Black Elder and Its Constituents: Molecular Mechanisms of Action Associated with Female Reproduction
Abstract
:1. Introduction
2. Provenance and Properties
3. Physiological and Therapeutic Actions of Elderberry and Its Constituents
4. Mechanisms of Action of Elderberry and Its Constituents
4.1. Constituents Responsible for Particular Effects of Elderberry
4.2. Mediators of Effects of Elderberry and Its Constituents
5. Effects of Elderberry and Its Constituents on Female Reproductive Processes
5.1. Effect of Elderberry and Its Constituents on Ovarian Cell Viability, Apoptosis and Proliferation
5.2. Effect of Elderberry and Its Constituents on Ovarian Cell Steroidogenesis
5.3. Effect of Elderberry and Its Constituents on Embryo
6. Extracellular Mechanisms of Action of Elderberry and Its Constituents on Female Reproductive Processes
7. Intracellular Mechanisms of Action of Elderberry and Its Constituents on Female Reproductive Processes
- (1)
- Black elderberry agglutinin activates the signaling pathways of AKT and ERK1/2, which promotes de-phosphorylation of dynamin-related protein-1 (Drp-1).
- (2)
- Upon its translocation to the mitochondrial fission loci, Drp-1 induces fragmentation of the mitochondrial membrane.
- (3)
- Mitochondrial outer membrane permeabilization results in the generation of ROS and cytochrome-c release into the cytosol—the signs of mitochondrial apoptosis.
- (4)
- These changes may result in cell cycle arrest before the G2/M phase and programmed cell death.
8. Application in Reproductive Biology and Medicine
9. Conclusions and Possible Direction of Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mee, J.F. Reproductive issues arising from different management systems in the dairy industry. Reprod. Domest. Anim. 2012, 47, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canipari, R.; De Santis, L.; Cecconi, S. Female Fertility and Environmental Pollution. Int. J. Env. Res. Public Health 2020, 17, 8802. [Google Scholar] [CrossRef]
- Roudebush, W.E.; Kivens, W.J.; Mattke, J.M. Biomarkers of Ovarian Reserve. Biomark. Insights 2008, 3, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Wojsiat, J.; Korczyński, J.; Borowiecka, M.; Żbikowska, H.M. The role of oxidative stress in female infertility and in vitro fertilization. Postepy Hig. Med. Dosw. 2017, 71, 359–366. [Google Scholar] [CrossRef]
- Smits, R.M.; Mackenzie-Proctor, R.; Fleischer, K.; Showell, M.G. Antioxidants in fertility: Impact on male and female reproductive outcomes. Fertil. Steril. 2018, 110, 578–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkol, E.K.; Dereli, F.T.G.; Sobarzo-Sánchez, E.; Khan, H. Roles of Medicinal Plants and Constituents in Gynecological Cancer Therapy: Current Literature and Future Directions. Curr. Top. Med. Chem. 2020, 20, 1772–1790. [Google Scholar] [CrossRef] [PubMed]
- Sirard, M.A. 40 years of bovine IVF in the new genomic selection context. Reproduction 2018, 156, R1–R7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirotkin, A.; Záhoranska, Z.; Tarko, A.; Fabova, Z.; Alwasel, S.; Halim Harrath, A. Plant polyphenols can directly affect ovarian cell functions and modify toluene effects. J. Anim. Physiol. Anim. Nutr. 2021, 105, 80–89. [Google Scholar] [CrossRef]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.E.S.; Lorenzo José, M. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef]
- Lorenzo, J.M.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Domínguez, R.; Campagnol, P.C.B.; Franco, D.; Trindade, M.A.; Lorenzo, J.M. Effect of natural antioxidants on physicochemical properties and lipid stability of pork liver pâté manufactured with healthy oils during refrigerated storage. J. Food Sci. Technol. 2017, 54, 4324–4334. [Google Scholar] [CrossRef] [PubMed]
- Młynarczyk, K.; Walkowiak-Tomczak, D.; Łysiak, G.P. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J. Funct. Foods 2018, 40, 377–390. [Google Scholar] [CrossRef]
- Milena, V.; Tatjana, M.; Gökhan, Z.; Ivana, B.; Aleksandra, C.; Mohammad, M.F.; Marija, R. Advantages of contemporary extraction techniques for the extraction of bioactive constituents from black elderberry (Sambucus nigra L.) flowers. Ind. Crops Prod. 2019, 136, 93–101. [Google Scholar] [CrossRef]
- Integrated Taxonomic Information System. Available online: https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=35315#null (accessed on 6 October 2021).
