In Vitro Evaluation of the Antioxidant Activity and Chemopreventive Potential in Human Breast Cancer Cell Lines of the Standardized Extract Obtained from the Aerial Parts of Zigzag Clover (Trifolium medium L.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Procedures Related to the Raw Plant Material Preceding Phytochemical Standardization
2.2. Phytochemical Standardization of TML Using Coupled Chromatographic (RP-LC), Spectroscopic (PDA), and Mass Spectrometric (ESI-QTOF-MS/MS) Techniques
2.2.1. Qualitative Profiling of Isoflavones in TML Using Simultaneous RP-LC/PDA and RP-LC/PDA-ESI-QTOF-MS/MS Methods
2.2.2. Quantitative Profiling of Isoflavones in TML Using the RP-LC/PDA Method
2.3. Antioxidant and Antiradical Activity versus Chemopreventive Potential of TML
2.4. Cytotoxic Activity of TML and Isoflavone Reference Substances in Breast Cancer Cell Lines
2.5. Screening for Cytotoxicity of TML in Human Normal Fibroblast WS1 Cell Line
3. Materials and Methods
3.1. Chemicals and Reagents
3.1.1. Reagents and Reference Substances Used in Extraction Procedure and Phytochemical Standardization
3.1.2. Chemicals Used in the In Vitro Bioassays
3.2. Plant Material and Ultrasound-Assisted Extraction (UAE)
3.3. Phytochemical Standardization of TML Using RP-LC/PDA Method
3.4. Qualitative Profiling of TML Using RP-LC/PDA/ESI-QTOF/MS-MS Method
3.5. Antioxidant and Radical Scavenging Assays
3.5.1. Determination of Total Polyphenolic Content (TPC)
3.5.2. Copper Reduction Assay
3.5.3. DPPH• Anion Radical Scavenging Assay
3.5.4. ABTS•+ Cation Radical Scavenging Assay
3.6. Cytotoxicity Screening Assay
3.6.1. Cell Culture
3.6.2. MTT Assay Protocol
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villares, A.; Rostagno, M.A.; García-Lafuente, A.; Guillamón, E.; Martínez, J.A. Content and Profile of Isoflavones in Soy-Based Foods as a Function of the Production Process. Food Bioprocess Technol. 2011, 4, 27–38. [Google Scholar] [CrossRef]
- Maciejewska-Turska, M.; Zgórka, G. In-Depth Phytochemical and Biological Studies on Potential AChE Inhibitors in Red and Zigzag Clover Dry Extracts Using Reversed-Phase Liquid Chromatography (RP-LC) Coupled with Photodiode Array (PDA) and Electron Spray Ionization-Quadrupole/Time of Fligh. Food Chem. 2022, 375, 131846. [Google Scholar] [CrossRef]
- Lagari, V.S.; Levis, S. Phytoestrogens for Menopausal Bone Loss and Climacteric Symptoms. J. Steroid Biochem. Mol. Biol. 2014, 139, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Pradhan, B.; Nayak, R.; Behera, C.; Das, S.; Patra, S.K.; Efferth, T.; Jena, M.; Bhutia, S.K. Dietary Polyphenols in Chemoprevention and Synergistic Effect in Cancer: Clinical Evidences and Molecular Mechanisms of Action. Phytomedicine 2021, 90, 153554. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Sobue, T.; Kobayashi, M.; Sasaki, S.; Tsugane, S. Soy, Isoflavones, and Breast Cancer Risk in Japan. J. Natl. Cancer Inst. 2003, 95, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Waris, G.; Ahsan, H. Reactive Oxygen Species: Role in the Development of Cancer and Various Chronic Conditions. J. Carcinog. 2006, 5, 14. [Google Scholar] [CrossRef]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive Oxygen Species (ROS) and Cancer: Role of Antioxidative Nutraceuticals. Cancer Lett. 2017, 387, 95–105. [Google Scholar] [CrossRef]
