F.; Abul Farah, M.; Al-Anazi, K.M. Molecular docking elucidates the plausible mechanisms underlying the anticancer properties of acetyldigitoxigenin from Adenium obesum. Saudi J. Biol. Sci. 2020, 27, 1907–1911. [Google Scholar] [CrossRef] [PubMed]
- Gowda, K.; Swarup, H.A.; Nagarakere, S.C.; Rangappa, S.; Kanchugarkoppal, R.S.; Kempegowda, M. Structural studies of 2,5-disubstituted 1,3,4-thiadiazole derivatives from dithioesters under the mild condition: Studies on antioxidant, antimicrobial activities, and molecular docking. Synth. Commun. 2020, 50, 1528–1544. [Google Scholar] [CrossRef]
- Abusetta, A.; Alumairi, J.; Alkaabi, M.Y.; Al Ajeil, R.; Abu Shkaidim, A.; Akram, D.; Pajak, J.; Ghattas, M.A.; Atatreh, N.; AlNeyadi, S.S. Design, Synthesis, in Vitro Antibacterial Activity, and Docking Studies of New Rhodanine Derivatives. Open J. Med. Chem. 2020, 10, 15–34. [Google Scholar]
- Zhang, H.; Ma, G.; Zhu, Y.; Zeng, L.; Ahmad, A.; Wang, C.; Pang, B.; Fang, H.; Zhao, L.; Hao, Q. Active-Site Conformational Fluctuations Promote the Enzymatic Activity of NDM-1. Antimicrob. Agents Chemother. 2018, 62, e01579-18. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Hu, L.; Sankaran, B.; Prasad, B.V.V.; Palzkill, T. Differential active site requirements for NDM-1 beta-lactamase hydrolysis of carbapenem versus penicillin and cephalosporin antibiotics. Nat. Commun. 2018, 9, 4524. [Google Scholar] [CrossRef]
- El Kodadi, M.; Malek, F.; Touzani, R.; Ramdani, A. Synthesis of new tripodal ligand 5-(bis(3,5-dimethyl-1H-pyrazol-1-ylmethyl)amino)pentan-1-ol, catecholase activities studies of three functional tripodal pyrazolyl N-donor ligands, with different copper (II) salts. Catal. Commun. 2008, 9, 966–969. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Abrigach, F.; Ouahhoud, S.; Benabbes, R.; El Kodadi, M.; Alsalme, A.; Al-Zaqri, N.; Warad, I.; Touzani, R. Synthesis, characterization, reaction mechanism prediction and biological study of mono, bis and tetrakis pyrazole derivatives against Fusarium oxysporum f. sp. Albedinis with conceptual DFT and ligand-protein docking studies. Bioorganic Chem. 2021, 110, 104696. [Google Scholar] [CrossRef] [PubMed]
- Touzani, R.; Ramdani, A.; Ben-Hadda, T.; El Kadiri, S.; Maury, O.; Le Bozec, H.; Dixneuf, P.H. Efficient synthesis of new nitrogen donor containing tripods under microwave irradiation and without solvent. Synth. Commun. 2001, 31, 1315–1321. [Google Scholar] [CrossRef]
- Lamsayah, M.; Khoutoul, M.; Abrigach, F.; Oussaid, A.; Touzani, R. Selective liquid-liquid extraction of Fe(II) and Cd(II) using N,N’-Pyrazole bidentate ligands with theoretical study investigations. Separ. Sci. Technol. 2015, 50, 2170–2176. [Google Scholar]
- Khoutoul, M.; Abrigach, F.; Zarrouk, A.; Benchat, N.-E.; Lamsayah, M.; Touzani, R. New nitrogen-donnor pyrazole ligands for excellent liquid-liquid extraction of Fe2+ ions from aqueous solution, with theoretical study. Res. Chem. Interm. 2015, 41, 3319–3334. [Google Scholar] [CrossRef]
- Garbacia, S.; Hillairet, C.; Touzani, R.; Lavastre, O. New nitrogen-rich tripodal molecules based on bis(pyrazol-1-ylmethyl)amines with substituents modulating steric hindrances and electron density of donor sites. Collect. Czechoslov. Chem. Commun. 2005, 70, 34–40. [Google Scholar] [CrossRef]
