Application of In Silico Filtering and Isothermal Titration Calorimetry for the Discovery of Small Molecule Inhibitors of MDM2
Abstract
:1. Introduction
2. Results
2.1. In Silico Screening of a Virtual Small Molecule Library
2.2. Secondary In Vitro Screening by Isothermal Calorimetry (ITC)
2.3. Binding Evaluation of Structure-Similar Chemical Analogues
2.4. De Novo Chemical Synthesis of New Molecules
2.5. Cellular Activity and Viability
3. Discussion
4. Materials and Methods
4.1. Chemistry
4.2. MDM2 Expression and Purification
4.3. ITC Experiments
4.4. p53 Activation Assay and Cellular Viability
4.5. Generating a 3D MDM2 Model for the Docking of Small Molecules
4.6. Filtering Molecules Based on Pharmacophore Constraints
4.7. Molecular Docking and Final Selection of Molecules
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donev, R. Protein Interactions as Targets in Drug Discovery; Academic Press: Cambridge, MA, USA, 2020; p. 316. [Google Scholar]
- Jubb, H.; Higueruelo, A.P.; Winter, A.; Blundell, T.L. Structural biology and drug discovery for protein–protein interactions. Trends Pharmacol. Sci. 2012, 33, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Fry, D.C. Protein-protein interactions as targets for small molecule drug discovery. Biopolymers 2006, 84, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Vidal, M.; Cusick, M.E.; Barabási, A.-L. Interactome networks and human disease. Cell 2011, 144, 986–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabási, A.-L. Uncovering disease-disease relationships through the incomplete interactome. Science 2015, 347, 1257601. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, M.P.H.; Thorne, T.; de Silva, E.; Stewart, R.; An, H.J.; Lappe, M.; Wiuf, C. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. USA 2008, 105, 6959–6964. [Google Scholar] [CrossRef] [Green Version]
- Munisamy, M.; Mukherjee, N.; Thomas, L.; Pham, A.T.; Shakeri, A.; Zhao, Y.; Kolesar, J.; Rao, P.P.N.; Rangnekar, V.M.; Rao, M. Therapeutic opportunities in cancer therapy: Targeting the p53-MDM2/MDMX interactions. Am. J. Cancer Res. 2021, 11, 5762–5781. [Google Scholar]
- Wang, S.; Zhao, Y.; Aguilar, A.; Bernard, D.; Yang, C.-Y. Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges. Cold Spring Harb. Perspect. Med. 2017, 7, a026245. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, X.; Wang, G.; Yang, Y.; Yuan, Y.; Ouyang, L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur. J. Med. Chem. 2019, 176, 92–104. [Google Scholar] [CrossRef]
