Cannabis-Based Products for the Treatment of Skin Inflammatory Diseases: A Timely Review
Abstract
:1. Introduction
2. Cannabinoids
3. The Endocannabinoid System
4. The Skin Endocannabinoid System and the Use of Cannabinoids as a Potential Treatment for Skin Inflammatory Diseases
4.1. The Skin Endocannabinoid System
4.2. Therapeutic Potential of C. sativa L. in Dermatology
4.3. Research on the Use of Cannabinoids for the Treatment of Skin Inflammatory Diseases
4.3.1. Acne and Seborrhea
4.3.2. Allergic Contact Dermatitis
4.3.3. Asteatotic Eczema
4.3.4. Atopic Dermatitis
4.3.5. Psoriasis
4.3.6. Pruritus
5. Legislation on Cannabis Use and Available Therapeutics
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Villena, K. Dermocosmetics: The Junction of Skin Care and Health and Wellness. Available online: https://blog.euromonitor.com/dermocosmetics-the-junction-of-skin-care-and-health-and-wellness/ (accessed on 21 April 2021).
- Amberg, N.; Fogarassy, C. Green Consumer Behavior in the Cosmetics Market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Villena, K. Winning with Cannabis in Beauty and Personal Care: How to Identify Areas of Opportunity. Available online: https://blog.euromonitor.com/winning-with-cannabis-in-beauty-and-personal-care-how-to-identify-areas-of-opportunity/ (accessed on 21 April 2021).
- Farag, S.; Kayser, O. The Cannabis plant: Botanical aspects. In Handbook of Cannabis and Related Pathologies; Preedy, V.R., Ed.; Elsevier Inc.: Cambridge, MA, USA, 2017; pp. 1–12. [Google Scholar]
- Raman, A. The Cannabis Plant: Botany, Cultivation and Processing for Use. In Cannabis: The Genus Cannabis; Brown, D.T., Ed.; CRC Press: London, UK, 1998; Chapter 2; 26p. [Google Scholar]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Adovasio, J.M.; Soffer, O.; Klíma, B. Upper Palaeolithic fibre technology: Interlaced woven finds from Pavlov I, Czech Republic, c. 26,000 years ago. Antiquity 1996, 70, 526–534. [Google Scholar] [CrossRef]
- Cherney, J.H.; Small, E. Industrial hemp in North America: Production, politics and potential. Agronomy 2016, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.; et al. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA J. 2016, 14, e04594. [Google Scholar]
- Hazekamp, A. The Trouble with CBD Oil. Med. Cannabis Cannabinoids 2018, 1, 65–72. [Google Scholar] [CrossRef]
- Russo, E. Introduction: Women and cannabis: Medicine, science, and sociology. J. Cannabis Ther. 2002, 2, 1–3. [Google Scholar] [CrossRef]
- Nuutinen, T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur. J. Med. Chem. 2018, 157, 198–228. [Google Scholar] [CrossRef]
- Scheau, C.; Badarau, I.A.; Mihai, L.-G.; Scheau, A.-E.; Costache, D.O.; Constantin, C.; Calina, D.; Caruntu, C.; Costache, R.S.; Caruntu, A. Cannabinoids in the pathophysiology of skin inflammation. Molecules 2020, 25, 652. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, J.; Rosado, T.; Soares, S.; Simão, A.Y.; Caramelo, D.; Luís, Â.; Fernández, N.; Barroso, M.; Gallardo, E.; Duarte, A.P. Cannabis and its secondary metabolites: Their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines 2019, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Eagleston, L.R.M.; Kalani, N.K.; Patel, R.R.; Flaten, H.K.; Dunnick, C.A.; Dellavalle, R.P. Cannabinoids in dermatology: A scoping review. Dermatol. Online J. 2018, 24, 13030/qt7pn8c0sb. [Google Scholar] [CrossRef] [PubMed]
- ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. Prog. Chem. Org. Nat. Prod. 2017, 103, 1–36. [Google Scholar] [PubMed]
- Bruni, N.; Della Pepa, C.; Oliaro-Bosso, S.; Pessione, E.; Gastaldi, D.; Dosio, F. Cannabinoid delivery systems for pain and inflammation treatment. Molecules 2018, 23, 2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, E. Cannabis: A Complete Guide, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants 2019, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oláh, A.; Bíró, T. Targeting Cutaneous cannabinoid signaling in inflammation—A “high”-way to heal? EBioMedicine 2017, 16, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.N.; Shahbazi, F.; Rondeau-Gagné, S.; Trant, J.F. The biosynthesis of the cannabinoids. J. Cannabis Res. 2021, 3, 7. [Google Scholar] [CrossRef]
- Taura, F.; Sirikantaramas, S.; Shoyama, Y.; Yoshikai, K.; Shoyama, Y.; Morimoto, S. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett. 2007, 581, 2929–2934. [Google Scholar] [CrossRef] [Green Version]
- Taura, F.; Morimoto, S.; Shoyama, Y. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J. Biol. Chem. 1996, 271, 17411–17416. [Google Scholar] [CrossRef] [Green Version]
- Kupczyk, P.; Reich, A.; Szepietowski, J.C. Cannabinoid system in the skin—A possible target for future therapies in dermatology. Exp. Dermatol. 2009, 18, 669–679. [Google Scholar] [CrossRef]
- Baswan, S.M.; Klosner, A.E.; Glynn, K.; Rajgopal, A.; Malik, K.; Yim, S.; Stern, N. Therapeutic potential of cannabidiol (CBD) for skin health and disorders. Clin. Cosmet. Investig. Dermatol. 2020, 13, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Cintosun, A.; Lara-Corrales, I.; Pope, E. Mechanisms of cannabinoids and potential applicability to skin diseases. Clin. Drug Investig. 2020, 40, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.S.; Barrett, D.A.; Randall, M.D. ‘Entourage’ effects of N-palmitoylethanolamide and N-oleoylethanolamide on vasorelaxation to anandamide occur through TRPV1 receptors. Br. J. Pharmacol. 2008, 155, 837–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pistis, M.; Melis, M. From surface to nuclear receptors: The endocannabinoid family extends its assets. Curr. Med. Chem. 2010, 17, 1450–1467. [Google Scholar] [CrossRef]
- Trusler, A.R.; Clark, A.K.; Sivamani, R.K.; Shi, V.Y. The endocannabinoid system and its role in eczematous dermatoses. Dermatitis 2017, 28, 22–32. [Google Scholar] [CrossRef]
- Chiurchiù, V.; Rapino, C.; Talamonti, E.; Leuti, A.; Lanuti, M.; Gueniche, A.; Jourdain, R.; Breton, L.; Maccarrone, M. Anandamide suppresses proinflammatory T cell responses in vitro through type-1 cannabinoid receptor-mediated mTOR inhibition in human keratinocytes. J. Immunol. 2016, 197, 3545–3553. [Google Scholar] [CrossRef]
- Stasiulewicz, A.; Znajdek, K.; Grudzień, M.; Pawiński, T.; Sulkowska, A.J.I. A guide to targeting the endocannabinoid system in drug design. Int. J. Mol. Sci. 2020, 21, 2778. [Google Scholar] [CrossRef]
- Alger, B.E.; Kim, J. Supply and demand for endocannabinoids. Trends Neurosci. 2011, 34, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Maccarrone, M. Metabolism of the endocannabinoid anandamide: Open questions after 25 years. Front. Mol. Neurosci. 2017, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Basavarajappa, B.S. Critical enzymes involved in endocannabinoid metabolism. Protein Pept. Lett. 2007, 14, 237–246. [Google Scholar] [CrossRef]