- Bouabdallah, I.; Touzani, R.; Zidane, I.; Ramdani, A. Synthesis of new tripodal ligand: N,N-bis[(1,5-dimethylpyrazol-3-yl)methyl]benzylamine. Catecholase activity of two series of tripodal ligands with some copper (II) salts. Catal. Commun. 2007, 8, 707–712. [Google Scholar] [CrossRef]
- El Kodadi, M.; Benamar, M.; Ibrahim, B.; Zyad, A.; Malek, F.; Touzani, R.; Ramdani, A.; Melhaoui, A. New Synthesis of two tridentate bipyrazolic compounds and their cytotoxic activity tumor cell lines. Nat. Prod. Res. 2007, 21, 947–952. [Google Scholar] [CrossRef]
- Touzani, R.; Garbacia, S.; Lavastre, O.; Yadav, V.K.; Carboni, B. Efficient solution phase combinatorial access to a library of pyrazole- and triazole-containing compounds. J. Comb. Chem. 2003, 5, 375–378. [Google Scholar] [CrossRef]
- Touzani, R.; Vasapollo, G.; Scorrano, S.; Del Sole, R.; Manera, M.G.; Rella, R.; El Kadiri, S. New complexes based on tridentate bispyrazole ligand for optical gas sensing. Mater. Chem. Phys. 2011, 126, 375–380. [Google Scholar] [CrossRef]
- Boussalah, N.; Touzani, R.; Bouabdallah, I.; El Kadiri, S.; Ghalem, S. Oxidation catalytic properties of new amino acid based on pyrazole tripodal ligands. Inter. J. Acad. Res. 2009, 1, 137–143. [Google Scholar]
- Boussalah, N.; Touzani, R.; Bouabdallah, I.; El Kadiri, S.; Ghalem, S. Synthesis, structure and catalytic properties of tripodal amino-acid derivatized pyrazole-based ligands. J. Mol. Catal. A Chem. 2009, 306, 113–117. [Google Scholar] [CrossRef]
- Hammouti, B.; Dafali, A.; Touzani, R.; Bouachrine, M. Inhibition of copper corrosion by bipyrazole compound in aerated 3% NaCl. J. Saudi Chem. Soc. 2012, 16, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Boussalah, N.; Touzani, R.; Souna, F.; Himri, I.; Bouakka, M.; Hakkou, A.; Ghalem, S.; El Kadiri, S. Antifungal activities of amino acid ester functional pyrazolyl compounds against Fusarium oxysporum f.sp. albedinis and Saccharomyces cerevisiae yeast. J. Saudi Chem. Soc. 2013, 17, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Abrigach, F.; Bouchal, B.; Riant, O.; Mace, Y.; Takfaoui, A.; Radi, S.; Oussaid, A.; Bellaoui, M.; Touzani, R. New N,N,N’,N’-tetradentate Pyrazoly Agents: Synthesis and Evaluation of their Antifungal and Antibacterial Activities. Med. Chem. 2016, 12, 83–89. [Google Scholar] [CrossRef]
- Abrigach, F.; Karzazi, Y.; Benabbes, R.; El Youbi, M.; Khoutoul, M.; Taibi, N.; Karzazi, N.; Benchat, N.; Bouakka, M.; Saalaoui, E.; et al. Synthesis, biological screening, POM, and 3D-QSAR analyses of some novel pyrazolic compounds. Med. Chem. Res. 2017, 26, 1784–1795. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Abrigach, F.; Mechbal, N.; Karzazi, Y.; El Kodadi, M.; Aouniti, A.; Touzani, R. Pyrazole Compounds: Synthesis, molecular structure, chemical reactivity, experimental and theoretical DFT FTIR spectra. Mater. Today Proc. 2019, 13, 956–963. [Google Scholar] [CrossRef]
- El Ati, R.; Takfaoui, A.; El Kodadi, M.; Touzani, R.; Yousfi, E.B.; Almalki, A.A.; Ben Hadda, T. Catechol oxidase and Copper(I/II) Complexes Derived from Bipyrazol Ligand: Synthesis, Molecular Structure Investigation of New Biomimetic Functional Model and Mechanistic Study. Mater. Today Proc. 2019, 13, 129–1237. [Google Scholar] [CrossRef]