- Li, S.; Chen, G.; Zhang, C.; Wu, M.; Wu, S.; Liu, Q. Research Progress of Natural Antioxidants in Foods for the Treatment of Diseases. Food Sci. Hum. Wellness 2014, 3, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Ghafar, M.A.; Golliday, E.; Bingham, J.; Mansukhani, M.M.; Anastasiadis, A.G.; Katz, A.E. Regression of Prostate Cancer Following Administration of Genistein Combined Polysaccharide (GCPTM), a Nutritional Supplement: A Case Report. J. Altern. Complement. Med. 2002, 8, 493–497. [Google Scholar] [CrossRef]
- Park, S.; Bazer, F.W.; Lim, W.; Song, G. The O-Methylated Isoflavone, Formononetin, Inhibits Human Ovarian Cancer Cell Proliferation by Sub G0/G1 Cell Phase Arrest through PI3K/AKT and ERK1/2 Inactivation. J. Cell. Biochem. 2018, 119, 7377–7387. [Google Scholar] [CrossRef]
- Lin, Y.J.; Hou, Y.C.; Lin, C.H.; Hsu, Y.A.; Sheu, J.J.C.; Lai, C.H.; Chen, B.H.; Lee Chao, P.D.; Wan, L.; Tsai, F.J. Puerariae Radix Isoflavones and Their Metabolites Inhibit Growth and Induce Apoptosis in Breast Cancer Cells. Biochem. Biophys. Res. Commun. 2009, 378, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.C.; Silva, A.M.; Santos, M.S.; Sardão, V.A. Phytoestrogens as Alternative Hormone Replacement Therapy in Menopause: What Is Real, What Is Unknown. J. Steroid Biochem. Mol. Biol. 2014, 143, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor Beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Sareddy, G.R.; Li, M.; Liu, J.; Luo, Y.; Venkata, P.P.; Viswanadhapalli, S.; Tekmal, R.R.; Brenner, A.; Vadlamudi, R.K. Estrogen Receptor Beta Enhances Chemotherapy Response of GBM Cells by down Regulating DNA Damage Response Pathways. Sci. Rep. 2019, 9, 6124. [Google Scholar] [CrossRef]
- Bado, I.; Pham, E.; Soibam, B.; Nikolos, F.; Gustafsson, J.-Å.; Thomas, C. ERβ Alters the Chemosensitivity of Luminal Breast Cancer Cells by Regulating P53 Function. Oncotarget 2018, 9, 22509. [Google Scholar] [CrossRef] [Green Version]
- Mann, S.; Laucirica, R.; Carlson, N.; Younes, P.S.; Ali, N.; Younes, A.; Li, Y.; Younes, M. Estrogen Receptor Beta Expression in Invasive Breast Cancer. Hum. Pathol. 2001, 32, 113–118. [Google Scholar] [CrossRef]
- Zgórka, G. Ultrasound-Assisted Solid-Phase Extraction Coupled with Photodiode-Array and Fluorescence Detection for Chemotaxonomy of Isoflavone Phytoestrogens in Trifolium L. (Clover) Species. J. Sep. Sci. 2009, 32, 965–972. [Google Scholar] [CrossRef]
- Myers, S.P.; Vigar, V. Effects of a Standardised Extract of Trifolium Pratense (Promensil) at a Dosage of 80 Mg in the Treatment of Menopausal Hot Flushes: A Systematic Review and Meta-Analysis. Phytomedicine 2017, 24, 141–147. [Google Scholar] [CrossRef]
- Gründemann, C.; Hertrampf, A.; Sauer, B.; Garcia-Käufer, M.; Zehl, M.; Huber, R. Influence of Rheum Rhaponticum, Cimicifuga racemosa and Trifolium pratense Extracts on Breast Cancer Cell Proliferation. Z. Phyther. 2015, 36, 157–163. [Google Scholar] [CrossRef]