- Klein, C.; Vassilev, L.T. Targeting the p53-MDM2 interaction to treat cancer. Br. J. Cancer 2004, 91, 1415–1419. [Google Scholar] [CrossRef] [Green Version]
- Vousden, K.H.; Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 275–283. [Google Scholar] [CrossRef]
- Ozaki, T.; Nakagawara, A. Role of p53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Oren, M. The first 30 years of p53: Growing ever more complex. Nat. Rev. Cancer 2009, 9, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, C.; Hu, W.; Feng, Z. Tumor suppressor p53 and metabolism. J. Mol. Cell Biol. 2019, 11, 284–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosh, R.; Rotter, V. When mutants gain new powers: News from the mutant p53 field. Nat. Rev. Cancer 2009, 9, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, C.; Pearsall, I.; Yeudall, A.; Deb, S.P.; Deb, S. p53: Its mutations and their impact on transcription. Subcell. Biochem. 2014, 85, 71–90. [Google Scholar] [CrossRef]
- Momand, J.; Zambetti, G.P. Mdm-2: “big brother” of p53. J. Cell. Biochem. 1997, 64, 343–352. [Google Scholar] [CrossRef]
- Bond, G.L.; Hu, W.; Levine, A.J. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr. Cancer Drug Targets 2005, 5, 3–8. [Google Scholar] [CrossRef]
- Michael, D.; Oren, M. The p53 and Mdm2 families in cancer. Curr. Opin. Genet. Dev. 2002, 12, 53–59. [Google Scholar] [CrossRef]
- Beloglazkina, A.; Zyk, N.; Majouga, A.; Beloglazkina, E. Recent Small-Molecule Inhibitors of the p53-MDM2 Protein-Protein Interaction. Molecules 2020, 25, 1211. [Google Scholar] [CrossRef] [Green Version]
- Skalniak, L.; Surmiak, E.; Holak, T.A. A therapeutic patent overview of MDM2/X-targeted therapies (2014–2018). Expert Opin. Ther. Pat. 2019, 29, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Rusiecki, R.; Witkowski, J.; Jaszczewska-Adamczak, J. MDM2-p53 Interaction Inhibitors: The Current State-of-Art and Updated Patent Review (2010-Present). Recent Pat. Anticancer Drug Discov. 2019, 14, 324–369. [Google Scholar] [CrossRef] [PubMed]
- Tisato, V.; Voltan, R.; Gonelli, A.; Secchiero, P.; Zauli, G. MDM2/X inhibitors under clinical evaluation: Perspectives for the management of hematological malignancies and pediatric cancer. J. Hematol. Oncol. 2017, 10, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassilev, L.T.; Vu, B.T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong, N.; Kammlott, U.; Lukacs, C.; Klein, C.; et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004, 303, 844–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rew, Y.; Sun, D. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J. Med. Chem. 2014, 57, 6332–6341. [Google Scholar] [CrossRef] [PubMed]