- Toubi, Y.; Touzani, R.; Radi, S.; El Kadiri, S. Synthesis, characterization and catecholase activity of copper (II) complexes with bispyrazole tri-podal ligands. J. Mater. Environ. Sci. 2012, 3, 328–341. [Google Scholar]
- Radi, S.; Toubi, Y.; Draoui, N.; Feron, O.; Riant, O. One-pot synthesis and in vitro antitumor activity of some bipyrazolic tripodal derivatives. Lett. Drug Des. Disc. 2012, 9, 305–309. [Google Scholar]
- Kalanithi, M.; Rajarajan, M.; Tharmaraj, P.; Johnson Raja, S. Synthesis, spectroscopic characterization, analgesic, and antimicrobial activities of Co(II), Ni(II), and Cu(II) complexes of 2-[N,N-bis-(3,5-dimethyl-pyrazolyl-1-methyl)]aminothiazole. Med. Chem. Res. 2015, 24, 1578–1585. [Google Scholar] [CrossRef]
- Ghosh, D.; Kundu, N.; Maity, G.; Choi, K.-Y.; Caneschi, A.; Endo, A.; Chaudhury, M. Synthesis, Structure, Magnetism, and Spectroscopic Properties of Heterobinuclear Copper(II)-Zinc(II) Complexes and Their Copper(II)-Copper(II) Analogues in Asymmetric Ligand Environments. Inorg. Chem. 2004, 43, 6015–6023. [Google Scholar] [CrossRef] [PubMed]
- Malek, F.; Draoui, N.; Feron, O.; Radi, S. Tridentate bipyrazole compounds with a side-arm as a new class of antitumor agents. Res. Chem. Intermed. 2014, 40, 681–687. [Google Scholar] [CrossRef]
- Harit, T.; Cherfi, M.; Isaad, J.; Riahi, A.; Malek, F. New generation of functionalized bipyrazolic tripods: Synthesis and study of their coordination properties towards metal cations. Tetrahedron 2012, 68, 4037–4041. [Google Scholar] [CrossRef]
- Kaddouri, Y.; Takfaoui, A.; El Ati, R.; Abrigach, F.; Lamsayah, M.; Touzani, R. Synthesis of four new tridentate pyrazolic ligands. J. Mar. Chim. Heter. 2017, 16, 100–104. [Google Scholar]
- Bouabdallah, I.; Touzani, R.; Zidane, I.; Ramdani, A.; Jalbout, A.F.; Trzaskowski, B. New comparative theoretical calculations of some N,N-bis[(3,5-dimethylpyrazol-1-yl)methyl]phenylamines tripodal ligands. J. Mater. Environ. Sci. 2013, 4, 671–674. [Google Scholar]
- Touzani, R.; El Kadiri, S.; Zerrouki, A.; Scorrano, S.; Vasapollo, G.; Manera, M.G.; Casino, F.; Rella, R. Optical and morphological characterization of bispyrazole thin films for gas sensing applications. Arab. J. Chem. 2014, 7, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Mouadili, A.; Attayibat, A.; El Kadiri, S.; Radi, S.; Touzani, R. Catecholase activity investigations using in situ copper complexes with pyrazole and pyridine based ligands. Appl. Catal. A 2013, 454, 93–99. [Google Scholar] [CrossRef]
- Bouchal, B.; Abrigach, F.; Takfaoui, A.; Errahhali, M.E.; Errahhali, M.E.; Dixneuf, P.H.; Doucet, H.; Touzani, R.; Bellaoui, M. Identification of novel antifungal agents: Antimicrobial evaluation, SAR, ADME-Tox and molecular docking studies of a series of imidazole derivatives. BMC Chem. 2019, 13, 100. [Google Scholar] [CrossRef] [Green Version]
- Biyiti, L.; Meko’o, D.; Tamzc, V.; Amvam Zollo, P. Recherche de l’activité antibactérienne de quatre plantes médicinales camerounaises. Pharm. Med. Trad. Afr. 2004, 13, 11–20. [Google Scholar]
- Berche, P.; Gaillard, J.; Simonet, M. Les bactéries des infections humaines. Editeur: Flammarion. Médecine Sci. 1991, 660. Available online: https://lib.ugent.be/en/catalog/rug01:000199668 (accessed on 17 February 2022).
