Substrate-Based Design of Cytosolic Nucleotidase IIIB Inhibitors and Structural Insights into Inhibition Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Substrate and Inhibitor Properties Screening
2.2. Design of the Second Library of Potential Inhibitors
2.3. Chemical Synthesis of Second-Generation Inhibitors
2.4. Substrate and Inhibitory Properties of Second-Generation Inhibitors
Compound | IC50 ± SEM (µM)—cN-IIIB |
---|---|
4 | 101.8 ± 7.8 |
5 | 10.0 ± 1.0 |
6 | 52.8 ±5.7 |
4a | 35 ± 15 |
4b | >500 |
5a | 2.3 ± 0.3 |
5b | 14.3 ± 1.8 |
5c | 13.9 ± 2.0 |
5d | 2.5 ± 0.2 |
5e | 27.6 ± 2.6 |
5f | 12.3 ± 2.6 |
5g | 7.3 ± 0.9 |
8a | >500 |
8b | 63 ± 17 |
8c | >500 |
8d | 89 ± 27 |
8e | 144 ± 23 |
2.5. Selectivity of Second-Generation Inhibitors Relative to Cap-Dependent Proteins (eIF4E) and Cytosolic 5’-Nucletidases IIIA
2.6. Structural Insight into Human cN-IIIB
2.7. Interactions Highlighting Selectivity of Inhibitor Binding
2.8. The Comparison of cN-IIIB Crystal Structures
2.9. Molecular Docking Provides an Explanation for the Inhibition Mode
2.10. Synthesis and Investigation of Inhibitory Properties of N7-Substituted Guanine Analogs
2.11. Activity of cN-IIIB Inhibitors in HEK 293T Cell Lysate
3. Conclusions
4. Material and Methods
4.1. General
4.2. Analytical and Semi-Preparative Chromatography
4.3. Ion-Exchange Chromatography
4.4. NMR Spectroscopy
4.5. Procedures for the Synthesis of Nucleotides
4.5.1. Compound 10
4.5.2. Compound 4a (7-Methylguanosine-triazol-p (1,5 Isomer))
4.5.3. Compound 16 (7-(3-Methylbenzyl)-5’-azido-5’-Deoxyguanosine)
4.5.4. Compound 8e (7-(3-Methylbenzyl)guanosine-Triazol-p)
4.5.5. Compound 15 (7-Benzyl-5’-azido-5’-Deoxyguanosine)
4.5.6. Compound 8d (7-Benzylguanosine-Triazol-p)
4.5.7. Compound 4b (7-methylguanosine-9-CH2-Triazol-CH2-p)
4.5.8. General Procedure A for N7-benzyl Substituted GMP Analogs
4.5.9. Compound 5 (S19) (7-Benzylguanosine 5’-Monophosphate)
4.5.10. Compound 5a (7-(3-Methylbenzyl)guanosine 5’-Monophosphate)
4.5.11. Compound 5b (7-(4-Methylbenzyl)guanosine 5’-Monophosphate)
4.5.12. Compound 5c (7-(3,5-Dimethylbenzyl)guanosine 5’-Monophosphate)
4.5.13. Compound 5d (7-(3,4-Difluorobenzyl)guanosine 5’-Monophosphate)
4.5.14. Compound 5e (7-(2,4-difluorobenzyl)guanosine 5’-monophosphate)
4.5.15. Compound 5f (7-(3,4,5-Trifluorobenzyl)guanosine 5’-Monophosphate)
4.5.16. Compound 5g (7-(4-Trifluoromethylbenzyl)guanosine 5’-Monophosphate)
4.5.17. Compound 8a (7-Benzylguanosine 5’-Fluoromonophosphate)
4.5.18. Compound 8b (7-Benzylguanosine 5’-Fluorodiphosphate)
4.5.19. Compound 8c (7-benzylguanosine 5’-H-phosphonate)
4.5.20. General Procedure B for N7 Benzyl-Substituted Guanine Analogs
4.5.21. Compound 5’ (7-Benzylguanine)
4.5.22. Compound 5a’ (7-(3-Methylbenzyl)guanine)
4.5.23. Compound 5d’ (N7-(3,4-Difluorobenzyl)guanine)
4.5.24. Compound 5d’’ (N7,9- bis-(3,4-Difluorobenzyl)guanine)
4.6. Protein Expression and Purification of cN-III Enzymes for Enzymatic Assays
4.7. Biological Characterization of Compounds
4.7.1. Hydrolysis Assay
4.7.2. Inhibition Assay
4.7.3. Competition Assay (Probe-eIF4E-Ligand)
4.7.4. Reactions in HEK 293 Cell Lysates
4.7.5. LC–MS/MS Analysis
4.8. Western Blotting