- Dezi, C.; Carotti, A.; Magnani, M.; Baroni, M.; Padova, A.; Cruciani, G.; Macchiarulo, A.; Pellicciari, R. Molecular interaction fields and 3D-QSAR studies of p53-MDM2 inhibitors suggest additional features of ligand-target interaction. J. Chem. Inf. Model. 2010, 50, 1451–1465. [Google Scholar] [CrossRef] [PubMed]
- Bowman, A.L.; Nikolovska-Coleska, Z.; Zhong, H.; Wang, S.; Carlson, H.A. Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J. Am. Chem. Soc. 2007, 129, 12809–12814. [Google Scholar] [CrossRef]
- Lu, Y.; Nikolovska-Coleska, Z.; Fang, X.; Gao, W.; Shangary, S.; Qiu, S.; Qin, D.; Wang, S. Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J. Med. Chem. 2006, 49, 3759–3762. [Google Scholar] [CrossRef]
- Lu, F.; Chi, S.-W.; Kim, D.-H.; Han, K.-H.; Kuntz, I.D.; Guy, R.K. Proteomimetic libraries: Design, synthesis, and evaluation of p53-MDM2 interaction inhibitors. J. Comb. Chem. 2006, 8, 315–325. [Google Scholar] [CrossRef]
- Herold, J.M.; Wigle, T.J.; Norris, J.L.; Lam, R.; Korboukh, V.K.; Gao, C.; Ingerman, L.A.; Kireev, D.B.; Senisterra, G.; Vedadi, M.; et al. Small-molecule ligands of methyl-lysine binding proteins. J. Med. Chem. 2011, 54, 2504–2511. [Google Scholar] [CrossRef] [Green Version]
- Manepalli, S.; Geffert, L.M.; Surratt, C.K.; Madura, J.D. Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. J. Chem. Inf. Model. 2011, 51, 2417–2426. [Google Scholar] [CrossRef] [Green Version]
- Vu, B.; Wovkulich, P.; Pizzolato, G.; Lovey, A.; Ding, Q.; Jiang, N.; Liu, J.-J.; Zhao, C.; Glenn, K.; Wen, Y.; et al. Discovery of RG7112: A Small-Molecule MDM2 Inhibitor in Clinical Development. ACS Med. Chem. Lett. 2013, 4, 466–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, D.; Zhao, Y.; Wang, S. AM-8553: A novel MDM2 inhibitor with a promising outlook for potential clinical development. J. Med. Chem. 2012, 55, 4934–4935. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Beck, B.; Wang, W.; Czarna, A.; Holak, T.A.; Dömling, A. Rapid and efficient hydrophilicity tuning of p53/mdm2 antagonists. J. Comb. Chem. 2009, 11, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popowicz, G.M.; Czarna, A.; Wolf, S.; Wang, K.; Wang, W.; Dömling, A.; Holak, T.A. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 2010, 9, 1104–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popowicz, G.M.; Czarna, A.; Holak, T.A. Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain. Cell Cycle 2008, 7, 2441–2443. [Google Scholar] [CrossRef] [Green Version]