- Lim, T.K. Edible Medicinal and Non Medicinal Plants, 1st ed.; Springer: Dodrecht, The Netherlands, 2015; p. 1036. ISBN 978-94-017-9510-4. [Google Scholar]
- Finn, C.E.; Thomas, A.L.; Byers, P.L.; Serçe, S. Evaluation of American (Sambucus canadensis) and European (S. nigra) elderberry genotypes grown in diverse environments and implications for cultivar development. Hort. Sci. 2008, 43, 1385–1391. [Google Scholar] [CrossRef] [Green Version]
- Senica, M.; Stampar, F.; Veberic, R.; Mikulic-Petkovsek, M. Processed elderberry (Sambucus nigra L.) products: A beneficial or harmful food alternative? LWT Food Sci. Technol. 2016, 72, 182–188. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Olech, M.; Oniszczuk, T.; Wojtunik-Kulesza, K.; Wójtowicz, A. Extraction methods, LC-ESI-MS/MS analysis of phenolic compounds and antiradical properties of functional food enriched with elderberry flowers or fruits. Arab. J. Chem. 2016, 12, 4719–4730. [Google Scholar] [CrossRef] [Green Version]
- Marisa Ribeiro, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of polyphenols—The specific case of the microencapsulation of Sambucus nigra L. extracts—A review. Trends Food Sci. Technol. 2020, 105, 454–467. [Google Scholar] [CrossRef]
- Ağalar, H.G. Elderberry (Sambucus nigra L.). In Nonvitamin and Nonmineral Nutritional Supplements, 1st ed.; Seyed, N., Nabavi, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; Volume 1, pp. 211–215. [Google Scholar]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
- Vlachojannis, C.; Zimmermann, B.F.; Chrubasik-Hausmann, S. Quantification of anthocyanins in elderberry and chokeberry dietary supplements. Phytother. Res. 2015, 29, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Drugs and Lactation Database (LactMed) Bethesda (MD): National Library of Medicine (US). Elderberry; 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK501835/ (accessed on 6 October 2021).
- Krauze-Baranowska, M.; Malinowska, I.; Głód, D.; Majdan, M.; Wilczańska, A. UTLC of flavonols in Sambucus nigra flowers. J. Planar. Chromat. 2009, 22, 385–387. [Google Scholar] [CrossRef]
- Chen, H.; Miao, Q.; Geng, M.; Liu, J.; Hu, Y.; Tian, L.; Pan, J.; Yang, Y. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. Sci. World J. 2013, 2013, 269165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldovska, S.; Roychoudhury, S.; Bandik, M.; Mihal, M.; Mnahoncakova, E.; Arvay, J.; Pavlik, A.; Slama, P.; Kolesarova, A. Ovarian steroid hormone secretion by human granulosa cells after supplementation of Sambucus nigra L. extract. Phys. Res. 2021, 70, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Stuppner, S.; Mayr, S.; Beganovic, A.; Beć, K.; Grabska, J.; Aufschnaiter, U.; Groeneveld, M.; Rainer, M.; Jakschitz, T.; Bonn, G.K.; et al. Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus. Sensors 2020, 20, 4983. [Google Scholar] [CrossRef] [PubMed]
- Vlachojannis, J.E.; Cameron, M.; Chrubasik, S. A systematic review on the sambuci fructus effect and efficacy profiles. Phytother. Res. 2010, 24, 1–8. [Google Scholar] [CrossRef]
- Gleńsk, M.; Gliński, J.A.; Włodarczyk, M.; Stefanowicz, P. Determination of ursolic and oleanolic acid in Sambuci fructus. Chem. Biodivers. 2014, 11, 1939–1944. [Google Scholar] [CrossRef]
- Krüger, S.; Mirgos, M.; Morlock, G.E. Effect-directed analysis of fresh and dried elderberry (Sambucus nigra L.) via hyphenated planar chromatography. J. Chromatogr. A 2015, 1426, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Salvador, A.C.; Rocha, S.M.; Silvestre, A.J.D. Lipophilic phytochemicals from elderberries (Sambucus nigra L.): Influence of ripening, cultivar and season. Ind. Crop. Prod. 2015, 71, 15–23. [Google Scholar] [CrossRef]
- Tejero, J.; Jiménez, P.; Quinto, E.J.; Cordoba-Diaz, D.; Garrosa, M.; Cordoba-Diaz, M.; Gayoso, M.J.; Girbes, T. Elderberries: A source of ribosome-inactivating proteins with lectin activity. Molecules 2015, 20, 2364–2387. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.R.; Ray, U.; Chatterjee, B.P.; Roy, S.S. Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin. Cell Death Dis. 2017, 8, e2762. [Google Scholar] [CrossRef] [Green Version]