- Ennadir, J.; Hassikou, R.; Bouazza, F.; Arahou, M.; Al Askari, G.; Khedid, K. Évaluation in vitro de l’activité antibactérienne des extraits aqueux et organiques des graines de Nigella sativa L. et de Foeniculum vulgare Mill. Phytothér 2014, 12, 302–308. [Google Scholar] [CrossRef]
- Bender, A.; Glen, R.C. Molecular similarity: A key technique in molecular informatics. Org. Biomol. Chem. 2004, 2, 3204–3218. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.P.; Hersey, A.; Montanari, D.; Overington, J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat. Rev. Drug Discov. 2011, 10, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Zhou, L.; Liu, T.; Tang, X.Y. Pharmacophore modeling, virtual screening, and molecular docking studies for discovery of novel Akt2 inhibitors. Int. J. Med. Sci. 2013, 10, 265–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skariyachan, S.; Pachiappan, A.; Joy, J.; Bhaduri, R.; Aier, I.; Vasist, K.S. Investigating the therapeutic potential of herbal leads against drug resistant Listeria monocytogenes by computational virtual screening and in vitro assays. J. Biomol. Struct. Dyn. 2015, 33, 2682–2694. [Google Scholar] [CrossRef]
- Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem. 2016, 12, 2694–2718. [Google Scholar] [CrossRef] [Green Version]
- Fares, M.; Said, M.A.; Alsherbiny, M.A.; Eladwy, R.A.; Almahli, H.; Abdel-Aziz, M.M.; Ghabbour, H.A.; Eldehna, W.M.; Abdel-Aziz, H.A. Synthesis, Biological Evaluation and Molecular Docking of Certain Sulfones as Potential Nonazole Antifungal Agents. Molecules 2016, 21, 114. [Google Scholar] [CrossRef] [Green Version]
- Nastasă, C.; Vodnar, D.C.; Ionuţ, I.; Stana, A.; Benedec, D.; Tamaian, R.; Oniga, O.; Tiperciuc, B. Antibacterial Evaluation and Virtual Screening of New Thiazolyl-Triazole Schiff Bases as Potential DNA-Gyrase Inhibitors. Int. J. Mol. Sci. 2018, 19, 222. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Paliwal, D.; Kaushik, D.; Gupta, G.K.; Kumar, A. Pyrazole Schiff Base Hybrids as Anti-Malarial Agents: Synthesis, In Vitro Screening and Computational Study. Comb. Chem. High Throughput Screen. 2018, 21, 194–203. [Google Scholar] [CrossRef]
- Hessler, G.; Baringhaus, K.H. Artificial Intelligence in Drug Design. Molecules 2018, 23, 2520. [Google Scholar] [CrossRef] [Green Version]
- Muchtaridi, M.; Dermawan, D.; Yusuf, M. Molecular Docking, 3D Structure-Based Pharmacophore Modeling, and ADME Prediction of Alpha Mangostin and Its Derivatives against Estrogen Receptor Alpha. J. Young-Pharm. 2018, 10, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Holm, L. Benchmarking fold detection by DaliLite v.5. Bioinformatics 2019, 35, 5326–5327. [Google Scholar] [CrossRef] [PubMed]
- Sangpheak, K.; Tabtimmai, L.; Seetaha, S.; Rungnim, C.; Chavasiri, W.; Wolschann, P.; Choowongkomon, K.; Riungrotmongkol, T. Biological Evaluation and Molecular Dynamics Simulation of Chalcone Derivatives as Epidermal Growth Factor-Tyrosine Kinase Inhibitors. Molecules 2019, 24, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Kumar, S.; Narasimhan, B.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V. 4-(4-Bromophenyl)-thiazol-2-amine derivatives: Synthesis, biological activity and molecular docking study with ADME profile. BMC Chem. 2019, 13, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curreli, F.; Ahmed, S.; Victor, S.M.B.; Ilusupov, I.R.; Belov, D.S.; Markov, P.O.; Kurkin, A.V.; Altieri, A.; Bebnath, A.K. Preclinical Optimization of gp120 Entry Antagonists as anti-HIV-1 Agents with Improved Cytotoxicity and ADME Properties through Rational Design, Synthesis, and Antiviral Evaluation. J. Med. Chem. 2020, 63, 1724–1749. