European Safety Analysis of mRNA and Viral Vector COVID-19 Vaccines on Glucose Metabolism Events
Abstract
:1. Introduction
2. Results
2.1. Impaired Glucose Metabolism Events
2.2. ROR in the Main Analysis (All ICSRs)
2.3. ROR in Sensitivity Analyses (ICSRs with or without Concomitant Antidiabetic Agents)
2.4. Reporting Rate
3. Discussion
Strengths and Limitations
4. Materials and Methods
4.1. Data Source
4.2. ICSRs Selection with Line Listing
4.3. Descriptive Analyses
4.4. Disproportionality Analyses
4.5. Reporting Rate
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scavone, C.; Mascolo, A.; Rafaniello, C.; Sportiello, L.; Trama, U.; Zoccoli, A.; Bernardi, F.F.; Racagni, G.; Berrino, L.; Castaldo, G.; et al. Therapeutic strategies to fight COVID-19: Which is the status artis? J. Cereb. Blood Flow Metab. 2021, 179, 2128–2148. [Google Scholar] [CrossRef] [PubMed]
- Cordon-Cardo, C.; Pujadas, E.; Wajnberg, A.; Sebra, R.; Patel, G.; Firpo-Betancourt, A.; Fowkes, M.; Sordillo, E.; Paniz-Mondolfi, A.; Gregory, J.; et al. COVID-19: Staging of a New Disease. Cancer Cell 2020, 38, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, A.; Scavone, C.; Rafaniello, C.; De Angelis, A.; Urbanek, K.; di Mauro, G.; Cappetta, D.; Berrino, L.; Rossi, F.; Capuano, A. The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Front. Pharmacol. 2021, 12, 667254. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, X.; Han, X.; Jiang, W.; Qiu, L.; Chen, S.; Yu, X. The association of diabetes and the prognosis of COVID-19 patients: A retrospective study. Diabetes Res. Clin. Pract. 2020, 169, 108386. [Google Scholar] [CrossRef] [PubMed]
- Abdi, A.; Jalilian, M.; Sarbarzeh, P.A.; Vlaisavljevic, Z. Diabetes and COVID-19: A systematic review on the current evidences. Diabetes Res. Clin. Pract. 2020, 166, 108347. [Google Scholar] [CrossRef]
- Powers, A.C.; Aronoff, D.M.; Eckel, R.H. COVID-19 vaccine prioritisation for type 1 and type 2 diabetes. Lancet Diabetes Endocrinol. 2021, 9, 140–141. [Google Scholar] [CrossRef]
- European Medicines Agency. COVID-19 Vaccines: Authorised. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/covid-19-vaccines-authorised#authorised-covid-19-vaccines-section (accessed on 23 March 2021).
- Pal, R.; Bhadada, S.K.; Misra, A. COVID-19 vaccination in patients with diabetes mellitus: Current concepts, uncertainties and challenges. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 505–508. [Google Scholar] [CrossRef]
- Abu-Rumaileh, M.A.; Gharaibeh, A.M.; Gharaibeh, N.E. COVID-19 Vaccine and Hyperosmolar Hyperglycemic State. Cureus 2021, 13, e14125. [Google Scholar] [CrossRef]
- Heald, A.H.; Stedman, M.; Horne, L.; Rea, R.; Whyte, M.; Gibson, J.M.; Anderson, S.G.; Ollier, W. The change in glycaemic control immediately after COVID-19 vaccination in people with type 1 diabetes. Diabet. Med. 2021, 39, e14774. [Google Scholar] [CrossRef]
- Edwards, A.E.; Vathenen, R.; Henson, S.M.; Finer, S.; Gunganah, K. Acute hyperglycaemic crisis after vaccination against COVID-19: A case series. Diabet. Med. 2021, 38, e14631. [Google Scholar] [CrossRef]
- Lee, H.J.; Sajan, A.; Tomer, Y. Hyperglycemic Emergencies Associated With COVID-19 Vaccination: A Case Series and Discussion. J. Endocr. Soc. 2021, 5, bvab141. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.M.; Varghese, E.; Triggle, C.R.; Büsselberg, D. COVID-19 Vaccines and Hyperglycemia—Is There a Need for Postvaccination Surveillance? Vaccines 2022, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.; Shuai, Z.; Ye, D.; Pan, H. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2021, 165, 386–401. [Google Scholar] [CrossRef]