- Diviš, P.; Pořízka, J.; Vespalcová, M.; Matějíček, A.; Kaplan, J. Elemental composition of fruits from different black elder (Sambucus nigra L.) cultivars grown in the Czech Republic. J. Elem. 2015, 20, 549–557. [Google Scholar] [CrossRef]
- Ho, G.T.; Zou, Y.F.; Wangensteen, H.; Barsett, H. RG-I regions from elderflower pectins substituted on GalA are strong immunomodulators. Int. J. Biol. Macromol. 2016, 92, 731–738. [Google Scholar] [CrossRef]
- Ho, G.T.; Kase, E.T.; Wangensteen, H.; Barsett, H. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells. Molecules 2017, 22, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, U.; Hansen, M.; Christensen, L.P.; Jensen, K.; Kaack, K. Olfactory and quantitative analysis of aroma compounds in elder flower (Sambucus nigra L.) drink processed from five cultivars. J. Agric. Food Chem. 2000, 48, 2376–2383. [Google Scholar] [CrossRef] [PubMed]
- Buhrmester, R.A.; Ebinger1a, J.E.; Seigler, D.S. Sambunigrin and cyanogenic variability in populations of Sambucus canadensis L. (Caprifoliaceae). Biochem. Syst. Ecol. 2000, 28, 689–695. [Google Scholar] [CrossRef]
- Ulbricht, C.; Basch, E.; Cheung, L.; Goldberg, H.; Hammerness, P.; Isaac, R.; Khalsa, K.P.S.; Romm, A.; Rychlik, I.; Varghese, M.; et al. An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the Natural Standard Research Collaboration. J. Diet. Suppl. 2014, 11, 80–120. [Google Scholar] [CrossRef] [PubMed]
- Torabian, G.; Bahramian, B.; Zambon, A.; Spilimbergo, S.; Adil, Q.; Schindeler, A.; Valtchev, P.; Dehghani, F. A hybrid process for increasing the shelf life of elderberry juice. J. Supercrit. Fluids 2018, 140, 406–414. [Google Scholar] [CrossRef]
- Porter, R.S.; Bode, R.F. A Review of the Antiviral Properties of Black Elder (Sambucus nigra L.) Products. Phytother. Res. 2017, 31, 533–554. [Google Scholar] [CrossRef]
- Frøkiær, H.; Henningsen, L.; Metzdorff, S.B.; Weiss, G.; Roller, M.; Flanagan, J.; Fromentin, E.; Ibarra, A. Astragalus root and elderberry fruit extracts enhance the IFN-β stimulatory effects of Lactobacillus acidophilus in murine-derived dendritic cells. PLoS ONE 2012, 7, e47878. [Google Scholar] [CrossRef]
- Waknine-Grinberg, J.H.; El-On, J.; Barak, V.; Barenholz, Y.; Golenser, J. The immunomodulatory effect of Sambucol on leishmanial and malarial infections. Planta Med. 2009, 75, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Ho, G.T.; Wangensteen, H.; Barsett, H. Elderberry and Elderflower Extracts, Phenolic Compounds, and Metabolites and Their Effect on Complement, RAW 264.7 Macrophages and Dendritic Cells. Int. J. Mol. Sci. 2017, 18, 584. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.J.; Zhao, L.; Taylor, E.W.; Spelman, K. The influence of traditional herbal formulas on cytokine activity. Toxicology 2010, 278, 140–159. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, A.; Kowalska, K.; Olkowicz, M.; Rychlik, J.; Juzwa, W.; Myszka, K.; Dembczyński, R.; Białas, W. Anti-inflammatory effects of gastrointestinal digested Sambucus nigra L. fruit extract analyzed in co-cultured intestinal epithelial cells and lipopolysaccharide- stimulated macrophages. J. Funct. Foods 2015, 19, 649–660. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Wianowska, D.; Baraniak, B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT Food Sci. Technol. 2006, 39, 308–315. [Google Scholar] [CrossRef]
- Denev, P.; Ciz, M.; Ambrozova, G.; Lojek, A.; Yanakieva, I.; Kratchanova, M. Solid-phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 2010, 123, 1055–1061. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Jin, D.; Waterhouse, G.I.N. Effect of adding elderberry juice concentrate on the quality attributes, polyphenol contents and antioxidant activity of three fibre-enriched pastas. Food Res. Int. 2013, 54, 781–789. [Google Scholar] [CrossRef]
- Topolska, D.; Valachova, K.; Rapta, P.; Silhar, S.; Panghyova, E.; Horvath, A.; Soltes, L. Antioxidative properties of Sambucus nigra extracts. Chem. Pap. 2015, 69, 1202–1210. [Google Scholar] [CrossRef]
