Synthesis, Physicochemical, Labeling and In Vivo Characterization of 44Sc-Labeled DO3AM-NI as a Hypoxia-Sensitive PET Probe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.1.1. Synthesis
2.1.2. Physicochemical Studies
2.1.3. Radiochemistry
2.2. In Vivo and Ex Vivo Studies
3. Materials and Methods
3.1. General
3.2. Chemistry
3.2.1. Synthesis of 2-(2-Nitroimidazolyl) Ethyl-DO3AM (DO3AM-NI)
3.2.2. pH-Potentiometric Studies
3.2.3. 1H- and 45Sc-NMR Measurement
3.3. Radiochemistry
3.3.1. Radiolabeling DO3AM-NI with 68Ga3+
3.3.2. Radiolabeling DO3AM-NI with 44Sc3+
3.3.3. Determination of logP Value of [68Ga]Ga(DO3AM-NI) and [44Sc]Sc(DO3AM-NI)
3.3.4. Determination of [68Ga]Ga(DO3AM-NI) and [44Sc]Sc(DO3AM-NI) Stability in the Solution of Mouse Plasma, Na2H2EDTA and Oxalic Acid
3.4. Biology
3.4.1. Cell Culture
3.4.2. Experimental Tumor Model
3.4.3. In Vivo PET/MRI Imaging
3.4.4. Quantitative PET Data Analysis
3.4.5. Ex Vivo Biodistribution Studies
3.4.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Semenza, G.L. HIF-1 and tumour progression: Pathophysiology and therapeutics. Trends Mol. Med. 2002, 8, S62–S67. [Google Scholar] [CrossRef]
- Vaupel, P.; Mayer, A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007, 26, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature 2005, 438, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Gray, L.H.; Conger, A.D.; Ebert, M.; Hornsey, S.; Scott, O.C. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 1953, 26, 638–648. [Google Scholar] [CrossRef]
- Sun, X.; Niu, G.; Chan, N.; Shen, B.; Chen, X. Tumour Hypoxia Imaging. Mol. Imaging Biol. 2011, 13, 399–410. [Google Scholar] [CrossRef]
- Yang, D.J.; Wallance, S.; Cherif, A.; Li, C.; Gretzer, M.B.; Kim, E.E.; Podoloff, D.A. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumour hypoxia. Radiology 1995, 194, 795–800. [Google Scholar] [CrossRef]
- Barthel, H.; Wilson, H.; Collingridge, D.R.; Brown, G.; Osman, S.; Luthra, S.K.; Brady, F.; Workman, P.; Price, P.M.; Aboagye, E.O. In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography. Br. J. Cancer 2004, 90, 2232–2242. [Google Scholar] [CrossRef] [Green Version]
- Ziemer, L.S.; Evans, S.M.; Kachur, A.V.; Shuman, A.L.; Cardi, C.A.; Jenkins, W.T.; Karp, J.S.; Alavi, A.; Dolbier, W.R., Jr.; Koch, C.J. Noninvasive imaging of tumour hypoxia in rats using the 2-nitroimidazole 18F-EF5. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 259–266. [Google Scholar] [CrossRef]
- Koh, W.J.; Rasey, J.S.; Evans, M.L.; Grierson, J.R.; Lewellen, T.K.; Graham, M.M.; Krohn, K.A.; Griffin, T.W. Imaging of hypoxia in human tumours with [F-18] fluoromisonidazole. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 199–212. [Google Scholar] [CrossRef]
- Reischl, G.; Ehrlichmann, W.; Bieg, C.; Wiebe, L.I.; Machulla, H.J. Preparation of the hypoxia imaging PET tracer [18F]FAZA: Reaction parameters and automation. Appl. Radiat. Isot. 2005, 62, 897–901. [Google Scholar] [CrossRef]