- Baggelaar, M.P.; Maccarrone, M.; van der Stelt, M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog. Lipid Res. 2018, 71, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.M.; Ascenso, A.; Ribeiro, H.M.; Marto, J. The brain-skin connection and the pathogenesis of psoriasis: A review with a focus on the serotonergic system. Cells 2020, 9, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheriff, T.; Lin, M.J.; Dubin, D.; Khorasani, H. The potential role of cannabinoids in dermatology. J. Dermatolog. Treat. 2020, 31, 839–845. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Kim, M.S.; Lee, S.H.; Park, B.D. Epidermal endocannabinoid system (EES) and its cosmetic application. Cosmetics 2019, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Kendall, A.C.; Pilkington, S.M.; Massey, K.A.; Sassano, G.; Rhodes, L.E.; Nicolaou, A. Distribution of bioactive lipid mediators in human skin. J. Investig. Dermatol. 2015, 135, 1510–1520. [Google Scholar] [CrossRef] [Green Version]
- Tóth, K.F.; Ádám, D.; Bíró, T.; Oláh, A. Cannabinoid signaling in the skin: Therapeutic potential of the “C(ut)annabinoid” system. Molecules 2019, 24, 918. [Google Scholar] [CrossRef] [Green Version]
- Río, C.D.; Millán, E.; García, V.; Appendino, G.; DeMesa, J.; Muñoz, E. The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem. Pharmacol. 2018, 157, 122–133. [Google Scholar] [CrossRef]
- Gęgotek, A.; Biernacki, M.; Ambrożewicz, E.; Surażyński, A.; Wroński, A.; Skrzydlewska, E. The cross-talk between electrophiles, antioxidant defence and the endocannabinoid system in fibroblasts and keratinocytes after UVA and UVB irradiation. J. Dermatol. Sci. 2016, 81, 107–117. [Google Scholar] [CrossRef]
- Karsak, M.; Gaffal, E.; Date, R.; Wang-Eckhardt, L.; Rehnelt, J.; Petrosino, S.; Starowicz, K.; Steuder, R.; Schlicker, E.; Cravatt, B.; et al. Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 2007, 316, 1494–1497. [Google Scholar] [CrossRef] [Green Version]
- Lambert, D.M. Allergic contact dermatitis and the endocannabinoid system: From mechanisms to skin care. ChemMedChem 2007, 2, 1701–1702. [Google Scholar] [CrossRef]
- Ständer, S.; Schmelz, M.; Metze, D.; Luger, T.; Rukwied, R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J. Dermatol. Sci. 2005, 38, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.; Morales, P.; Reggio, P.H. Cannabinoid Ligands Targeting TRP Channels. Front. Mol. Neurosci. 2019, 11. [Google Scholar] [CrossRef]
- Mnekin, L.; Ripoll, L. Topical Use of Cannabis sativa L. Biochemicals. Cosmetics 2021, 8, 85. [Google Scholar] [Green Version]
- Mounessa, J.S.; Siegel, J.A.; Dunnick, C.A.; Dellavalle, R.P. The role of cannabinoids in dermatology. J. Am. Acad. Dermatol. 2017, 77, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Bíró, T.; Tóth, B.I.; Haskó, G.; Paus, R.; Pacher, P. The endocannabinoid system of the skin in health and disease: Novel perspectives and therapeutic opportunities. Trends Pharmacol. Sci. 2009, 30, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Vaughn, A.R.; Clark, A.K.; Sivamani, R.K.; Shi, V.Y. Natural oils for skin-barrier repair: Ancient compounds now backed by modern science. Am. J. Clin. Dermatol. 2018, 19, 103–117. [Google Scholar] [CrossRef]