- Arjoon, A.V.; Saylor, C.V.; May, M. In Vitro efficacy of antimicrobial extracts against the atypical ruminant pathogen Mycoplasma mycoides subsp. capri. BMC Complement. Altern. Med. 2012, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Jonušaite, K.; Venskutonis, P.R.; Martínez-Hernández, G.B.; Nieto, G.; López-Gómez, A.; Marín-Iniesta, F. Antioxidant and Antimicrobial Effect of Plant Essential Oils and Sambucus nigra Extract in Salmon Burgers. Foods 2021, 10, 776. [Google Scholar] [CrossRef]
- Roschek, B.; Fink, R.C.; McMichael, M.D.; Li, D.; Alberte, R.S. Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 2009, 70, 1255–1261. [Google Scholar] [CrossRef]
- Kinoshita, E.; Hayashi, K.; Katayama, H.; Hayashi, T.; Obata, A. Anti-influenza virus effects of elderberry juice and its fractions. Biosci. Biotechnol. Biochem. 2012, 76, 1633–1638. [Google Scholar] [CrossRef]
- Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J.A.; Bagchi, D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007, 51, 675–683. [Google Scholar] [CrossRef]
- Araújo, K.C.F.; de MBCosta, E.M.; Pazini, F.; Valadares, M.C.; de Oliveira, V. Bioconversion of quercetin and rutin and the cytotoxicity activities of the transformed products. Food Chem. Toxicol. 2013, 51, 93–96. [Google Scholar] [CrossRef]
- Schröder, L.; Richter, D.U.; Piechulla, B.; Chrobak, M.; Kuhn, C.; Schulze, S.; Abarzua, S.; Jeschke, U.; Weissenbacher, T. Effects of Phytoestrogen Extracts Isolated from Elder Flower on Hormone Production and Receptor Expression of Trophoblast Tumor Cells JEG-3 and BeWo, as well as MCF7 Breast Cancer Cells. Nutrients 2016, 8, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, D.I.; Amparo, T.R.; Almeida, T.C.; Costa, F.S.F.; Brandão, G.C.; Santos, O.D.H.D.; da Silva, G.N.; Bianco de Souza, G.H. Cytotoxic activity of butanolic extract from Sambucus nigra L. flowers in natura and vehiculated in micelles in bladder cancer cells and fibroblasts. Nat. Prod. Res. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Ning, S. Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytother. Res. 2019, 33, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Naim, A.B.; Alghamdi, A.A.; Algandaby, M.M.; Al-Abbasi, F.A.; Al-Abd, A.M.; Eid, B.G.; Abdallah, H.M.; El-Halawany, A.M. Rutin Isolated from Chrozophora tinctoria Enhances Bone Cell Proliferation and Ossification Markers. Oxid. Med. Cell Longev. 2018, 2018, 5106469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ataee, R.; Falahati, A.; Ebrahimzadeh, M.A.; Shokrzadeh, M. Anticonvulsant activities of Sambucus nigra. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3123–3126. [Google Scholar] [PubMed]
- Kashi, D.S.; Shabir, A.; Boit, M.D.; Bailey, S.J.; Higgins, M.D. The Efficacy of Administering Fruit-Derived Polyphenols to Improve Health Biomarkers, Exercise Performance and Related Physiological Responses. Nutrients 2019, 11, 2389. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, M.; Ebrahimzadeh, M.A.; Dooshan, A.; Arimi, A.; Ghasemi, N.; Fathiazad, F. Antidepressant activities of Sambucus ebulus and Sambucus nigra. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3350–3353. [Google Scholar]
- Blumenthal, M.; Goldberg, A.; Brinckmann, J. Herbal Medicine. Expanded Commission E Monographs; Integrative Medicine Communications: Newton, MA, USA, 2000; ISBN 0967077214. [Google Scholar]
- Weiss, R.F.; Fintelmann, V. Herbal Medicine, 2nd ed.; Thieme: New York, NY, USA, 2000; p. 448. ISBN 0865779708. [Google Scholar]
- Lin, P.; Hwang, E.; Ngo, H.T.T.; Seo, S.A.; Yi, T.H. Sambucus nigra L. ameliorates UVB-induced photoaging and inflammatory response in human skin keratinocytes. Cytotechnology 2019, 71, 1003–1017. [Google Scholar] [CrossRef]
- Chen, C.; Zuckerman, D.M.; Brantley, S.; Sharp, M.; Childress, K.; Hoiczyk, E.; Pendleton, F.A.R. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet. Res. 2014, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Torabian, G.; Valtchev, P.; Adil, Q.; Dehghani, F. Anti-influenza activity of elderberry (Sambucus nigra). J. Funct. Foods 2019, 54, 353–360. [Google Scholar] [CrossRef]