- Furet, P.; Chene, P.; De Pover, A.; Valat, T.S.; Lisztwan, J.H.; Kallen, J.; Masuya, K. The central valine concept provides an entry in a new class of non peptide inhibitors of the p53-MDM2 interaction. Bioorganic Med. Chem. Lett. 2012, 22, 3498–3502. [Google Scholar] [CrossRef]
- Kussie, P.H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A.J.; Pavletich, N.P. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996, 274, 948–953. [Google Scholar] [CrossRef]
- Li, C.; Pazgier, M.; Li, C.; Yuan, W.; Liu, M.; Wei, G.; Lu, W.Y.; Lu, W. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. J. Mol. Biol. 2010, 398, 200–213. [Google Scholar] [CrossRef] [Green Version]
- Paketuryte, V.; Linkuviene, V.; Matulis, D. Repeatability of enthalpies and Gibbs energies of a protein-ligand binding reaction measured by ITC. Biophys. J. 2018, 114, 31a. [Google Scholar] [CrossRef]
- Su, H.; Xu, Y. Application of ITC-Based Characterization of Thermodynamic and Kinetic Association of Ligands With Proteins in Drug Design. Front. Pharmacol. 2018, 9, 1133. [Google Scholar] [CrossRef]
- Gal, M.; Bloch, I.; Shechter, N.; Romanenko, O.; Shir, O.M. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein. Comb. Chem. High Throughput Screen. 2016, 19, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Ratzon, E.; Bloch, I.; Nicola, M.; Cohen, E.; Ruimi, N.; Dotan, N.; Landau, M.; Gal, M. A small molecule inhibitor of Bruton’s tyrosine kinase involved in B-cell signaling. ACS Omega 2017, 2, 4398–4410. [Google Scholar] [CrossRef] [Green Version]
- Bazanov, D.R.; Pervushin, N.V.; Savin, E.V.; Tsymliakov, M.D.; Maksutova, A.I.; Sosonyuk, S.E.; Kopeina, G.S.; Lozinskaya, N.A. Sulfonamide derivatives of cis-imidazolines as potent p53-MDM2/MDMX protein-protein interaction inhibitors. Med. Chem. Res. 2021, 30, 2216–2227. [Google Scholar] [CrossRef]
- Cybulsky, A.V.; Takano, T.; Guillemette, J.; Papillon, J.; Volpini, R.A.; Di Battista, J.A. The Ste20-like kinase SLK promotes p53 transactivation and apoptosis. Am. J. Physiol. Renal. Physiol. 2009, 297, F971–F980. [Google Scholar] [CrossRef]
- Siebring-van Olst, E.; Vermeulen, C.; de Menezes, R.X.; Howell, M.; Smit, E.F.; van Beusechem, V.W. Affordable luciferase reporter assay for cell-based high-throughput screening. J. Biomol. Screen. 2013, 18, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Li, C.; Chen, L.; Sebti, S.; Chen, J. Rescue of mutant p53 transcription function by ellipticine. Oncogene 2003, 22, 4478–4487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Wang, W.; El-Deiry, W.S. Current strategies to target p53 in cancer. Biochem. Pharm. 2010, 80, 724–730. [Google Scholar] [CrossRef]