- Callaway, J.C.; Pate, D.W. Hempseed oil. In Gourmet and Health-Promoting Specialty Oils; Moreau, R., Kamal-Eldin, A., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 185–213. [Google Scholar]
- Shalaby, M.; Yardley, H.; Lio, P.A. Stirring the pot: Cannabinoids and AD. Pract. Dermatol. Online J. 2018, 15, 68–70. [Google Scholar]
- Nickles, M.A.; Lio, P.A. Cannabinoids in dermatology: Hope or hype? Cannabis Cannabinoid Res. 2020, 5, 279–282. [Google Scholar] [CrossRef]
- Szepietowski, J.; Szepietowski, T.; Reich, A. Efficacy and tolerance of the cream containing structured physiological lipids with endocannabinoids in the treatment of uremic pruritus: A preliminary study. Acta Dermatovenerol. Croat. 2005, 13, 97–103. [Google Scholar] [Green Version]
- Ständer, S.; Reinhardt, H.W.; Luger, T.A. Topical cannabinoid agonists. An effective new possibility for treating chronic pruritus. Hautarzt 2006, 57, 801–807. [Google Scholar] [CrossRef]
- Kozela, E.; Juknat, A.; Kaushansky, N.; Ben-Nun, A.; Coppola, G.; Vogel, Z. Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells. J. Neuroinflamm. 2015, 12, 52. [Google Scholar] [CrossRef]
- Huestis, M.A. Pharmacokinetics and metabolism of the plant cannabinoids, Δ9-tetrahydrocannibinol, cannabidiol and cannabinol. In Cannabinoids; Pertwee, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 657–690. [Google Scholar] [Green Version]
- Grotenhermen, F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.J.; Galettis, P.; Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacifici, R.; Marchei, E.; Salvatore, F.; Guandalini, L.; Busardò, F.P.; Pichini, S. Evaluation of long-term stability of cannabinoids in standardized preparations of cannabis flowering tops and cannabis oil by ultra-high-performance liquid chromatography tandem mass spectrometry. Clin. Chem. Lab. Med. 2018, 56, 94–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrosi, N.; Tóth, B.I.; Nagy, G.; Dózsa, A.; Géczy, T.; Nagy, L.; Zouboulis, C.C.; Paus, R.; Kovács, L.; Bíró, T. Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling. FASEB J. 2008, 22, 3685–3695. [Google Scholar] [CrossRef] [PubMed]
- Oláh, A.; Tóth, B.I.; Borbíró, I.; Sugawara, K.; Szöllõsi, A.G.; Czifra, G.; Pál, B.; Ambrus, L.; Kloepper, J.; Camera, E.; et al. Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes. J. Clin. Investig. 2014, 124, 3713–3724. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Akhtar, N. The safety and efficacy of 3% Cannabis seeds extract cream for reduction of human cheek skin sebum and erythema content. Pak. J. Pharm. Sci. 2015, 28, 1389–1395. [Google Scholar]
- Oláh, A.; Ambrus, L.; Nicolussi, S.; Gertsch, J.; Tubak, V.; Kemény, L.; Soeberdt, M.; Abels, C.; Bíró, T. Inhibition of fatty acid amide hydrolase exerts cutaneous anti-inflammatory effects both in vitro and in vivo. Exp. Dermatol. 2016, 25, 328–330. [Google Scholar] [CrossRef]
- Jin, S.; Lee, M.Y. The ameliorative effect of hemp seed hexane extracts on the Propionibacterium acnes-induced inflammation and lipogenesis in sebocytes. PLoS ONE 2018, 13, e0202933. [Google Scholar] [CrossRef]
- Botanix Pharmaceuticals. ASX/Media Release: BTX 1503 Acne Phase 2 Study Results Presentation; Botanix Pharmaceuticals: Philadelphia, PA, USA; Syndey, Australia, 2019; Available online: https://www.asx.com.au/asxpdf/20191023/pdf/449s36d2bz6vfr.pdf (accessed on 9 September 2021).