- Harnett, J.; Oakes, K.; Carè, J.; Leach, M.; Brown, D.; Cramer, H.; Pinder, T.A.; Steel, A.; Anheyer, D. The effects of Sambucus nigra berry on acute respiratory viral infections: A rapid review of clinical studies. Adv. Integr. Med. 2020, 7, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Badescu, L.; Badulescu, O.; Badescu, M.; Ciocoiu, M. Mechanism by Sambucus nigra Extract Improves Bone Mineral Density in Experimental Diabetes. Evid. Based Complement. Alternat. Med. 2012, 2012, 848269. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Christensen, K.B.; Olsen, L.C.; Christensen, L.P.; Grevsen, K.; Færgeman, N.J.; Kristiansen, K.; Young, J.F.; Oksbjerg, N. Bioactive components from flowers of Sambucus nigra L. increase glucose uptake in primary porcine myotube cultures and reduce fat accumulation in Caenorhabditis elegans. J. Agric. Food Chem. 2013, 61, 11033–11040. [Google Scholar] [CrossRef] [PubMed]
- Christensen, K.B.; Petersen, R.K.; Kristiansen, K.; Christensen, L.P. Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma. Phytother. Res. 2010, 24, S129–S132. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.M.; Abdel-Wahab, Y.H.; Flatt, P.R. The traditional plant treatment, Sambucus nigra (elder), exhibits insulin-like and insulin-releasing actions in vitro. J. Nutr. 2000, 130, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhang, W.; Li, X.; Xu, Y.; Cao, J.; Jiang, W. The anti-obesogenic effects of dietary berry fruits: A review. Food Res. Int. 2021, 147, 110539. [Google Scholar] [CrossRef] [PubMed]
- Farrell, N.J.; Norris, G.H.; Ryan, J.; Porter, C.M.; Jiang, C.; Blesso, C.N. Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. Br. J. Nutr. 2015, 114, 1123–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duymuş, H.G.; Göger, F.; Başer, K.H.C. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef]
- Moldovan, B.; David, L.; Achim, M.; Clichici, S.; Filip, G.A. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J. Mol. Liq. 2016, 221, 271–278. [Google Scholar] [CrossRef]
- Silva, P.; Ferreira, S.; Nunes, F.M. Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. Ind. Crops Prod. 2017, 95, 227–234. [Google Scholar] [CrossRef]
- Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compost. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- Bagchi, D.; Sen, C.K.; Bagchi, M.; Atalay, M. Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry 2004, 69, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Malagolini, N.; Catera, M.; Osorio, H.; Reis, C.A.; Chiricolo, M.; Dall’Olio, F. Apoptotic cells selectively uptake minor glycoforms of vitronectin from serum. Apoptosis 2013, 18, 373–384. [Google Scholar] [CrossRef]
- Chiodelli, P.; Rezzola, S.; Urbinati, C.; Federici Signori, F.; Monti, E.; Ronca, R.; Presta, M.; Rusnati, M. Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis. Oncogene 2017, 36, 6531–6541. [Google Scholar] [CrossRef]
- Ho, G.T.T.; Ahmed, A.; Zou, Y.F.; Aslaksen, T.; Wangensteen, H.; Barsett, H. Structure–activity relationship of immunomodulating pectins from elderberries. Carbohydr. Polym. 2015, 125, 314–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barsett, H.; Aslaksen, T.H.; Gildhyal, P.; Michaelsen, T.E.; Paulsen, B.S. Comparison of carbohydrate structures and immunomodulating properties of extracts from berries and flowers of Sambucus nigra L. Eur. J. Med. Plants 2012, 2, 216–229. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, M.; Chen, W.; Zhao, T.; Wei, Y. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother. 2019, 118, 109249. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, F.; Ye, L.; Zirkin, B.; Chen, H. Steroidogenesis in Leydig cells: Effects of aging and environmental factors. Reproduction 2017, 154, R111–R122. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Q.; Song, R.; Zhang, L. Effect of Oxidative Stress on the Estrogen-NOS-NO-KCa Channel Pathway in Uteroplacental Dysfunction: Its Implication in Pregnancy Complications. Oxid. Med. Cell Longev. 