- Hoigebazar, L.; Jeong, J.M.; Hong, M.K.; Kim, Y.J.; Lee, J.Y.; Shetty, D.; Lee, Y.-S.; Lee, D.S.; Chung, J.-K.; Lee, M.C. Synthesis of 68Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg. Med. Chem. 2011, 19, 2176–2181. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczak, R.; Huclier-Markai, S.; Alliot, C.; Haddad, F.; Szikra, D.; Forgacs, V.; Garnuszek, P. Production of Scandium Radionuclides for Theranostic Applications: Towards Standardization of Quality Requirements. EJNMMI Radiopharm. Chem. 2021, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhernosekov, K.P.; Filosofov, D.V.; Baum, R.P.; Aschoff, P.; Bihl, H.; Razbash, A.A.; Jahn, M.; Jennewein, M.; Rösch, F. Processing of generator-produced 68Ga for medical application. J. Nucl. Med. 2007, 48, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Van der Meulen, N.P.; Bunka, M.; Domnanich, K.A.; Müller, C.; Haller, S.; Vermeulen, C.; Türler, A.; Schibli, R. Cyclotron production of 44Sc: From bench to bedside. Nucl. Med. Biol. 2015, 42, 745–751. [Google Scholar] [CrossRef]
- Nagy, G.; Dénes, N.; Kis, A.; Szabó, J.P.; Berényi, E.; Garai, I.; Bai, P.; Hajdu, I.; Szikra, D.; Trencsényi, G. Preclinical evaluation of melanocortin-1 receptor (MC1-R) specific 68Ga and 44Sc-labeled DOTA-NAPamide in melanoma imaging. Eur. J. Phar. Sci. 2017, 106, 336–344. [Google Scholar] [CrossRef]
- Chakravarty, R.; Goel, S.; Valdovinos, H.F.; Hernandez, R.; Hong, H.; Nickles, R.J.; Cai, W. Matching the Decay Half-Life with the Biological Half-Life: ImmunoPET Imaging with 44Sc-Labeled Cetuximab Fab Fragment. Bioconjug. Chem. 2014, 25, 2197–2204. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Bunka, M.; Haller, S.; Köster, U.; Groehn, V.; Bernhardt, P.; van der Meulen, N.; Türler, A.; Schibli, R. Promising Prospects for 44Sc-/47Sc-Based Theragnostics: Application of 47Sc for Radionuclide Tumor Therapy in Mice. J. Nucl. Med. 2014, 55, 1658–1664. [Google Scholar] [CrossRef] [Green Version]
- Zha, Z.; Zhu, L.; Liu, Y.; Du, F.; Gan, H.; Qiao, J.; Kung, H.F. Synthesis and evaluation of two novel 2-nitroimidazole derivatives as potential PET radioligands for tumour imaging. Nucl. Med. Biol. 2011, 38, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Pniok, M.; Kubíček, V.; Havlíčková, J.; Kotek, J.; Sabatie-Gogová, A.; Plutnar, J.; Huclier-Markai, S.; Hermann, P. Thermodynamic and Kinetic Study of Scandium(III) Complexes of DTPA and DOTA: A Step Toward Scandium Radiopharmaceuticals. Chem. Eur. J. 2014, 20, 7944–7955. [Google Scholar] [CrossRef]
- Nagy, G.; Szikra, D.; Trencsényi, G.; Fekete, A.; Garai, I.; Giani, A.M.; Negri, R.; Masciocchi, N.; Maiocchi, A.; Uggeri, F.; et al. AAZTA: An Ideal Chelating Agent for the Development of 44Sc PET Imaging Agents. Angew. Chem. 2017, 129, 2150–2154. [Google Scholar] [CrossRef]
- Rojas-Quijano, F.A.; Tircsó, G.; Benyó, E.T.; Baranyai, Z.; Hoang, H.T.; Kálmán, F.K.; Gulaka, P.K.; Kodibagkar, V.D.; Aime, S.; Kovács, Z.; et al. Synthesis and Characterization of a Hypoxia-Sensitive MRI Probe. Chem. Eur. J. 2012, 18, 9669–9676. [Google Scholar] [CrossRef] [Green Version]
- Tei, L.; Baranyai, Z.; Gaino, L.; Forgács, A.; Vágner, A.; Botta, M. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(III) DOTA complexes. Dalton Trans. 2015, 44, 5467–5478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baes, C.F.; Mesmer, R.S. The Hydrolysis of Cations; Wiley: New York, NY, USA, 1976; Volume 81, pp. 245–246. [Google Scholar]