- Ueda, Y.; Miyagawa, N.; Matsui, T.; Kaya, T.; Iwamura, H. Involvement of cannabinoid CB(2) receptor-mediated response and efficacy of cannabinoid CB(2) receptor inverse agonist, JTE-907, in cutaneous inflammation in mice. Eur. J. Pharmacol. 2005, 520, 164–171. [Google Scholar] [CrossRef]
- Oka, S.; Wakui, J.; Ikeda, S.; Yanagimoto, S.; Kishimoto, S.; Gokoh, M.; Nasui, M.; Sugiura, T. Involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in oxazolone-induced contact dermatitis in mice. J. Immunol. 2006, 177, 8796–8805. [Google Scholar] [CrossRef]
- Petrosino, S.; Cristino, L.; Karsak, M.; Gaffal, E.; Ueda, N.; Tüting, T.; Bisogno, T.; De Filippis, D.; D’Amico, A.; Saturnino, C.; et al. Protective role of palmitoylethanolamide in contact allergic dermatitis. Allergy 2010, 65, 698–711. [Google Scholar] [CrossRef] [PubMed]
- Gaffal, E.; Cron, M.; Glodde, N.; Tüting, T. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors. Allergy 2013, 68, 994–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrosino, S.; Verde, R.; Vaia, M.; Allarà, M.; Iuvone, T.; Di Marzo, V. Anti-inflammatory properties of cannabidiol, a nonpsychotropic cannabinoid, in experimental allergic contact dermatitis. J. Pharmacol. Exp. Ther. 2018, 365, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, X.-M.; Guichard, A.; Tan, Y.-M.; Qian, C.-Y.; Yang, L.-J.; Humbert, P. N-palmitoylethanolamine and N-acetylethanolamine are effective in asteatotic eczema: Results of a randomized, double-blind, controlled study in 60 patients. Clin. Interv. Aging 2014, 9, 1163–1169. [Google Scholar] [CrossRef]
- Gaffal, E.; Glodde, N.; Jakobs, M.; Bald, T.; Tüting, T. Cannabinoid 1 receptors in keratinocytes attenuate fluorescein isothiocyanate-induced mouse atopic-like dermatitis. Exp. Dermatol. 2014, 23, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kim, B.; Park, B.M.; Jeon, J.E.; Lee, S.H.; Mann, S.; Ahn, S.K.; Hong, S.-P.; Jeong, S.K. Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model. Int. J. Dermatol. 2015, 54, e401–e408. [Google Scholar] [CrossRef]
- Nam, G.; Jeong, S.K.; Park, B.M.; Lee, S.H.; Kim, H.J.; Hong, S.P.; Kim, B.; Kim, B.W. Selective cannabinoid receptor-1 agonists regulate mast cell activation in an oxazolone-induced atopic dermatitis model. Ann. Dermatol. 2016, 28, 22–29. [Google Scholar] [CrossRef]
- Callaway, J.; Schwab, U.; Harvima, I.; Halonen, P.; Mykkänen, O.; Hyvönen, P.; Järvinen, T. Efficacy of dietary hempseed oil in patients with atopic dermatitis. J. Dermatolog. Treat. 2005, 16, 87–94. [Google Scholar] [CrossRef]
- Del Rosso, J.Q. Use of a palmitoylethanolamide-containing nonsteroidal cream for treating atopic dermatitis: Impact on the duration of response and time between flares. Cosmet. Dermatol. 2007, 20, 208–211. [Google Scholar]
- Eberlein, B.; Eicke, C.; Reinhardt, H.W.; Ring, J. Adjuvant treatment of atopic eczema: Assessment of an emollient containing N-palmitoylethanolamine (ATOPA study). J. Eur. Acad. Dermatol. Venereol. 2008, 22, 73–82. [Google Scholar] [CrossRef]
- Metwally, S.; Ura, D.P.; Krysiak, Z.J.; Kaniuk, Ł.; Szewczyk, P.K.; Stachewicz, U. Electrospun PCL patches with controlled fiber morphology and mechanical performance for skin moisturization via long-term release of hemp oil for atopic dermatitis. Membranes 2021, 11, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorak, M.; Watkinson, A.; McGlone, F.; Rukwied, R. Histamine induced responses are attenuated by a cannabinoid receptor agonist in human skin. Inflamm. Res. 2003, 52, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Visse, K.; Blome, C.; Phan, N.Q.; Augustin, M.; Ständer, S. Efficacy of body lotion containing N-palmitoylethanolamine in subjects with chronic pruritus due to dry skin: A dermatocosmetic study. Acta Derm. Venereol. 2017, 97, 639–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, J.D.; Williamson, E.M. Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J. Dermatol. Sci. 2007, 45, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Ramot, Y.; Sugawara, K.; Zákány, N.; Tóth, B.I.; Bíró, T.; Paus, R. A novel control of human keratin expression: Cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ. PeerJ 2013, 1, e40. [Google Scholar] [CrossRef]
- Norooznezhad, A.H.; Norooznezhad, F. Cannabinoids: Possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation. Med. Hypotheses 2017, 99, 15–18. [Google Scholar] [CrossRef]
- Changoer, L.; Anastassov, G. Method to Treat Psoriasis. Patent 20190060250, 28 February 2019; AXIM Biotechnologies, Inc.: New York, NY, USA; Available online: https://www.freepatentsonline.com/y2019/0060250.html (accessed on 9 September 2021).