4.9. Expression and Purification of Human cN-IIIB for Crystallization
4.10. Crystallization of cN-IIIB
4.11. Data Collection and Structure Determination
4.12. Homology Modelling and Docking Simulations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Accession Codes
References
- Hunsucker, S.A.; Mitchell, B.S.; Spychala, J. The 5′-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol. Ther. 2005, 107, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Camici, M.; Garcia-Gil, M.; Allegrini, S.; Pesi, R.; Tozzi, M.G. Evidence for a Cross-Talk Between Cytosolic 5′-Nucleotidases and AMP-Activated Protein Kinase. Front. Pharmacol. 2020, 11, 609849. [Google Scholar] [CrossRef] [PubMed]
- Camici, M.; Garcia-Gil, M.; Pesi, R.; Allegrini, S.; Tozzi, M.G. Purine-Metabolising Enzymes and Apoptosis in Cancer. Cancers 2019, 11, 1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, V.; Spychala, J. Mammalian 5′-nucleotidases. J. Biol. Chem. 2003, 278, 46195–46198. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, J.; Moritz, B.; Jeske, M.; Lilie, H.; Schierhorn, A.; Wahle, E. Identification of Drosophila and Human 7-Methyl GMP-specific Nucleotidases. J. Biol. Chem. 2013, 288, 2441–2451. [Google Scholar] [CrossRef] [Green Version]
- Składanowski, A.C. The role of soluble 5′-nucleotidases in the conversion of nucleotide analogs: Metabolic and therapeutic aspects. Curr. Med. Chem. 2013, 20, 4249–4259. [Google Scholar] [CrossRef]
- Tsesmetzis, N.; Paulin, C.B.J.; Rudd, S.G.; Herold, N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers 2018, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- García-Trejo, J.J.; Ortega, R.; Zarco-Zavala, M. Putative Repurposing of Lamivudine, a Nucleoside/Nucleotide Analogue and Antiretroviral to Improve the Outcome of Cancer and COVID-19 Patients. Front. Oncol. 2021, 11, 664794. [Google Scholar] [CrossRef]
- Patzak, M.S.; Kari, V.; Patil, S.; Hamdan, F.H.; Goetze, R.G.; Brunner, M.; Gaedcke, J.; Kitz, J.; Jodrell, D.I.; Richards, F.M.; et al. Cytosolic 5′-nucleotidase 1A is overexpressed in pancreatic cancer and mediates gemcitabine resistance by reducing intracellular gemcitabine metabolites. EBioMedicine 2019, 40, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Monecke, T.; Buschmann, J.; Neumann, P.; Wahle, E.; Ficner, R. Crystal Structures of the Novel Cytosolic 5′-Nucleotidase IIIB Explain Its Preference for m(7)GMP. PLoS ONE 2014, 9, e90915. [Google Scholar] [CrossRef]
- Magni, G.; Amici, A.; Orsomando, G. The Enzymology of Cytosolic Pyrimidine 5′-Nucleotidases: Functional Analysis and Physiopathological Implications. Curr. Med. Chem. 2013, 20, 4304–4316. [Google Scholar] [CrossRef]
- Valentine, W.N.; Konrad, P.N.; Anderson, H.M.; Paglia, D.E.; Harris, S.R.; Jaffe, E.R. Studies on human erythrocyte nucleotide metabolism.2. nonspherocytic hemolytic anemia, high red-cell atp, and ribosephosphate pyrophosphokinase (rpk,e.c.2.7.6.1) deficiency. Blood J. Hematol. 1972, 39, 674–684. [Google Scholar] [CrossRef]
- Grobosky, C.L.; Lopez, J.B.; Rennie, S.; Skopelitis, D.J.; Wiest, A.T.; Bingman, C.A.; Bitto, E. Structural Basis of Substrate Specificity and Selectivity of Murine Cytosolic 5′-Nucleotidase III. J. Mol. Biol. 2012, 423, 540–554. [Google Scholar] [CrossRef]