- Booth, N.L.; Overk, C.R.; Yao, P.; Totura, S.; Deng, Y.; Hedayat, A.S.; Bolton, J.L.; Pauli, G.F.; Farnsworth, N.R. Seasonal Variation of Red Clover (Trifolium pratense L., Fabaceae) Isoflavones and Estrogenic Activity. J. Agric. Food Chem. 2006, 54, 1277–1282. [Google Scholar] [CrossRef] [Green Version]
- Lemežienė, N.; Padarauskas, A.; Butkutė, B.; Cesevičienė, J.; Taujenis, L.; Norkevičienė, E.; Norkevičienė, E. The Concentration of Isoflavones in Red Clover (Trifolium pratense L.) at Flowering StageIzoflavonų Koncentracija Raudonojo Dobilo (Trifolium Pratense L.) Žydėjimo Metu. Zemdirb.-Agric. 2015, 102, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Tsao, R.; Papadopoulos, Y.; Yang, R.; Chris Young, J.; Mcrae, K. Isoflavone Profiles of Red Clovers and Their Distribution in Different Parts Harvested at Different Growing Stages. J. Agric. Food Chem. 2006, 54, 5797–5805. [Google Scholar] [CrossRef] [PubMed]
- Cegieła, U.; Folwarczna, J.; Pytlik, M.; Zgórka, G. Effects of Extracts from Trifolium medium L. and Trifolium pratense L. on Development of Estrogen Deficiency-Induced Osteoporosis in Rats. Evid.-Based Complement. Altern. Med. 2012, 2012, 921684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, A.; Tripathi, S.; Pandey, C.A. Concept of Standardization, Extraction and Pre Phytochemical Screening Strategies for Herbal Drug. J. Pharmacogn. Phytochem. JPP 2014, 115, 115–119. [Google Scholar]
- Elena, D.L. Pharmacognostic Methods for Analysis of Herbal Drugs, According to European Pharmacopoeia. In Promising Pharmaceuticals; Purusotam, B., Ed.; Intechopen: Bucharest, Romania, 2012; pp. 38–62. [Google Scholar]
- Dulce-María, D.A.; Adrián, C.R.; Cuauhtémoc, R.M.; Ada-Keila, M.N.; Jorge, M.C.; Erika, A.S.; Edith-Oliva, C.R. Isoflavones from Black Chickpea (Cicer arietinum L.) Sprouts with Antioxidant and Antiproliferative Activity. Saudi J. Biol. Sci. 2021, 28, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Liang, X. Application of Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry in Identification of Three Isoflavone Glycosides and Their Corresponding Metabolites. Rapid Commun. Mass Spectrom. 2018, 32, 262–268. [Google Scholar] [CrossRef]
- Akitha Devi, M.K.; Sravan Kumar, S.; Giridhar, P. LC–ESI–MS Based Characterisation of Isoflavones in Soybean (Glycine max (L.) Merr.) from India. J. Food Sci. Technol. 2018, 55, 5045–5054. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Eisner, P. How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants 2021, 10, 811. [Google Scholar] [CrossRef]
- Wolfe, K.L.; Liu, R.H. Structure-Activity Relationships of Flavonoids in the Cellular Antioxidant Activity Assay. J. Agric. Food Chem. 2008, 56, 8404–8411. [Google Scholar] [CrossRef]
- Djeradi, H.; Rahmouni, A.; Cheriti, A. Antioxidant Activity of Flavonoids: A QSAR Modeling Using Fukui Indices Descriptors. J. Mol. Model. 2014, 20, 2476. [Google Scholar] [CrossRef]