- Galatin, P.S.; Abraham, D.J. A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. J. Med. Chem. 2004, 47, 4163–4165. [Google Scholar] [CrossRef]
- Shin, W.H.; Kumazawa, K.; Imai, K.; Hirokawa, T.; Kihara, D. Current Challenges and Opportunities in Designing Protein–Protein Interaction Targeted Drugs. Bioinform. Chem. 2020, 13, 11–25. [Google Scholar] [CrossRef]
- Rapposelli, S.; Gaudio, E.; Bertozzi, F.; Gul, S. Editorial: Protein-Protein Interactions: Drug Discovery for the Future. Front. Chem. 2021, 9, 811190. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., 3rd; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef] [PubMed]
- Smellie, A.; Kahn, S.D.; Teig, S.L. Analysis of Conformational Coverage. 1. Validation and Estimation of Coverage. J. Chem. Inf. Comput. Sci. 1995, 35, 285–294. [Google Scholar] [CrossRef]
- Verdonk, M.L.; Chessari, G.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Nissink, J.W.M.; Taylor, R.D.; Taylor, R. Modeling water molecules in protein-ligand docking using GOLD. J. Med. Chem. 2005, 48, 6504–6515. [Google Scholar] [CrossRef] [PubMed]
Molecule | Kd (µM) | p53 Activity/ Viability Relative to Non-Treated Cells | SMILES |
---|---|---|---|
M1 | 2.85 | 1.15 | CC(C)Oc1ccc(cc1)[C@@H]2CC(=O)N2[C@H](C(=O)Nc3c(C)cccc3C)c4ccc(Cl)cc4 |
M2 | 2.08 | 1.41 | Clc1ccc(cc1)S(=O)(=O)N[C@H](c2c[nH]c3ccccc23)C(Cl)(Cl)Cl |
M3 | 16.6 | COc1ccccc1c2nnc(S[C@@H]3CCCCC3=O)n2c4ccc(Cl)cc4 | |
M4 | NB | Oc1ccccc1C(=O)c2cc(c3nc4ccccc4n3c2)S(=O)(=O)c5ccccc5 | |
M5 | NB | CCOc1ccc2ccccc2c1C(=O)N3CC(=O)Nc4ccc(C)cc4[C@H]3c5ccc(F)cc5 | |
M6 | NB | COc1ccccc1[C@@H]2[N@H+](Cc3nc4ccccc4n3C)CCc5c2[nH]c6ccccc56 | |
M1-1 | WB | O=C(NC1=C(C)C=CC=C1C)C(C2=CC=C(Cl)C=C2)N3C(C4=CC=CO4)CC3=O | |
M1-2 | NB | O=C(NC1=C(C)C=CC=C1C)C(C2=CC=C(F)C=C2)N3C(C4=CC=CO4)CC3=O | |
M1-3 | NB | O=C(NC1=C(C)C=CC=C1C)C(C2=CC=C(OCO3)C3=C2)N4C(C5=CC=C(OC)C(OC)=C5)CC4=O | |
M1-4 | NB | CC1=C(NC(C(C2=CC=C(F)C=C2)N3C(CC3)=O)=O)C(C)=CC=C1 | |
M1-5 | NB | O=C(C(C1)(C2=CC=C(OC)C=C2)N(C3=CC=C(Cl)C=C3)C1=O)NC4=C(C)C=CC=C4C | |
M1-6 | WB | COc1ccc(cc1)N(C(C(=O)Nc1c(C)cccc1C)c1ccc(cc1)Cl)C=O | |
M1-7 | 33.5 | 1.04 | CC=1C=CC=C(C)C1NC(=O)C(N2C(CC2=O)C=3C=CC=C(C3)C(F)(F)F)C=4C=CC(Cl)=CC4 |
M1-8 | WB | 1.35 | CC=1C=CC=C(C)C1NC(=O)C(N2C(CC2=O)C=3C=CC(Cl)=CC3)C=4C=CC(Cl)=CC4 |
M1-9 | WB | 1.20 | CC(C)OC=1C=CC(=CC1)C2CC(=O)N2C(C(=O)NC=3C(C)=CC=CC3C)C=4C=CC(OC(F)(F)F)=CC4 |
M1-10 | 19.5 | 1.39 | CC=1C=CC=C(C)C1NC(=O)C(N2C(CC2=O)C=3C=CSC3)C=4C=CC(Cl)=CC4 |
M1-11 | 13.1 | 1.12 | CC1=CC=C(O1)C2CC(=O)N2C(C(=O)NC=3C(C)=CC=CC3C)C=4C=CC(Cl)=CC4 |