- Eppard, E.; Wuttke, M.; Nicodemus, P.L.; Roesch, F. Ethanol-based post-processing of generator derived 68Ga towards kit-type preparation of 68Ga radiopharmaceuticals. J. Nucl. Med. 2014, 15, 1023–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Happel, S.; Dirks, C. Application of extraction chromatography to the separation of Sc and Zr isotopes from target materials. Int. J. Pharmacol. Pharm. Sci. 2014, 1, 3. [Google Scholar]
- Seelam, S.R.; Lee, J.Y.; Lee, Y.S.; Hong, M.K.; Kim, Y.J.; Banka, V.K.; Lee, D.S.; Chung, J.K.; Jeong, J.M. Development of 68Ga-labeled multivalent nitroimidazole derivatives for hypoxia imaging. Bioorg. Med. Chem. 2015, 23, 7743–7750. [Google Scholar] [CrossRef] [Green Version]
- Hoigebazar, L.; Jeong, J.M.; Choi, S.Y.; Choi, J.Y.; Shetty, D.; Lee, Y.S.; Lee, D.S.; Chung, J.K.; Lee, M.C.; Chung, Y.K. Synthesis and Characterization of Nitroimidazole Derivatives for 68Ga-Labeling and Testing in Tumour Xenografted Mice. J. Med. Chem. 2010, 53, 6378–6385. [Google Scholar] [CrossRef]
- Liu, R.S.; Chou, T.K.; Chang, C.H.; Wu, C.Y.; Chang, C.W.; Chang, T.J.; Wang, S.J.; Lin, W.J.; Wang, H.E. Biodistribution, pharmacokinetics and PET imaging of [18F]FMISO, [18F]FDG and [18F]FAc in a sarcoma- and inflammation-bearing mouse model. Nucl. Med. Biol. 2009, 36, 305–312. [Google Scholar] [CrossRef]
- Cherif, A.; Wallace, S.; Yang, D.J.; Newman, R.A.; Harrod, V.L.; Nornoo, A.; Inoue, T.; Kim, C.G.; Kuang, L.R.; Kim, E.E.; et al. Development of new markers for hypoxic cells: [131I]Iodomisonidazole and [131I]Iodoerythronitroimidazole. J. Drug Target. 1996, 4, 31–39. [Google Scholar] [CrossRef]
- Sharma, R. Nitroimidazole radiopharmaceuticals in bioimaging: Part I: Synthesis and imaging applications. Curr. Radiopharm. 2011, 4, 361–378. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, H.; Lin, X.; Chu, T.; Luo, R.; Wang, Y.; Yang, Z. Synthesis and radiolabeling of 64Cu-labeled 2-nitroimidazole derivative 64Cu-BMS2P2 for hypoxia imaging. Bioorg. Med. Chem. Lett. 2016, 26, 1397–1400. [Google Scholar] [CrossRef]
- Domnanich, K.A.; Müller, C.; Farkas, R.; Schmid, R.M.; Ponsard, B.; Schibli, R.; Türler, A.; van der Meulen, N.P. 44Sc for labeling of DOTA- and NODAGA-functionalized peptides: Preclinical in vitro and in vivo investigations. EJNMMI Radiopharm. Chem. 2016, 1, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irving, H.M.; Miles, M.G.; Pettit, L.D. A study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal. Chim. Acta 1967, 38, 475–488. [Google Scholar] [CrossRef]
- Zékány, L.; Nagypál, I. Computational Method for Determination of Formation Constants; Leget, D.J., Ed.; Plenum Press: New York, NY, USA, 1985; p. 291. [Google Scholar]
Compound | DO3AM-NI | DOTA | DTPA | AAZTA | DO3AMnBu | DO3AMNIM |
---|---|---|---|---|---|---|
Condition | 0.15 M NaCl, 37 °C | 0.1 M Me4NCl, 25 °C [e] | 0.1 M Me4NCl, 25 °C [e] | 0.1 M KCl, 25 °C [f] | 1.0 M KCl, 25 °C [g] | 1.0 M KCl, 25 °C [g] |
log K1H | 8.79(1) | 12.90 | 10.65 | 11.26 | 9.78 | 10.17 |
log K2H | 8.59(1) | 9.72 | 8.66 | 6.62 | 9.05 | 9.02 |
log K3H | 4.23(1) | 4.62 | 4.36 | 3.86 | 4.53 | 4.41 |