- Monami, M.; Gori, D.; Guaraldi, F.; Montalti, M.; Nreu, B.; Burioni, R.; Mannucci, E. COVID-19 Vaccine Hesitancy and Early Adverse Events Reported in a Cohort of 7,881 Italian Physicians. Ann. Ig. 2021. [Google Scholar] [CrossRef]
- Aga, Q.A.A.K.; Alkhaffaf, W.H.; Hatem, T.H.; Nassir, K.F.; Batineh, Y.; Dahham, A.T.; Shaban, D.; Aga, L.A.A.K.; Agha, M.Y.R.; Traqchi, M. Safety of COVID-19 vaccines. J. Med. Virol. 2021, 93, 6588–6594. [Google Scholar] [CrossRef]
- Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N. Engl. J. Med. 2020, 383, 2427–2438. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xu, J.; Xia, H.; Wang, Y.; Zhang, C.; Chen, W.; Zhang, H.; Liu, Q.; Zhu, R.; et al. Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discov. 2021, 7, 99. [Google Scholar] [CrossRef]
- Heald, A.H.; Stedman, M.; Horne, L.; Rea, R.; Whyte, M.; Gibson, J.M.; Livingston, M.; Anderson, S.G.; Ollier, W. Analysis of Continuous Blood Glucose Data in People with Type 1 Diabetes (T1DM) After COVID-19 Vaccination Indicates a Possible Link Between the Immune and the Metabolic Response. J. Diabetes Sci. Technol. 2021, 15, 1204–1205. [Google Scholar] [CrossRef]
- Heald, A.H.; Rea, R.; Horne, L.; Metters, A.; Steele, T.; Leivesley, K.; Whyte, M.B.; Stedman, M.; Ollier, W. Analysis of continuous glucose tracking data in people with type 1 diabetes after COVID-19 vaccination reveals unexpected link between immune and metabolic response, augmented by adjunctive oral medication. Int. J. Clin. Pract. 2021, 75, e14714. [Google Scholar] [CrossRef]
- D’Onofrio, L.; Coraggio, L.; Zurru, A.; Carlone, A.; Mignogna, C.; Moretti, C.; Maddaloni, E.; Buzzetti, R. Short-term safety profile of Sars-Cov2 vaccination on glucose control: Continuous glucose monitoring data in people with autoimmune diabetes. Diabetes Res. Clin. Pract. 2021, 179, 109022. [Google Scholar] [CrossRef]
- Aberer, F.; Moser, O.; Aziz, F.; Sourij, C.; Ziko, H.; Lenz, J.; Abbas, F.; Obermayer, A.M.; Kojzar, H.; Pferschy, P.N.; et al. Impact of COVID-19 Vaccination on Glycemia in Individuals with Type 1 and Type 2 Diabetes: Substudy of the COVAC-DM Study. Diabetes Care 2022, 45, e24–e26. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Scappaticcio, L.; Petrizzo, M.; Castaldo, F.; Sarnataro, A.; Forestiere, D.; Caiazzo, F.; Bellastella, G.; Maiorino, M.I.; Capuano, A.; et al. Glucose control in home-isolated adults with type 1 diabetes affected by COVID-19 using continuous glucose monitoring. J. Endocrinol. Investig. 2022, 45, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Uchihara, M.; Bouchi, R.; Kodani, N.; Saito, S.; Miyazato, Y.; Umamoto, K.; Sugimoto, H.; Kobayashi, M.; Hikida, S.; Akiyama, Y.; et al. Impact of newly diagnosed diabetes on COVID-19 severity and hyperglycemia. J. Diabetes Investig. 2022. [Google Scholar] [CrossRef]
- Glaess, S.S.; Benitez, R.M.; Cross, B.M.; Urteaga, E.M. Acute Hyperglycemia After Influenza Vaccination in a Patient with Type 2 Diabetes. Diabetes Spectr. 2018, 31, 206–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Bae, J.H.; Kwon, H.-S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol. 2021, 17, 11–30. [Google Scholar] [CrossRef]