- Li, L.; Fridley, B.; Kalari, K.; Jenkins, G.; Batzler, A.; Safgren, S.; Hildebrandt, M.; Ames, M.; Schaid, D.; Wang, L. Gemcitabine and cytosine arabinoside cytotoxicity: Association with lymphoblastoid cell expression. Cancer Res. 2008, 68, 7050–7058. [Google Scholar] [CrossRef] [Green Version]
- Domenech, C.; Plesa, A.; Tourette, A.; Bertrand, Y.; Dony, A.; Dumontet, C.; Cros-Perrial, E.; Jordheim, L.P. Prognostic impact of cN-III mRNA expression on overall survival and drug sensitivity in pediatric leukemia. Leuk. Lymphoma 2022, 63, 457–462. [Google Scholar] [CrossRef]
- Fuchs, A.L.; Wurm, J.P.; Neu, A.; Sprangers, R. Molecular basis of the selective processing of short mRNA substrates by the DcpS mRNA decapping enzyme. Proc. Natl. Acad. Sci. USA 2020, 117, 19237–19244. [Google Scholar] [CrossRef]
- Kramer, S.; McLennan, A.G. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. WIREs RNA 2018, 10, e1511. [Google Scholar] [CrossRef] [Green Version]
- Kviklyte, S.; Vertommen, D.; Yerna, X.; Andersén, H.; Xu, X.; Gailly, P.; Bohlooly-Y, M.; Oscarsson, J.; Rider, M.H. Effects of genetic deletion of soluble 5′-nucleotidases NT5C1A and NT5C2 on AMPK activation and nucleotide levels in contracting mouse skeletal muscles. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E48–E62. [Google Scholar] [CrossRef]
- Guillon, R.; Rahimova, R.; Preeti; Egron, D.; Rouanet, S.; Dumontet, C.; Aghajari, N.; Jordheim, L.P.; Chaloin, L.; Peyrottes, S. Lead optimization and biological evaluation of fragment-based cN-II inhibitors. Eur. J. Med. Chem. 2019, 168, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Kozarski, M.; Kubacka, D.; Wojtczak, B.A.; Kasprzyk, R.; Baranowski, M.R.; Kowalska, J. 7-Methylguanosine monophosphate analogues with 5′-(1,2,3-triazoyl) moiety: Synthesis and evaluation as the inhibitors of cNIIIB nucleotidase. Bioorganic Med. Chem. 2018, 26, 191–199. [Google Scholar] [CrossRef]
- Niewiadomski, S.; Beebeejaun, Z.; Denton, H.; Smith, T.K.; Morris, R.J.; Wagner, G.K. Rationally designed squaryldiamides—A novel class of sugar-nucleotide mimics? Org. Biomol. Chem. 2010, 8, 3488–3499. [Google Scholar] [CrossRef] [PubMed]
- Wanat, P.; Walczak, S.; Wojtczak, B.A.; Nowakowska, M.; Jemielity, J.; Kowalska, J. Ethynyl, 2-Propynyl, and 3-Butynyl C-Phosphonate Analogues of Nucleoside Di- and Triphosphates: Synthesis and Reactivity in CuAAC. Org. Lett. 2015, 17, 3062–3065. [Google Scholar] [CrossRef] [PubMed]
- Lama, D.; Verma, C.S. Deciphering the mechanistic effects of eIF4E phosphorylation on mRNA-cap recognition. Protein Sci. 2020, 29, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Batool, A.; Aashaq, S.; Andrabi, K.I. Eukaryotic initiation factor 4E (eIF4E): A recap of the cap-binding protein. J. Cell. Biochem. 2019, 120, 14201–14212. [Google Scholar] [CrossRef]
- Kasprzyk, R.; Starek, B.J.; Ciechanowicz, S.; Kubacka, D.; Kowalska, J.; Jemielity, J. Fluorescent Turn-On Probes for the Development of Binding and Hydrolytic Activity Assays for mRNA Cap-Recognizing Proteins. Chem. Eur. J. 2019, 25, 6728–6740. [Google Scholar] [CrossRef]