- Friedman, A.J.; Momeni, K.; Kogan, M. Topical cannabinoids for the management of psoriasis vulgaris: Report of a case and review of the literature. J. Drugs Dermatol. 2020, 19, 795. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Jourdan, E.; Picardo, M. Acne is an inflammatory disease and alterations of sebum composition initiate acne lesions. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 527–532. [Google Scholar] [CrossRef]
- Basu, S.; Dittel, B.N. Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol. Res. 2011, 51, 26–38. [Google Scholar] [CrossRef]
- Kaplan, D.H.; Igyártó, B.Z.; Gaspari, A.A. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol. 2012, 12, 114–124. [Google Scholar] [CrossRef]
- Foster, E.; Nguyen, C.; Norris, P. Contact Buzz: Allergic Contact Dermatitis to Cannabis. Dermatitis 2018, 29, 223–224. [Google Scholar] [CrossRef]
- Specht, S.; Persaud, Y. Asteatotic Eczema. Available online: https://www.ncbi.nlm.nih.gov/books/NBK549807/ (accessed on 21 July 2021).[Green Version]
- Lo Verme, J.; Fu, J.; Astarita, G.; La Rana, G.; Russo, R.; Calignano, A.; Piomelli, D. The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol. Pharmacol. 2005, 67, 15–19. [Google Scholar] [CrossRef]
- Silfvast-Kaiser, A.S.; Homan, K.B.; Mansouri, B. A narrative review of psoriasis and multiple sclerosis: Links and risks. Psoriasis 2019, 9, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo Martins, T.E.; Sales de Oliveira Pinto, C.A.; Costa de Oliveira, A.; Robles Velasco, M.V.; Gorriti Guitiérrez, A.R.; Cosquillo Rafael, M.F.; Tarazona, J.P.H.; Retuerto-Figueroa, M.G. Contribution of topical antioxidants to maintain healthy skin—A review. Sci. Pharm. 2020, 88, 27. [Google Scholar] [CrossRef]
- Di Meglio, P.; Villanova, F.; Nestle, F.O. Psoriasis. Cold Spring Harb. Perspect. Med. 2014, 4, a015354. [Google Scholar] [CrossRef] [PubMed]
- Namazi, M.R. Cannabinoids, loratadine and allopurinol as novel additions to the antipsoriatic ammunition. J. Eur. Acad. Dermatol. Venereol. 2005, 19, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Derakhshan, N.; Kazemi, M. Cannabis for refractory psoriasis—High hopes for a novel treatment and a literature review. Curr. Clin. Pharmacol. 2016, 11, 146–147. [Google Scholar] [CrossRef]
- Luan, C.; Chen, X.; Hu, Y.; Hao, Z.; Osland, J.M.; Chen, X.; Gerber, S.D.; Chen, M.; Gu, H.; Yuan, R. Overexpression and potential roles of NRIP1 in psoriasis. Oncotarget 2016, 7, 74236–74246. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.M.; Ascenso, A.; Ribeiro, H.M.; Marto, J. Current and future therapies for psoriasis with a focus on serotonergic drugs. Mol. Neurobiol. 2020, 57, 2391–2419. [Google Scholar] [CrossRef]
- Schlosburg, J.E.; Boger, D.L.; Cravatt, B.F.; Lichtman, A.H. Endocannabinoid modulation of scratching response in an acute allergenic model: A new prospective neural therapeutic target for pruritus. J. Pharmacol. Exp. Ther. 2009, 329, 314–323. [Google Scholar] [CrossRef]