- Shi, J.; Fan, J.; Su, Q.; Yang, Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front. Endocrinol. 2019, 10, 703. [Google Scholar] [CrossRef]
- Bunders, M.J.; Altfeld, M. Implications of Sex Differences in Immunity for SARS-CoV-2 Pathogenesis and Design of Therapeutic Interventions. Immunity 2020, 53, 487–495. [Google Scholar] [CrossRef]
- Di Mauro, G.; Zinzi, A.; Scavone, C.; Mascolo, A.; Gaio, M.; Sportiello, L.; Ferrajolo, C.; Rafaniello, C.; Rossi, F.; Capuano, A. PCSK9 Inhibitors and Neurocognitive Adverse Drug Reactions: Analysis of Individual Case Safety Reports from the Eudravigilance Database. Drug Saf. 2021, 44, 337–349. [Google Scholar] [CrossRef]
- Sessa, M.; Rossi, C.; Mascolo, A.; Grassi, E.; Fiorentino, S.; Scavone, C.; Reginelli, A.; Rotondo, A.; Sportiello, L. Suspected adverse reactions to contrast media in Campania Region (Italy): Results from 14 years of post-marketing surveillance. Expert Opin. Drug Saf. 2015, 14, 1341–1351. [Google Scholar] [CrossRef]
- Caruso, P.; Longo, M.; Esposito, K.; Maiorino, M.I. Type 1 diabetes triggered by covid-19 pandemic: A potential outbreak? Diabetes Res. Clin. Pract. 2020, 164, 108219. [Google Scholar] [CrossRef]
- Barrett, C.E.; Koyama, A.K.; Alvarez, P.; Chow, W.; Lundeen, E.A.; Perrine, C.G.; Pavkov, M.E.; Rolka, D.B.; Wiltz, J.L.; Bull-Otterson, L.; et al. Risk for Newly Diagnosed Diabetes >30 Days After SARS-CoV-2 Infection Among Persons Aged. MMWR. Morb. Mortal. Wkly. Rep. 2022, 71, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Vera-Lastra, O.; Navarro, A.O.; Domiguez, M.P.C.; Medina, G.; Valadez, T.I.S.; Jara, L.J. Two Cases of Graves’ Disease Following SARS-CoV-2 Vaccination: An Autoimmune/Inflammatory Syndrome Induced by Adjuvants. Thyroid 2021, 31, 1436–1439. [Google Scholar] [CrossRef] [PubMed]
- Zettinig, G.; Krebs, M. Two further cases of Graves’ disease following SARS-Cov-2 vaccination. J. Endocrinol. Investig. 2022, 45, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Patrizio, A.; Ferrari, S.M.; Antonelli, A.; Fallahi, P. A case of Graves’ disease and type 1 diabetes mellitus following SARS-CoV-2 vaccination. J. Autoimmun. 2021, 125, 102738. [Google Scholar] [CrossRef]
- Ruggiero, R.; Fraenza, F.; Scavone, C.; Di Mauro, G.; Piscitelli, R.; Mascolo, A.; Ferrajolo, C.; Rafaniello, C.; Sportiello, L.; Rossi, F.; et al. Immune Checkpoint Inhibitors and Immune-Related Adverse Drug Reactions: Data from Italian Pharmacovigilance Database. Front. Pharmacol. 2020, 11, 830. [Google Scholar] [CrossRef]
- Mascolo, A.; Scavone, C.; Ferrajolo, C.; Rafaniello, C.; Danesi, R.; Del Re, M.; Russo, A.; Coscioni, E.; Rossi, F.; Alfano, R.; et al. Immune Checkpoint Inhibitors and Cardiotoxicity: An Analysis of Spontaneous Reports in Eudravigilance. Drug Saf. 2021, 44, 957–971. [Google Scholar] [CrossRef]
- Sessa, M.; Rafaniello, C.; Scavone, C.; Mascolo, A.; Di Mauro, G.; Fucile, A.; Rossi, F.; Sportiello, L.; Capuano, A. Preventable statin adverse reactions and therapy discontinuation. What can we learn from the spontaneous reporting system? Expert Opin. Drug Saf. 2018, 17, 457–465. [Google Scholar] [CrossRef]
- Mozzicato, P. Standardised MedDRA Queries: Their role in signal detection. Drug Saf. 2007, 30, 617–619. [Google Scholar] [CrossRef]
- European Medicine Agency. Safety of COVID-19 Vaccines. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/safety-covid-19-vaccines (accessed on 19 January 2022).