- Zuberek, J.; Wyslouch-Cieszynska, A.; Niedzwiecka, A.; Dadlez, M.; Stepinski, J.; Augustyniak, W.; Gingras, A.C.; Zhang, Z.B.; Burley, S.K.; Sonenberg, N.; et al. Phosphorylation of eIF4E attenuates its interaction with mRNA 5′ cap analogs by electrostatic repulsion: Intein-mediated protein ligation strategy to obtain phosphorylated protein. RNA 2003, 9, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Kalayanov, G.; Jaksa, S.; Scarcia, T.; Kobe, J. Regioselective functionalization of guanine: Simple and practical synthesis of 7-and 9-alkylated guanines starting from guanosine. Synth. Stuttg. 2004, 12, 2026–2034. [Google Scholar] [CrossRef]
- Wojcik, R.; Baranowski, M.R.; Markiewicz, L.; Kubacka, D.; Bednarczyk, M.; Baran, N.; Wojtczak, A.; Sikorski, P.J.; Zuberek, J.; Kowalska, J.; et al. Novel N7-Arylmethyl Substituted Dinucleotide mRNA 5′ cap Analogs: Synthesis and Evaluation as Modulators of Translation. Pharmaceutics 2021, 13, 1941. [Google Scholar] [CrossRef]
- Auriola, S.; Frith, J.; Rogers, M.J.; Koivuniemi, A.; Monkkonen, J. Identification of adenine nucleotide-containing metabolites of bisphosphonate drugs using ion-pair liquid chromatography-electrospray mass spectrometry. J. Chromatogr. B 1997, 704, 187–195. [Google Scholar] [CrossRef]
- Strzelecka, D.; Chmielinski, S.; Bednarek, S.; Jemielity, J.; Kowalska, J. Analysis of mononucleotides by tandem mass spectrometry: Investigation of fragmentation pathways for phosphate- and ribose-modified nucleotide analogues. Sci. Rep. 2017, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Sparta, K.M.; Krug, M.; Heinemann, U.; Muellera, U.; Weissa, M.S. XDSAPP2.0. J. Appl. Crystallogr. 2016, 49, 1085–1092. [Google Scholar] [CrossRef]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Long, F.; Nicholls, R.A.; Emsley, P.; Grazulis, S.; Merkys, A.; Vaitkus, A.; Murshudov, G.N. AceDRG: A stereochemical description generator for ligands. Acta Crystallogr. Sect. D-Struct. Biol. 2017, 73, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A.A.; Young, P.; Isupov, M.N.; Moroz, O.V.; Vagin, A.A.; Murshudov, G.N. JLigand: A graphical tool for the CCP4 template-restraint library. Acta Crystallogr. Sect. D-Struct. Biol. 2012, 68, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Casañal, A.; Lohkamp, B.; Emsley, P. Current developments in Coot for macromolecular model building of Electron Cryo-microscopy and Crystallographic Data. Protein Sci. 2020, 29, 1069–1078. [Google Scholar] [CrossRef] [Green Version]
- Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D-Struct. Biol. 2010, 66, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef]
- Stierand, K.; Rarey, M. Drawing the PDB: Protein-Ligand Complexes in Two Dimensions. ACS Med. Chem. Lett. 2010, 1, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Fährrolfes, R.; Bietz, S.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Otto, T.; Volkamer, A.; Rarey, M. ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Res. 2017, 45, W337–W343. [Google Scholar] [CrossRef] [Green Version]
- Molecular Operating Environment (MOE). 2020.09 Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7. 2022. Available online: https://www.chemcomp.com/index.htm (accessed on 6 April 2022).