2019, 2019, 9194269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirotkin, A.V.; Radosová, M.; Tarko, A.; Fabova, Z.; Martín-García, I.; Alonso, F. Abatement of the Stimulatory Effect of Copper Nanoparticles Supported on Titania on Ovarian Cell Functions by Some Plants and Phytochemicals. Nanomaterials 2020, 10, 1859. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Yuan, X.; Ye, R.; Zhou, H.; Lin, J.; Zhang, C.; Zhang, H.; Wei, G.; Dong, M.; Huang, Y.; et al. Brown adipose tissue activation by rutin ameliorates polycystic ovary syndrome in rat. J. Nutr. Biochem. 2017, 47, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.C.; Rong, J.; Wang, S.W.; Ng, T.B.; Zhang, Y.B.; Lee, K.F.; Zheng, L.; Wong, H.K.; Yung, K.K.L.; et al. Identification of Steroidogenic Components Derived from Gardenia jasminoides Ellis Potentially Useful for Treating Postmenopausal Syndrome. Front. Pharmacol. 2018, 9, 390. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Jiang, B.H.; King, S.M.; Chen, Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr. Cancer 2008, 60, 800–809. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, M.E.; Moreira Franco, Y.E.; Alberto, T.G.; Sobreiro, M.A.; Conrado, M.A.; Priolli, D.G.; Frankland Sawaya, A.C.; Ruiz, A.L.; de Carvalho, J.E.; de Oliveira Carvalho, P. Enzymatic de-glycosylation of rutin improves its antioxidant and antiproliferative activities. Food Chem. 2013, 141, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Kyakulaga, A.H.; Munagala, R.; Parker, L.; Gupta, R.C. Exosomal delivery of berry anthocyanidins for the management of ovarian cancer. Food Funct. 2017, 8, 4100–4107. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Leopold, L.; Rugină, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and antioxidant properties of anthocyanin rich extracts from blueberry and blackcurrant juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef] [Green Version]
- Lim, W.; Jeong, W.; Song, G. Delphinidin suppresses proliferation and migration of human ovarian clear cell carcinoma cells through blocking AKT and ERK1/2 MAPK signaling pathways. Mol. Cell Endocrinol. 2016, 422, 172–181. [Google Scholar] [CrossRef]
- Sirotkin, A.; Záhoranska, Z.; Tarko, A.; Popovska-Percinic, F.; Alwasel, S.; Harrath, A.H. Plant isoflavones can prevent adverse effects of benzene on porcine ovarian activity: An in vitro study. Environ. Sci. Pollut. Res. Int. 2020, 27, 29589–29598. [Google Scholar] [CrossRef] [PubMed]
- Sirotkin, A.V. Regulators of Ovarian Functions; Nova Publishers: New York, NY, USA, 2014; p. 194. ISBN 978-1-62948-574-4. [Google Scholar]
- Schmitt, E.; Stopper, H. Estrogenic activity of naturally occurring anthocyanidins. Nutr. Cancer 2001, 41, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Nanashima, N.; Horie, K.; Maeda, H. Phytoestrogenic Activity of Blackcurrant Anthocyanins Is Partially Mediated through Estrogen Receptor Beta. Molecules 2017, 23, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Hankinson, S.E.; Smith-Warner, S.A.; Wang, M.; Eliassen, A.H. Flavonoid Intake and Plasma Sex Steroid Hormones, Prolactin, and Sex Hormone-Binding Globulin in Premenopausal Women. Nutrients 2019, 11, 2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Guo, J.; Jiang, X.; Sun, J.; Tian, L.; Jiao, R.; Tang, Y.; Bai, W. Cyanidin-3-O-glucoside protects against cadmium-induced dysfunction of sex hormone secretion via the regulation of hypothalamus-pituitary-gonadal axis in male pubertal mice. Food Chem. Toxicol. 2019, 129, 13–21. [Google Scholar] [CrossRef]
- Amado, N.G.; Fonseca, B.F.; Cerqueira, D.M.; Reis, A.H.; Simas, A.B.; Kuster, R.M.; Mendes, F.A.; Abreu, J.G. Effects of natural compounds on Xenopus embryogenesis: A potential read out for functional drug discovery targeting Wnt/β-catenin signaling. Curr. Top. Med. Chem. 2012, 12, 2103–2113. [Google Scholar] [CrossRef]
- Matsuo, M.; Sasaki, N.; Saga, K.; Kaneko, T. Cytotoxicity of flavonoids toward cultured normal human cells. Biol. Pharm. Bull. 2005, 28, 253–259. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Kim, J.; Lim, J.; Lee, E. Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 2010, 74, 777–785. [Google Scholar] [CrossRef]