- Avila, C.; Massick, S.; Kaffenberger, B.H.; Kwatra, S.G.; Bechtel, M. Cannabinoids for the treatment of chronic pruritus: A review. J. Am. Acad. Dermatol. 2020, 82, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Petrosino, S.; Di Marzo, V. FAAH and MAGL inhibitors: Therapeutic opportunities from regulating endocannabinoid levels. Curr. Opin. Investig. Drugs 2010, 11, 51–62. [Google Scholar] [PubMed] [Green Version]
- Yesilyurt, O.; Cayirli, M.; Sakin, Y.S.; Seyrek, M.; Akar, A.; Dogrul, A. Systemic and spinal administration of FAAH, MAGL inhibitors and dual FAAH/MAGL inhibitors produce antipruritic effect in mice. Arch. Dermatol. Res. 2016, 308, 335–345. [Google Scholar] [CrossRef]
- Cohen, K.; Weinstein, A. The effects of cannabinoids on executive functions: Evidence from cannabis and synthetic cannabinoids-a systematic review. Brain Sci. 2018, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA. Cannabis Legislation in Europe. An Overview; European Monitoring Centre for Drugs and Drug Addiction: Lisbon, Portugal, 2018; pp. 1–32. Available online: https://www.emcdda.europa.eu/system/files/publications/4135/TD0217210ENN.pdf (accessed on 10 September 2021).
- UNODC. The International Drug Control Conventions; United Nations Office on Drugs and Crime: New York, NY, USA, 2013; pp. 1–168. Available online: https://www.unodc.org/documents/commissions/CND/Int_Drug_Control_Conventions/Ebook/The_International_Drug_Control_Conventions_E.pdf (accessed on 10 September 2021).
- United Nations. Single Convention on Narcotic Drugs; International Narcotics Control Board: Vienna, Austria, 1961; pp. 1–55. Available online: https://www.incb.org/documents/Narcotic-Drugs/1961-Convention/convention_1961_en.pdf (accessed on 10 September 2021).
- EMCDDA. Developments in the European Cannabis Market; European Monitoring Centre for Drugs and Drug Addiction: Lisbon, Portugal, 2019; pp. 1–19. Available online: https://www.emcdda.europa.eu/publications/emcdda-papers/developments-in-the-european-cannabis-market_en (accessed on 10 September 2021).
- WHO. The WHO Expert Committee on Drug Dependence (ECDD); World Health Organization: Geneva, Switzerland, 2018. Available online: https://www.who.int/groups/who-expert-committee-on-drug-dependence (accessed on 10 September 2021).
- WHO. Cannabidiol (CBD) Critical Review Report; WHO-ECDD: Geneva, Switzerland, 2018. Available online: https://www.who.int/medicines/access/controlled-substances/CannabidiolCriticalReview.pdf (accessed on 10 September 2021).
- NCSL. State Medical Marijuana Laws; National Conference of State Legislators: Denver, CO, USA; Washington, DC, USA, 2021; Available online: https://www.ncsl.org/research/health/state-medical-marijuana-laws.aspx (accessed on 2 September 2021).
- Pascual, A.; Medical Cannabis in Europe: The Markets Opportunities. Marijuana Business Daily International. 2019. Available online: https://mjbizdaily.com/wp-content/uploads/2019/04/Medical-Cannabis-in-Europe-Report_FINAL_REV2.pdf (accessed on 10 September 2021).