Variable | Level | COVID-19 mRNA Vaccines (n = 2613) | COVID-19 Viral Vector-Based Vaccines (n = 1304) |
---|---|---|---|
Age | <18 years (%) | 55 (2.10) | 8 (0.61) |
18–64 years (%) | 1531 (58.60) | 876 (67.18) | |
>65 years (%) | 867 (33.18) | 311 (23.85) | |
Missing (%) | 160 (16.12) | 109 (8.36) | |
Gender | F (%) | 1525 (58.36) | 767 (58.82) |
M (%) | 1055 (40.38) | 509 (39.03) | |
Missing (%) | 33 (1.26) | 28 (2.15) | |
Primary Source | Healthcare Professional (%) | 1261 (48.26) | 445 (34.13) |
Non-Healthcare Professional (%) | 1352 (51.74) | 859 (65.87) | |
Primary Source Country for Regulatory Purposes | European Economic Area (%) | 1335 (51.09) | 500 (38.34) |
Non-European Economic Area (%) | 1278 (48.91) | 804 (61.66) | |
Patients with concomitant anti-diabetic agents | Yes (%) | 635 (24.30) | 459 (35.20) |
No (%) | 1978 (75.70) | 845 (64.80) |
Variable | Level | Pfizer–BioNTech Vaccine (n = 2027) | Moderna Vaccine (n = 586) | Oxford–AstraZeneca Vaccine (n = 1163) | Janssen Vaccine (n = 141) |
---|---|---|---|---|---|
Age | <18 years (%) | 53 (2.61) | 2 (0.34) | 8 (0.69) | 0 (0.00) |
18–64 years (%) | 1199 (59.15) | 332 (56.66) | 774 (66.55) | 102 (71.34) | |
>65 years (%) | 636 (31.38) | 231 (39.42) | 278 (23.90) | 33 (23.40) | |
Missing (%) | 139 (6.86) | 21 (3.58) | 103 (8.86) | 6 (4.26) | |
Gender | F (%) | 1194 (58.91) | 331 (56.48) | 699 (60.10) | 68 (48.23) |
M (%) | 804 (39.66) | 251 (42,83) | 437 (37.58) | 72 (51.06) | |
Missing (%) | 29 (1.43) | 4 (0.68) | 27 (2.32) | 1 (0.71) | |
Primary Source | Healthcare Professional (%) | 850 (41.93) | 411 (70.14) | 364 (31.30) | 81 (57.45) |
Non-Healthcare Professional (%) | 1177 (58.07) | 175 (29.86) | 799 (68.70) | 60 (42.55) | |
Primary Source Country for Regulatory Purposes | European Economic Area (%) | 1170 (57.72) | 165 (28.16) | 464 (39.90) | 36 (25.53) |
Non-European Economic Area (%) | 857 (42.28) | 421 (71.84) | 699 (60.10) | 105 (74.47) | |
Patients with concomitant anti-diabetic agents | Yes (%) | 507 (25.01) | 128 (21.84) | 424 (36.46) | 35 (24.82) |
No (%) | 1520 (74.99) | 458 (78.16) | 739 (63.54) | 106 (75.18) |
Variable | Level | COVID-19 mRNA Vaccines (n = 2832) | COVID-19 Viral Vector-Based Vaccines (n = 1443) |
---|---|---|---|
Seriousness | Caused/Prolonged Hospitalisation (%) | 461 (16.28) | 181 (12.54) |
Other Medically Important Condition (%) | 878 (31.00) | 551 (38.18) | |
Life Threatening (%) | 190 (6.71) | 110 (7.62) | |
Results in Death (%) | 90 (3.18) | 39 (2.70) | |
Disabling (%) | 118 (4.17) | 74 (5.13) | |
Congenital Anomaly (%) | 1 (0.04) | 1 (0.07) | |
Not Serious (%) | 1094 (38.63) | 487 (33.75) | |
Outcome | Recovered/Resolved (%) | 765 (27.01) | 395 (27.37) |