- Hicks, E.; Mentler, M.; Arena, H.A.; Current, J.Z.; Whitaker, B.D. Cyanidin improves oocyte maturation and the in vitro production of pig embryos. In Vitro Cell Dev. Biol. Anim. 2020, 56, 577–584. [Google Scholar] [CrossRef]
- Xie, N.; Geng, N.; Zhou, D.; Xu, Y.; Liu, K.; Liu, Y.; Liu, J. Protective effects of anthocyanin against apoptosis and oxidative stress induced by arsanilic acid in DF-1 cells. Mol. Biol. Rep. 2019, 46, 301–308. [Google Scholar] [CrossRef]
- Massimiani, M.; Lacconi, V.; La Civita, F.; Ticconi, C.; Rago, R.; Campagnolo, L. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. Int. J. Mol. Sci. 2019, 21, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valko-Rokytovská, M.; Očenáš, P.; Salayová, A.; Kostecká, Z. Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics. Int. J. Mol. Sci. 2021, 22, 5878. [Google Scholar] [CrossRef] [PubMed]
- Lins, T.L.B.G.; Gouveia, B.B.; Barberino, R.S.; Silva, R.L.S.; Monte, A.P.O.; Pinto, J.G.C.; Campinho, D.S.P.; Palheta, R.C.; Matos, M.H.T. Rutin prevents cisplatin-induced ovarian damage via antioxidant activity and regulation of PTEN and FOXO3a phosphorylation in mouse model. Reprod. Toxicol. 2020, 98, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Pieńkowska, N.; Bartosz, G.; Furdak, P.; Sadowska-Bartosz, I. Delphinidin Increases the Sensitivity of Ovarian Cancer Cell Lines to 3-Bromopyruvate. Int. J. Mol. Sci. 2021, 22, 709. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.H.; Stephen Inbaraj, B. Nanoemulsion and Nanoliposome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients 2019, 11, 1052. [Google Scholar] [CrossRef] [Green Version]
Therapeutic Actions | Elderberry Preparation | Experimental Model | Results | Ref. |
---|---|---|---|---|
Antimicrobial activity | Water elderberry fruit extract | Mycoplasma mycoides subspecies capri strain GM12, Escherichia coli strain DH5α and Bacillus subtilis strain ATCC 6051 | In vitro growth inhibition of bacterial pathogens | [51] |
Antiviral activity | Ethanol elderberry fruit extract Concentrated elderberry fruit juice | Madin–Darby canine kidney cells (MDCK) | Inhibition of Human Influenza A (H1N1) virus | [53,54,68] |
Concentrated elderberry fruit juice | Female BALB/c mice infected with influenza A virus | Suppression of the viral replication in the bronchoalveolar lavage fluids (BALFs); increase of the human influenza A virus (IFV)-specific neutralizing antibody in the serum; increase of secretory IgA in BALFs and feces | [54] | |
Ethanol elderberry fruit extract | Vera cells | Inhibition of Infectious Bronchitis virus (IBV) by reduction in virus titers | [67] | |
Anti-inflammatory activity | Ethanol elderberry fruit Elderflower extract | Lipopolysaccharide (LPS)-activated cells RAW 264.7 and dendritic cells D2SC/I | Strong complement fixating activity and inhibitory effect on NO production | [44] |
Gastrointestinal digested water elderberry fruit extract | Co-cultured human intestinal epithelial cells Caco-2 and lipopolysaccharide (LPS)-activated cells RAW 264.7 | Downregulation the expression of major genes of inflammatory pathway IL-1β, IL-6, TNF-α and COX-2 | [46] | |
Ethanol elderberry fruit extract | Human skin keratinocytes HaCaTs | Protective effect against UVB-induced skin photoaging and inflammation; suppression of UVB-induced matrix metalloproteinase-1 (MMP-1) expression and inflammatory cytokine secretion; inhibition of mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1) and nuclear factor- κB (NF-κB) signaling pathways | [66] | |
Immuno-modulatory activity | Elderberry fruit juice | Alveolar carcinoma cells A549 | Stimulation of human inflammatory cytokines IL-6, IL-8 and TNF production | [68] |
Water elderberry fruit extract | Murine-derived dendritic cells | Stimulation of L. acidophilus-induced IL-12 and IFN-β production | [42] | |
Elderberry extract syrup Sambucol | Normal human monocytes | Stimulation of the inflammatory cytokines IL-1β, IL-6, IL-8 and TNFα production; causes a shift in the immune response to inflammation-associated Th1 responses | [43] | |