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Vriend, G. What if—A molecular modeling and drug design program. J. Mol. Graph. 1990, 8, 52–56. [Google Scholar] [CrossRef]
- Naim, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; et al. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf. Model. 2007, 47, 122–133. [Google Scholar] [CrossRef]
- Baranowski, M.R.; Nowicka, A.; Rydzik, A.M.; Warminski, M.; Kasprzyk, R.; Wojtczak, B.A.; Wojcik, J.; Claridge, T.D.W.; Kowalska, J.; Jemielity, J. Synthesis of Fluorophosphate Nucleotide Analogues and Their Characterization as Tools for 19F NMR Studies. J. Org. Chem. 2015, 80, 3982–3997. [Google Scholar] [CrossRef]
- Kowalska, J.; Lewdorowicz, M.; Zuberek, J.; Grudzien-Nogalska, E.; Bojarska, E.; Stepinski, J.; Rhoads, R.E.; Darzynkiewicz, E.; Davis, R.E.; Jemielity, J. Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. Rna 2008, 14, 1119–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtczak, B.A.; Sikorski, P.J.; Fac-Dabrowska, K.; Nowicka, A.; Warminski, M.; Kubacka, D.; Nowak, E.; Nowotny, M.; Kowalska, J.; Jemielity, J. 5′-Phosphorothiolate Dinucleotide Cap Analogues: Reagents for Messenger RNA Modification and Potent Small-Molecular Inhibitors of Decapping Enzymes. J. Am. Chem. Soc. 2018, 140, 5987–5999. [Google Scholar] [CrossRef]
- Walczak, S.; Nowicka, A.; Kubacka, D.; Fac, K.; Wanat, P.; Mroczek, S.; Kowalska, J.; Jemielity, J. A novel route for preparing 5′ cap mimics and capped RNAs: Phosphate-modified cap analogues obtained via click chemistry. Chem. Sci. 2017, 8, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Walczak, S.; Sikorski, P.J.; Kasprzyk, R.; Kowalska, J.; Jemielity, J. Exploring the potential of phosphotriazole 5′ mRNA cap analogues as efficient translation initiators. Org. Biomol. Chem. 2018, 16, 6741–6748. [Google Scholar] [CrossRef]
- Kopcial, M.; Wojtczak, B.A.; Kasprzyk, R.; Kowalska, J.; Jemielity, J. N1-Propargylguanosine Modified mRNA Cap Analogs: Synthesis, Reactivity, and Applications to the Study of Cap-Binding Proteins. Molecules 2019, 24, 1899. [Google Scholar] [CrossRef] [Green Version]
- Rydzik, A.M.; Lukaszewicz, M.; Zuberek, J.; Kowalska, J.; Darzynkiewicz, Z.M.; Darzynkiewicz, E.; Jemielity, J. Synthetic dinucleotide mRNA cap analogs with tetraphosphate 5′,5′ bridge containing methylenebis (phosphonate) modification. Org. Biomol. Chem. 2009, 7, 4763–4776. [Google Scholar] [CrossRef]
- Jemielity, J.; Lukaszewicz, M.; Kowalska, J.; Czarnecki, J.; Zuberek, J.; Darzynkiewicz, E. Synthesis of biotin labelled cap analogue—Incorporable into mRNA transcripts and promoting cap-dependent translation. Org. Biomol. Chem. 2012, 10, 8570–8574. [Google Scholar] [CrossRef]