M1-12 | NB | CC(C)Oc1ccc(cc1)[C@H]2CC(=O)N2[C@@H](C(=O)Nc3c(C)cccc3C)c4ccc5[nH]ccc5c4 | |
M1-13 | NB | CC(C)OC=1C=CC(=CC1)C2CC(=O)N2C(C(=O)NC=3C(C)=CC=CC3C)C=4C=CC=C(OC(F)(F)F)C4 | |
M1-14 | NB | CC(C)Oc1ccc(cc1)[C@H]2CC(=O)N2[C@@H](C(=O)Nc3ccc(cc3)C(C)(C)C)c4ccc(Cl)cc4 | |
M1-15 | NB | CC=1C=CC=C(C)C1NC(=O)C(N2C(CC2=O)C3CCOCC3)C=4C=CC(Cl)=CC4 | |
M1-16 | NB | CC(C)OC=1C=CC(=CC1)C2CC(=O)N2C(C(=O)NC=3C(C)=CC=CC3C)C=4C=CC(C)=CC4 | |
M1-17 | NB | CC(C)OC=1C=CC(=CC1)C2CC(=O)N2C(C(=O)NC=3C=CC=C4C=CC=CC34)C=5C=CC(Cl)=CC5 | |
M1-18 | NB | COC=1C=CC(=CC1)C(N2C(CC2=O)C=3C=CC(OC(C)C)=CC3)C(=O)NC=4C(C)=CC=CC4C | |
M1-19 | NB | COC=1C=CC=C(C1)C(N2C(CC2=O)C=3C=CC(OC(C)C)=CC3)C(=O)NC=4C(C)=CC=CC4C | |
M1-20 | NB | CC(C)OC=1C=CC(=CC1)C2CC(=O)N2C(C(=O)NC=3C(C)=CC=CC3C)C=4C=CN=CC4 | |
M1-21 | NB | CC=1C=CC=C(C)C1NC(=O)C(N2C(CC2=O)C(C)(C)C)C=3C=CC(Cl)=CC3 | |
M2-1 | NB | O=S(C1=CC=CC=C1)(NC(C2=C(C)NC3=C2C=CC=C3)C(Cl)(Cl)Cl)=O | |
M2-2 | WB | O=S(C1=CC=CC=C1)(NC(C2=CNC3=C2C=CC=C3)C(Cl)(Cl)Cl)=O | |
M2-3 | 49.7 | O=S(C1=CC=C(Cl)C=C1)(NC(C2=C(C)NC3=C2C=CC=C3)C(Cl)(Cl)Cl)=O | |
M2-4 | NB | O=S(N1C(C2=CNC3=C2C=CC=C3)C4=C(C=CC=C4)C=C1)(C5=CC=C(F)C=C5)=O | |
M2-5 | NB | CS(=O)(=O)NCC(c1c[nH]c2c1cccc2)c1ccccc1 | |
M2-6 | NB | Fc1ccc(cc1)S(=O)(=O)NCC(c1c[nH]c2c1cccc2)c1ccccc1 | |
M2-7 | 0.979 | 1.22 | O=S(C1=CC=C(Cl)C=C1)(NC(C2=CNC3=C2C(F)=CC=C3)C(Cl)(Cl)Cl)=O |
M2-8 | 1.58 | 1.30 | O=S(C1=CC=C(Cl)C=C1)(NC(C2=CNC3=C2C=C(F)C=C3)C(Cl)(Cl)Cl)=O |
M2-9 | WB | 1.19 | O=S(C1=CC=C(Cl)C=C1)(NC(C2=CNC3=C2C=CC=C3F)C(Cl)(Cl)Cl)=O |
M2-10 | 0.578 | 1.64 | O=S(C1=CC=C(Cl)C=C1)(NC(C2=CNC3=C2C(Cl)=CC=C3)C(Cl)(Cl)Cl)=O |
M2-11 | 0.704 | 1.64 | O=S(C1=CC=C(Cl)C=C1)(NC(C2=CNC3=C2C=CC(Cl)=C3)C(Cl)(Cl)Cl)=O |
M2-12 | 0.844 | 1.57 | O=S(C1=CC=C(Cl)C=C1)(NC(C2=CNC3=C2C=CC(C)=C3)C(Cl)(Cl)Cl)=O |
M2-13 | 0.489 | 1.08 | FC=1C=C(F)C=2C(=CNC2C1)C(NS(=O)(=O)C=3C=CC(Cl)=CC3)C(Cl)(Cl)Cl |
M2-14 | 1.22 | 1.38 | O=S(C1=CC=C(Cl)C=C1)(NC(C2=CNC3=C2C=CC(F)=C3)C(Cl)(Cl)Cl)=O |
M2-15 | 3.16 | 1.07 | COC=1C=C(Cl)C=CC1S(=O)(=O)NC(C2=CNC=3C=CC=CC23)C(Cl)(Cl)Cl |
M2-16 | NB | CCc1cccc2[nH]cc([C@@H](NS(=O)(=O)c3ccc(Cl)cc3)C(F)(F)F)c12 | |
M2-17 | NB | CC(NS(=O)(=O)C=1C=CC(Cl)=CC1)C2=CNC=3C=C(F)C=CC23 | |
M2-18 | 1.33 | 1.37 | CC=1C=CC(=CC1)S(=O)(=O)NC(C2=CNC=3C=C(F)C=CC23)C(Cl)(Cl)Cl |
M2-19 | NB | FC(F)(F)C(NS(=O)(=O)C=1C=CC=CC1)C2=CNC=3C=CC=CC23 | |
M2-20 | NB | COC=1C=CC=C2NC=C(C(NS(=O)(=O)C=3C=CC(Cl)=CC3)C(F)(F)F)C12 | |
M2-21 | NB | FC=1C=C(Cl)C=2C(=CNC2C1)C(NS(=O)(=O)C=3C=CC(Cl)=CC3)C(Cl)(Cl)Cl | |
M2-22 | NB | CNC(=O)C=1C=CC(=CC1)S(=O)(=O)NC(C2=CNC=3C=CC=CC23)C(Cl)(Cl)Cl | |