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Abdellattif, M.H.; Abdel-Rahman, A.A.H.; Arief, M.M.H.; Mouneir, S.M.; Ali, A.; Hussien, M.A.; Okasha, R.M.; Afifi, T.H.; Hagar, M. Novel 2-Hydroselenonicotinonitriles and Selenopheno[2, 3-b]pyridines: Efficient Synthesis, Molecular Docking-DFT Modeling, and Antimicrobial Assessment. Front. Chem. 2021, 9, 672503. [Google Scholar] [CrossRef]
- Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014, 42, W53–W58. [Google Scholar] [CrossRef] [Green Version]
- Shehab, W.S.; Abdellattif, M.H.; Mouneir, S.M. Heterocyclization of polarized system: Synthesis, antioxidant and anti-inflammatory 4-(pyridin-3-yl)-6-(thiophen-2-yl) pyrimidine-2-thiol derivatives. Chem. Cent. J. 2018, 12, 68. [Google Scholar] [CrossRef] [Green Version]
- Yeni, S.; Merdekawati, F. In Silico Study of Pyrazolylaminoquinazoline Toxicity by Lazar, Protox, and Admet Predictor. J. Appl. Pharm. Sci. 2018, 8, 119–129. [Google Scholar]
- Abdellattif, M.H.; Shahbaaz, M.; Arief, M.M.H.; Hussien, M.A. Oxazinethione Derivatives as a Precursor to Pyrazolone and Pyrimidine Derivatives: Synthesis, Biological Activities, Molecular Modeling, ADME, and Molecular Dynamics Studies. Molecules 2021, 26, 5482. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, R.D.S.; Costa, J.D.S.; Silva, R.C.; da Costa, G.V.; Rodrigues, A.B.L.; Rabelo, E.D.M.; Souto, R.N.P.; Taft, C.A.; Silva, C.H.T.D.P.D.; Rosa, J.M.C.; et al. Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening. Pharmaceuticals 2019, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Rizvi, S.M.D.; Shakil, S.; Haneef, M. A simple click by click protocol to perform docking: Autodock 4.2 made easy for non-bioinformaticians. EXCLI J. 2013, 12, 831–857. [Google Scholar] [PubMed]
- Vieira, T.F.; Sousa, S.F. Comparing AutoDock and Vina in Ligand/Decoy Discrimination for Virtual Screening. Appl. Sci. 2019, 9, 4538. [Google Scholar] [CrossRef] [Green Version]
- Kaddouri, Y.; Abrigach, F.; Ouahhoud, S.; Benabbes, R.; El Kodadi, M.; Alsalme, A.; Al-Zaqri, N.; Warad, I.; Touzani, R. Mono-Alkylated Ligands Based on Pyrazole and Triazole Derivatives Tested Against Fusarium oxysporum f. sp. albedinis: Synthesis, Characterization, DFT, and Phytase Binding Site Identification Using Blind Docking/Virtual Screening for Potent Fophy Inhibitors. Front. Chem. 2020, 8, 559262. [Google Scholar]
- Hall, C.; Nelson, D.M.; Ye, X.; Baker, K.; DeCaprio, J.A.; Seeholzer, S.; Lipinski, M.; Adams, P.D. Hira, the human homologue of yeast hir1p and hir2p, is a novel cycin-cdk2 substrate whose expresssion blocks S-phase progresssion. Mol. Cel. Biol. 2001, 21, 1854–1865. [Google Scholar] [CrossRef] [Green Version]
- DeGoey, D.A.; Chen, H.J.; Cox, P.B.; Wendt, M.D. Beyond the Rule of 5: Lessons Learned from AbbVie’s Drugs and Compound Collection. J. Med. Chem. 2018, 61, 2636–2651. [Google Scholar] [CrossRef]
- Caron, G.; Digiesi, V.; Solaro, S.; Ermondi, G. Flexibility in early drug discovery: Focus on the beyond-Rule-of-5 chemical space. Drug Discov. Today 2020, 25, 621–627. [Google Scholar] [CrossRef]
Compound | L. monocytogenes | S. aureus | E. coli | C. freundii |
---|---|---|---|---|