- Warminski, M.; Kowalska, J.; Buck, J.; Zuberek, J.; Lukaszewicz, M.; Nicola, C.; Kuhn, A.N.; Sahin, U.; Darzynkiewicz, E.; Jemielity, J. The synthesis of isopropylidene mRNA cap analogs modified with phosphorothioate moiety and their evaluation as promoters of mRNA translation. Bioorganic Med. Chem. Lett. 2013, 23, 3753–3758. [Google Scholar] [CrossRef] [PubMed]
- Warminski, M.; Warminska, Z.; Kowalska, J.; Jemielity, J. mRNA Cap Modification through Carbamate Chemistry: Synthesis of Amino- and Carboxy-Functionalised Cap Analogues Suitable for Labelling and Bioconjugation. Eur. J. Org. Chem. 2015, 2015, 6153–6169. [Google Scholar] [CrossRef]
- Bednarek, S.; Madan, V.; Sikorski, P.J.; Bartenschlager, R.; Kowalska, J.; Jemielity, J. mRNAs biotinylated within the 5′ cap and protected against decapping: New tools to capture RNA—Protein complexes. Philos. Trans. R. Soc. B-Biol. Sci. 2018, 373, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, G.H.; Lim, H.K.; Hah, S.S. Preparation of 5′-Azido-5′-Deoxyguanosine and Its Efficiency for Click Chemistry. Bull. Korean Chem. Soc. 2011, 32, 3767–3769. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Liu, S.; Sun, J.; Gong, S.S.; Xiao, Q.; Shen, L. One-pot synthesis of symmetrical P-1,P-2-dinucleoside-5′-diphosphates from nucleoside-5′-H-phosphonates: Mechanistic insights into reaction path. Tetrahedron Lett. 2013, 54, 3842–3845. [Google Scholar] [CrossRef]
Compound | EC50 µM—eIF4E | SI (cN-IIIB/eIF4E) a |
---|---|---|
m7GMP | 8.4 ± 1.7 | n.d. |
5 | 15.8 ± 2.8 | 0.62 |
5a | 22.6 ± 4.3 | 0.10 |
5d | 39.9 ± 8.5 | 0.06 |
5g | 117.5 ± 66.4 | 0.06 |
Compound | IC50 µM—cN-IIIA | SI (cN-IIIB/cN-IIIA) b |
5 | 113.4 ± 38.5 | 0.09 |
5a | 126.8 ± 35.6 | 0.02 |
5d | 105.8 ± 26.6 | 0.02 |
5g | 42.5 ± 8.3 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubacka, D.; Kozarski, M.; Baranowski, M.R.; Wojcik, R.; Panecka-Hofman, J.; Strzelecka, D.; Basquin, J.; Jemielity, J.; Kowalska, J. Substrate-Based Design of Cytosolic Nucleotidase IIIB Inhibitors and Structural Insights into Inhibition Mechanism. Pharmaceuticals 2022, 15, 554. https://doi.org/10.3390/ph15050554
Kubacka D, Kozarski M, Baranowski MR, Wojcik R, Panecka-Hofman J, Strzelecka D, Basquin J, Jemielity J, Kowalska J. Substrate-Based Design of Cytosolic Nucleotidase IIIB Inhibitors and Structural Insights into Inhibition Mechanism. Pharmaceuticals. 2022; 15(5):554. https://doi.org/10.3390/ph15050554
Chicago/Turabian StyleKubacka, Dorota, Mateusz Kozarski, Marek R. Baranowski, Radoslaw Wojcik, Joanna Panecka-Hofman, Dominika Strzelecka, Jerome Basquin, Jacek Jemielity, and Joanna Kowalska. 2022. "Substrate-Based Design of Cytosolic Nucleotidase IIIB Inhibitors and Structural Insights into Inhibition Mechanism" Pharmaceuticals 15, no. 5: 554. https://doi.org/10.3390/ph15050554