log K4H | 2.49(1) | 4.15 | 2.82 | 2.45 | 3.17 | 2.94 |
log K5H | 1.00(4) | 2.29 | 2.03 | 1.88 | 2.19 | 1.99 |
log K6H | n.d. | 1.34 | 1.31 | 1.46 | n.d. | n.d. |
log K7H | n.d. | n.d. | 1.30 | n.d. | n.d. | n.d. |
log β015 | 25.10 | 33.68 | 28.52 | 26.04 | 28.72 | 28.53 |
log KSc•L | 22.36(4) | 30.79 | 27.43 | 27.69 | n.a. | n.a. |
log KScL•H | n.d. | 1.00 | 1.36 | 0.86 | n.a. | n.a. |
log KScL•OH | 10.88(5) | n.d. | 12.44 | n.d. | n.a. | n.a. |
pSc | 20.74 | 23.92 | 23.88 | 24.72 | n.a. | n.a. |
[44Sc]Sc(DO3AM-NI) | [68Ga]Ga(DO3AM-NI) | |||
---|---|---|---|---|
Organ/Tissue | 90 min (n = 3) | 240 min (n = 5) | 90 min (n = 5) | 240 min (n = 5) |
Blood | 0.08 ± 0.01 | 0.03 ± 0.01 | 0.81 ± 0.22 * | 0.65 ± 0.11 * |
Urine | 57.78 ± 12.41 | 6.23 ± 1.25 | 65.94 ± 5.21 | 17.08 ± 7.97 * |
Liver | 0.14 ± 0.09 | 0.20 ± 0.04 | 0.43 ± 0.11 * | 0.37 ± 0.10 * |
Spleen | 0.07 ± 0.02 | 0.06 ± 0.01 | 0.29 ± 0.14 * | 0.32 ± 0.18 * |
Kidney | 1.17 ± 0.41 | 0.89 ± 0.23 | 1.32 ± 0.47 | 1.21 ± 0.17 |
Small intestine | 0.10 ± 0.05 | 0.03 ± 0.01 | 0.25 ± 0.10 * | 0.14 ± 0.04 * |
Large intestine | 0.05 ± 0.01 | 0.04 ± 0.004 | 0.20 ± 0.13 * | 0.15 ± 0.06 * |
Stomach | 0.09 ± 0.03 | 0.03 ± 0.005 | 0.21 ± 0.04 * | 0.22 ± 0.06 * |
Muscle | 0.01 ± 0.01 | 0.007 ± 0.002 | 0.10 ± 0.03 * | 0.06 ± 0.03 * |
Lung | 0.10 ± 0.04 | 0.04 ± 0.003 | 0.49 ± 0.08 * | 0.46 ± 0.09 * |
Heart | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.26 ± 0.06 * | 0.22 ± 0.04 * |
Fat | 0.01 ± 0.001 | 0.01 ± 0.01 | 0.13 ± 0.10 * | 0.12 ± 0.08 * |
[44Sc]Sc(DO3AM-NI) | [68Ga]Ga(DO3AM-NI) | |||
---|---|---|---|---|
Tumor | 90 min | 240 min | 90 min | 240 min |
KB tumor (n = 5) | 0.82 ± 0.11 | 0.70 ± 0.14 | 0.62 ± 0.10 | 0.46 ± 0.07 |
T/M | 79.30 ± 5.26 * | 99.35 ± 5.14 * | 6.28 ± 1.11 | 7.51 ± 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szücs, D.; Csupász, T.; Szabó, J.P.; Kis, A.; Gyuricza, B.; Arató, V.; Forgács, V.; Vágner, A.; Nagy, G.; Garai, I.; et al. Synthesis, Physicochemical, Labeling and In Vivo Characterization of 44Sc-Labeled DO3AM-NI as a Hypoxia-Sensitive PET Probe. Pharmaceuticals 2022, 15, 666. https://doi.org/10.3390/ph15060666
Szücs D, Csupász T, Szabó JP, Kis A, Gyuricza B, Arató V, Forgács V, Vágner A, Nagy G, Garai I, et al. Synthesis, Physicochemical, Labeling and In Vivo Characterization of 44Sc-Labeled DO3AM-NI as a Hypoxia-Sensitive PET Probe. Pharmaceuticals. 2022; 15(6):666. https://doi.org/10.3390/ph15060666
Chicago/Turabian StyleSzücs, Dániel, Tibor Csupász, Judit P. Szabó, Adrienn Kis, Barbara Gyuricza, Viktória Arató, Viktória Forgács, Adrienn Vágner, Gábor Nagy, Ildikó Garai, and et al. 2022. "Synthesis, Physicochemical, Labeling and In Vivo Characterization of 44Sc-Labeled DO3AM-NI as a Hypoxia-Sensitive PET Probe" Pharmaceuticals 15, no. 6: 666. https://doi.org/10.3390/ph15060666
APA StyleSzücs, D., Csupász, T., Szabó, J. P., Kis, A., Gyuricza, B., Arató, V., Forgács, V., Vágner, A., Nagy, G., Garai, I., Szikra, D., Tóth, I., Trencsényi, G., Tircsó, G., & Fekete, A. (2022). Synthesis, Physicochemical, Labeling and In Vivo Characterization of 44Sc-Labeled DO3AM-NI as a Hypoxia-Sensitive PET Probe. Pharmaceuticals, 15(6), 666. https://doi.org/10.3390/ph15060666