12 | − − − | + + + | + + + | + + + |
14 | + + + | − − − | − − − | − − − |
Streptomycin | + + + | + + + | + + + | + + + |
12 | 14 | ||
---|---|---|---|
L. monocytogenes | MIC | - | 134.6 ± 0 |
MBC | - | 242.3 ± 0 | |
MBC/MIC | - | 1.2 | |
S. aureus | MIC | 168.7 ± 0 | - |
MBC | 202.4 ± 0 | - | |
MBC/MIC | 1.2 | - | |
E. coli | MIC | 134.9 ± 0 | - |
MBC | 134.9 ± 0 | - | |
MBC/MIC | 1 | - | |
C. freundii | MIC | 168.7 ± 0 | - |
MBC | 236.2 ± 0 | - | |
MBC/MIC | 1.4 | - |
Compound | MW | logP | HDO | HAC | NRO | TPSA (Å2) |
---|---|---|---|---|---|---|
12 | 337.42 | 3.09 | 0 | 3 | 6 | 55.95 |
14 | 269.30 | 1.22 | 1 | 3 | 5 | 59.11 |
streptomycin | 581.57 | −6.65 | 14 | 15 | 11 | 331.43 |
ampicillin | 349.40 | 0.26 | 3 | 5 | 5 | 138.03 |
cefotaxime | 455.47 | −0.73 | 3 | 9 | 9 | 227.05 |
Compound | NDM1 (A) | NDM1 (B) |
---|---|---|
Binding Affinity in kcal/mol | Binding Affinity in kcal/mol | |
12 | −6.0075 | −6.6776 |
14 | −5.5411 | −5.6752 |
ampicillin | −6.9737 | −6.7344 |
NDM1 (A) | NDM1 (B) | |||
---|---|---|---|---|
Compound | Interaction L-AA | Bond Length (Å) | Interaction L-AA | Bond Length (Å) |
12 | O47---ND1 His 122: H-acceptor | 3.08 | O47---NZ Lys211: H-acceptor | 2.98 |
O47---NE2 His 189: H-acceptor | 2.9 | 5-ring---r-ring His 122: pi-pi | 3.62 | |
14 | 6-ring---N Asn 220: pi-H | 3.9 | 6-ring---N Asn220: pi-H | 3.89 |
5-ring---5-ring His 122: pi-pi | 3.6 | 5-ring---5-ring His 122: pi-pi | 3.64 | |
ampicillin | OXT45---OD1 Asp124: H-donor | 2.9 | ||
O1 1---NZ Lys211: H-acceptor | 3.37 | |||
O2 3---NZ Lys211: H-acceptor | 2.98 | OXT45---OD1 Asp124: H-donor | 2.99 | |
O3 28---N Asp124: H-acceptor | 3.55 | O1 1---NZ Lys211: H-acceptor | 2.88 | |
C16 12---5-ring His 250: H-pi | 4.07 | O3 28---N Asp124: H-acceptor | 3.38 | |
6-ring---N Gln 123: pi-H | 4.08 | |||
6-ring---CB Gln 123: pi-H | 3.78 |
Compound | Binding Affinity in kcal/mol | Interaction L–AA (Hydrogen Bonds Only) |
---|---|---|
12 | −7.1 | N(pyrazole)---LYS216 |
14 | −7.0 | OH----ILE203 N(pyrazole)---LYS242 |
ampicillin | −7.1 | NH2---SER251 NH2---HIS250 O---LYS216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaddouri, Y.; Bouchal, B.; Abrigach, F.; El Kodadi, M.; Bellaoui, M.; Elkamhawy, A.; Touzani, R.; Abdellattif, M.H. New N-Alkylated Heterocyclic Compounds as Prospective NDM1 Inhibitors: Investigation of In Vitro and In Silico Properties. Pharmaceuticals 2022, 15, 803. https://doi.org/10.3390/ph15070803
Kaddouri Y, Bouchal B, Abrigach F, El Kodadi M, Bellaoui M, Elkamhawy A, Touzani R, Abdellattif MH. New N-Alkylated Heterocyclic Compounds as Prospective NDM1 Inhibitors: Investigation of In Vitro and In Silico Properties. Pharmaceuticals. 2022; 15(7):803. https://doi.org/10.3390/ph15070803
Chicago/Turabian StyleKaddouri, Yassine, Btissam Bouchal, Farid Abrigach, Mohamed El Kodadi, Mohammed Bellaoui, Ahmed Elkamhawy, Rachid Touzani, and Magda H. Abdellattif. 2022. "New N-Alkylated Heterocyclic Compounds as Prospective NDM1 Inhibitors: Investigation of In Vitro and In Silico Properties" Pharmaceuticals 15, no. 7: 803. https://doi.org/10.3390/ph15070803
APA StyleKaddouri, Y., Bouchal, B., Abrigach, F., El Kodadi, M., Bellaoui, M., Elkamhawy, A., Touzani, R., & Abdellattif, M. H. (2022). New N-Alkylated Heterocyclic Compounds as Prospective NDM1 Inhibitors: Investigation of In Vitro and In Silico Properties. Pharmaceuticals, 15(7), 803. https://doi.org/10.3390/ph15070803