Antioxidant activity | Water elderberry fruit extract Ethanol elderberry fruit extract | Human intestinal epithelial cells Caco-2 and human skin keratinocytes HaCaTs | Reduction in the intracellular reactive oxygen species (ROS) production | [46,66] |
Water elderberry fruit extract | Weissberger’s biogenic oxidative system | Inhibition of oxidative degradation of hyaluronan (HA); ability to scavenge free radicals | [50] | |
Anticancer activity | Ethanol elderflower extract | Breast carcinoma cells MCF7 | Protective effect against breast cancer by reduction of cell proliferation; inhibition of estrogen secretion, downregulation of ERα and upregulation of PR | [57] |
Butanolic elderflower extract | Bladder carcinoma cells T24 and human fibroblast cells MRC-5 | Selective cytotoxic activity in cancer cells | [58] | |
Sambucus nigra agglutinin | Epithelial ovarian adenocarcinoma cells OAW-42, p53 null OC cells SKOV3, normal epithelial ovarian cell line IOSE-364, mouse fibroblast cells NIH3T3 and lung carcinoma cells A549 | Protective effect against ovarian cancer by induction of apoptosis in cancer cells and cell cycle arrest before G2/M phase; inhibition of cancer progression; mitochondrial dysfunction through increase in ROS generation and cytochrome-c release; shift of cellular respiration toward oxidative phosphorylation | [33] | |
Antidepressant activity | Methanol elderberry fruit extract | Male Swiss albino mice | Antidepressant potential in forced swimming test (FST) and tail suspension tests (TST) | [63] |
Antidiabetic activity | Aqueous elderflower extract | Mice abdominal muscles | Increase in muscle glucose uptake, glucose oxidation and glycogenesis | [73] |
Aqueous elderflower extract | Rat pancreatic beta-cells BRIN-BD11 | Stimulation of insulin secretion | [73] | |
Methanol polyphenolic elderberry fruit extract | Wistar white male rats, streptozotocin (STZ)-induced hyperglycemic rats | Reduction in the body fat in diabetic rats; decrease in the lipid peroxidation level in serum | [70] | |
Methanol elderflower extract | Primary porcine myotube cultures | Modulation of glucose; increase in glucose uptake | [71] | |
Antiosteoporosis activity | Methanol polyphenolic elderberry fruit extract | Wistar white male rats, streptozotocin (STZ)-induced hyperglycemic rats | Improvement of the bone mineral density and osteoporosis status | [70] |
Anti-obesogenic activity | Anthocyanin-rich spray-dried black elderberry extract | C57BL/6 male mice, diet-induced obese mouse model | Decrease in liver weight, serum triglycerides (TAG), inflammatory markers and insulin resistance; reduction of hepatic cholesterol and lipid synthesis | [75] |
Methanol elderflower extract | Mouse embryonic fibroblast cells 3T3-L1 | Activation of the peroxisome proliferator-activated receptor (PPAR) γ; stimulation of insulin-dependent glucose uptake | [72] | |
Methanol elderflower extract | Primary porcine myotube cultures | Modulation of lipid metabolism; reduction of fat accumulation | [71] | |
Aromatase activity | Ethanol elderberry fruit Ethanol elderflower extract | Human ovarian granulosa cells HGL5 | Stimulatory effect on ovarian steroidogenesis; upregulation of steroid hormone secretion | [26] |
Ethanol elderflower extract | Chorion carcinoma cell lines JEG-3 and BeWo | Inhibition of estradiol secretion and ERα upregulation | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesarova, A.; Baldovska, S.; Kohut, L.; Sirotkin, A.V. Black Elder and Its Constituents: Molecular Mechanisms of Action Associated with Female Reproduction. Pharmaceuticals 2022, 15, 239. https://doi.org/10.3390/ph15020239
Kolesarova A, Baldovska S, Kohut L, Sirotkin AV. Black Elder and Its Constituents: Molecular Mechanisms of Action Associated with Female Reproduction. Pharmaceuticals. 2022; 15(2):239. https://doi.org/10.3390/ph15020239
Chicago/Turabian StyleKolesarova, Adriana, Simona Baldovska, Ladislav Kohut, and Alexander V. Sirotkin. 2022. "Black Elder and Its Constituents: Molecular Mechanisms of Action Associated with Female Reproduction" Pharmaceuticals 15, no. 2: 239. https://doi.org/10.3390/ph15020239