- Dowling, S.; Regan, F.; Hughes, H. The Characterisation of Structural and Antioxidant Properties of Isoflavone Metal Chelates. J. Inorg. Biochem. 2010, 104, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Khlebnikov, A.I.; Schepetkin, I.A.; Domina, N.G.; Kirpotina, L.N.; Quinn, M.T. Improved Quantitative Structure-Activity Relationship Models to Predict Antioxidant Activity of Flavonoids in Chemical, Enzymatic, and Cellular Systems. Bioorg. Med. Chem. 2007, 15, 1749–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kicel, A.; Wolbiś, M. Phenolic Content and Dpph Radical Scavenging Activity of the Flowers and Leaves of Trifolium repens. Nat. Prod. Commun. 2013, 8, 99–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalkaya, G.; Sieniawska, E.; Maciejewska-Turska, M.; Kai, G.; Capanoglu, E. Recent Advances in Metabolomic Analyses of Berry Fruits and Their in Vivo Metabolites. J. Berry Res. 2021, 11, 531–554. [Google Scholar] [CrossRef]
- Vlaisavljević, S.; Kaurinović, B.; Popović, M.; Vasiljević, S. Profile of Phenolic Compounds in Trifolium pratense L. Extracts at Different Growth Stages and Their Biological Activities. Int. J. Food Prop. 2017, 20, 3090–3101. [Google Scholar] [CrossRef] [Green Version]
- Fleury, Y.; Magnolato, D. Process for Obtaining Genistin Malonate and Dadzin Malonate. U.S. Patent Number 5141746, 25 August 1992. [Google Scholar]
- Reiter, E.; Gerster, P.; Jungbauer, A. Red Clover and Soy Isoflavonesan in Vitro Safety Assessment. Gynecol. Endocrinol. 2011, 27, 1037–1042. [Google Scholar] [CrossRef]
- Yonemoto-Yano, H.; Maebuchi, M.; Fukui, K.; Tsuzaki, S.; Takamatsu, K.; Uehara, M. Malonyl Isoflavone Glucosides Are Chiefly Hydrolyzed and Absorbed in the Colon. J. Agric. Food Chem. 2014, 62, 2264–2270. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoǧlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FC | CUPRAC | ABTS•+ | DPPH• |
---|---|---|---|
(mg GAE/g dry wt) | (mg GAE/g dry wt) | IC50 (μg/mL) | IC50 (μg/mL) |
107.50 ± 0.26 | 48.00 ± 1.87 | 30.30 ± 0.18 2.75 a ± 0.07 0.69 b ± 0.004 | 30.18 ± 0.37 3.00 a ± 0.90 0.89 b ± 1.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zgórka, G.; Maciejewska-Turska, M.; Makuch-Kocka, A.; Plech, T. In Vitro Evaluation of the Antioxidant Activity and Chemopreventive Potential in Human Breast Cancer Cell Lines of the Standardized Extract Obtained from the Aerial Parts of Zigzag Clover (Trifolium medium L.). Pharmaceuticals 2022, 15, 699. https://doi.org/10.3390/ph15060699
Zgórka G, Maciejewska-Turska M, Makuch-Kocka A, Plech T. In Vitro Evaluation of the Antioxidant Activity and Chemopreventive Potential in Human Breast Cancer Cell Lines of the Standardized Extract Obtained from the Aerial Parts of Zigzag Clover (Trifolium medium L.). Pharmaceuticals. 2022; 15(6):699. https://doi.org/10.3390/ph15060699
Chicago/Turabian StyleZgórka, Grażyna, Magdalena Maciejewska-Turska, Anna Makuch-Kocka, and Tomasz Plech. 2022. "In Vitro Evaluation of the Antioxidant Activity and Chemopreventive Potential in Human Breast Cancer Cell Lines of the Standardized Extract Obtained from the Aerial Parts of Zigzag Clover (Trifolium medium L.)" Pharmaceuticals 15, no. 6: 699. https://doi.org/10.3390/ph15060699
APA StyleZgórka, G., Maciejewska-Turska, M., Makuch-Kocka, A., & Plech, T. (2022). In Vitro Evaluation of the Antioxidant Activity and Chemopreventive Potential in Human Breast Cancer Cell Lines of the Standardized Extract Obtained from the Aerial Parts of Zigzag Clover (Trifolium medium L.). Pharmaceuticals, 15(6), 699. https://doi.org/10.3390/ph15060699