M2-23 | NB | ClC(Cl)(Cl)C(NS(=O)(=O)C=1C=CC(=CC1)C(=O)N2CCOCC2)C3=CNC=4C=CC=CC34 | |
M2-24 | NB | ClC(Cl)(Cl)C(NS(=O)(=O)C=1C=CC=C(C1)N2C=NN=N2)C3=CNC=4C=CC=CC34 | |
M2-25 | NB | CCS(=O)(=O)C=1C=CC(=CC1)S(=O)(=O)NC(C2=CNC=3C=CC=CC23)C(Cl)(Cl)Cl | |
M2-26 | NB | FC(F)(F)C=1C=CC=C(C1)S(=O)(=O)NC(C2=CNC=3C=CC=CC23)C(Cl)(Cl)Cl | |
M2-27 | NB | ClC(Cl)(Cl)C(NS(=O)(=O)C=1C=CC=2OCCCOC2C1)C3=CNC=4C=CC=CC34 | |
M2-28 | NB | ClC(Cl)(Cl)C(NS(=O)(=O)C=1C=CC(=CC1)S(=O)(=O)N2CCCC2)C3=CNC=4C=CC=CC34 | |
M2-29 | NB | COC=1C=C(F)C(=CC1OC)S(=O)(=O)NC(C2=CNC=3C=CC=CC23)C(Cl)(Cl)Cl | |
M2-30 | NB | COC=1C=CC(=CC1OC)S(=O)(=O)NC(C2=CNC=3C=CC=CC23)C(Cl)(Cl)Cl | |
M2-31 | NB | ClC(Cl)(Cl)C(NS(=O)(=O)C=1C=CC=2CCNC(=O)C2C1)C3=CNC=4C=CC=CC34 | |
M2-32 | NB | CC(=O)C=1C=CC=C(C1)S(=O)(=O)NC(C2=CNC=3C=CC=CC23)C(Cl)(Cl)Cl | |
M2-33 | NB | ClC(Cl)(Cl)C(NS(=O)(=O)CC=1C=CC=C2C=CC=NC12)C3=CNC=4C=CC=CC34 | |
M2-34 | NB | CC(=O)NCC1=CC=C(S1)S(=O)(=O)NC(C2=CNC=3C=CC=CC23)C(Cl)(Cl)Cl | |
M3-1 | NB | O=C1C(SC2=NN=C(C3=CC=C(Cl)C=C3)N2C4=CC=CC=C4)CCCC1 | |
M3-2 | NB | O=C1OCCC1SC2=NN=C(C3=CC=CC=C3)N2C4=CC=C(Cl)C=C4 | |
M3-3 | NB | O=C1OCCC1SC2=NN=C(C3=CC=CC(OC)=C3)N2C4=CC=C(Cl)C=C4 | |
M3-4 | NB | O=C1OCCC1SC2=NN=C(C3=CC=CC=C3OC)N2C4=CC=C(Cl)C=C4 | |
M3-5 | NB | O=C1C(SC2=NN=C(C3=CC=NC=C3)N2C4=CC=C(F)C=C4)CCC1 | |
M3-6 | NB | COC1=CC=C(C2=NN=C(SCC(N3CCCC3)=O)N2C4=CC=C(Cl)C=C4)C=C1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alali, H.; Bloch, I.; Rapaport, I.; Rodrigues, L.; Sher, I.; Ansbacher, T.; Gal, M. Application of In Silico Filtering and Isothermal Titration Calorimetry for the Discovery of Small Molecule Inhibitors of MDM2. Pharmaceuticals 2022, 15, 752. https://doi.org/10.3390/ph15060752
Alali H, Bloch I, Rapaport I, Rodrigues L, Sher I, Ansbacher T, Gal M. Application of In Silico Filtering and Isothermal Titration Calorimetry for the Discovery of Small Molecule Inhibitors of MDM2. Pharmaceuticals. 2022; 15(6):752. https://doi.org/10.3390/ph15060752
Chicago/Turabian StyleAlali, Hen, Itai Bloch, Irena Rapaport, Luisa Rodrigues, Inbal Sher, Tamar Ansbacher, and Maayan Gal. 2022. "Application of In Silico Filtering and Isothermal Titration Calorimetry for the Discovery of Small Molecule Inhibitors of MDM2" Pharmaceuticals 15, no. 6: 752. https://doi.org/10.3390/ph15060752
APA StyleAlali, H., Bloch, I., Rapaport, I., Rodrigues, L., Sher, I., Ansbacher, T., & Gal, M. (2022). Application of In Silico Filtering and Isothermal Titration Calorimetry for the Discovery of Small Molecule Inhibitors of MDM2. Pharmaceuticals, 15(6), 752. https://doi.org/10.3390/ph15060752