Recovering/Resolving (%) | 390 (13.77) | 301 (20.86) | |
Not Recovered/Not Resolved (%) | 694 (24.51) | 410 (28.41) | |
Fatal (%) | 89 (3.14) | 27 (1.87) | |
Recovered/Resolved with Sequelae (%) | 72 (2.54) | 20 (1.39) | |
Unknown (%) | 822 (29.03) | 290 (20.10) |
Variable | Level | Pfizer–BioNTech Vaccine (n = 2194) | Moderna Vaccine (n = 638) | Oxford–AstraZeneca Vaccine (n = 1286) | Janssen Vaccine (n = 157) |
---|---|---|---|---|---|
Seriousness | Caused/Prolonged Hospitalisation (%) | 267 (12.17) | 194 (30.41) | 129 (10.03) | 52 (33.12) |
Other Medically Important Condition (%) | 761 (34.69) | 117 (18.34) | 506 (39.35) | 45 (28.66) | |
Life Threatening (%) | 118 (5.38) | 72 (11.29) | 89 (6.92) | 21 (13.38) | |
Results in Death (%) | 44 (2.01) | 46 (7.21) | 23 (1.79) | 16 (10.19) | |
Disabling (%) | 91 (4.15) | 27 (4.23) | 69 (5.37) | 5 (3.18) | |
Congenital Anomaly (%) | 1 (0.05) | 0 (0.00) | 1 (0.08) | 0 (0.00) | |
Not Serious (%) | 912 (41.57) | 182 (28.53) | 469 (36.47) | 18 (11.46) | |
Outcome | Recovered/Resolved (%) | 592 (26.98) | 173 (27.12) | 376 (2.24) | 19 (12.10) |
Recovering/Resolving (%) | 344 (15.68) | 46 (7.21) | 286 (22.24) | 15 (9.55) | |
Not Recovered/Not Resolved (%) | 523 (23.84) | 171 (26.80) | 347 (26.98) | 63 (40.13) | |
Fatal (%) | 43 (1.96) | 46 (7.21) | 16 (1.24) | 11 (7.01) | |
Recovered/Resolved with Sequelae (%) | 69 (3.14) | 3 (0.47) | 19 (1.48) | 1 (0.64) | |
Unknown (%) | 623 (28.40) | 199 (31.19) | 242 (18.82) | 48 (30.57) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Mauro, G.; Mascolo, A.; Longo, M.; Maiorino, M.I.; Scappaticcio, L.; Bellastella, G.; Esposito, K.; Capuano, A. European Safety Analysis of mRNA and Viral Vector COVID-19 Vaccines on Glucose Metabolism Events. Pharmaceuticals 2022, 15, 677. https://doi.org/10.3390/ph15060677
di Mauro G, Mascolo A, Longo M, Maiorino MI, Scappaticcio L, Bellastella G, Esposito K, Capuano A. European Safety Analysis of mRNA and Viral Vector COVID-19 Vaccines on Glucose Metabolism Events. Pharmaceuticals. 2022; 15(6):677. https://doi.org/10.3390/ph15060677
Chicago/Turabian Styledi Mauro, Gabriella, Annamaria Mascolo, Miriam Longo, Maria Ida Maiorino, Lorenzo Scappaticcio, Giuseppe Bellastella, Katherine Esposito, and Annalisa Capuano. 2022. "European Safety Analysis of mRNA and Viral Vector COVID-19 Vaccines on Glucose Metabolism Events" Pharmaceuticals 15, no. 6: 677. https://doi.org/10.3390/ph15060677
APA Styledi Mauro, G., Mascolo, A., Longo, M., Maiorino, M. I., Scappaticcio, L., Bellastella, G., Esposito, K., & Capuano, A. (2022). European Safety Analysis of mRNA and Viral Vector COVID-19 Vaccines on Glucose Metabolism Events. Pharmaceuticals, 15(6), 677. https://doi.org/10.3390/ph15060677