- FDA. FDA Regulation of Cannabis and Cannabis-Derived Products, Including Cannabidiol (CBD); U.S. Food and Drug Administration: Silver Spring, MD, USA, 2021. Available online: https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd (accessed on 2 September 2021).
- FDA. Epidiolex—Highlights of Prescribing Information; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210365lbl.pdf (accessed on 30 September 2021).
- Abuhasira, R.; Shbiro, L.; Landschaft, Y. Medical use of cannabis and cannabinoids containing products—Regulations in Europe and North America. Eur. J. Intern. Med. 2018, 49, 2–6. [Google Scholar] [CrossRef] [PubMed]
- EMCDDA. Medical Use of Cannabis and Cannabinoids: Questions and Answers for Policymaking; European Monitoring Centre for Drugs and Drug Addiction: Lisbon, Portugal, 2018; pp. 1–48. Available online: https://www.emcdda.europa.eu/system/files/publications/10171/20185584_TD0618186ENN_PDF.pdf (accessed on 30 September 2021).
- Bedrocan. Available online: https://bedrocan.com/ (accessed on 30 September 2021).
- EMCDDA. European Drug Report 2018: Trends and Developments; European Monitoring Centre for Drugs and Drug Addiction: Lisbon, Portugal, 2018; pp. 1–96. Available online: http://www.emcdda.europa.eu/publications/edr/trends-developments/2018 (accessed on 30 September 2021).
- EMA. Epidyolex (cannabidiol). An Overview of Epidyolex and Why it is Authorised in the EU; European Medicines Agency: Amsterdam, The Netherlands, 2021; pp. 1–3. Available online: https://www.ema.europa.eu/en/documents/overview/epidyolex-epar-medicine-overview_en.pdf (accessed on 30 September 2021).[Green Version]
- Lim, M.; Kirchhof, M.G. Dermatology-related uses of medical cannabis promoted by dispensaries in Canada, Europe, and the United States. J. Cutan. Med. Surg. 2019, 23, 178–184. [Google Scholar] [CrossRef]
- Adler, B.L.; DeLeo, V.A. Allergenic ingredients in commercial topical cannabinoid preparations. J. Am. Acad. Dermatol. 2019, 81, 847–848. [Google Scholar] [CrossRef]
- Martin, J.H.; Hill, C.; Walsh, A.; Efron, D.; Taylor, K.; Kennedy, M.; Galettis, R.; Lightfoot, P.; Hanson, J.; Irving, H.; et al. Clinical trials with cannabis medicines—guidance for ethics committees, governance officers and researchers to streamline ethics applications and ensuring patient safety: Considerations from the Australian experience. Trials 2020, 21, 932. [Google Scholar] [CrossRef]
- Manthey, J. Cannabis use in Europe: Current trends and public health concerns. Int. J. Drug Policy 2019, 68, 93–96. [Google Scholar] [CrossRef]
Endocannabinoids | Phytocannabinoids | Synthetic Cannabinoids |
---|---|---|
2-Arachidonoylglycerol (2-AG) Anandamide (AEA) N-Palmitoylethanolamide (PEA) Oleoylethanolamide (OEA) | Cannabidiol (CBD) Cannabigerol (CBG) Cannabichromene (CBC) Cannabinodiol Cannabitriol ** Cannabielsoin Cannabicyclol Cannabinol (CNB-ol) Δ9-Tetrahydrocannabinol (THC) * Δ-9-Tetrahydrocannabivarin (THCV) Δ-9-Tetrahydrocannabinolic acid (THCA) (-)-Δ8-trans-tetrahydrocannabinol * | JWH-133 (R)-Methanandamide HU-308 JTE-907 SR 144,528 |
Type of Receptor | Name | Location in Skin | Main Ligands (ECBs and pCNBs) | Interaction | |
---|---|---|---|---|---|
Main receptors | G-protein-coupled receptor | CB1R | Sensory nerves, hair follicles, immunocytes, keratinocytes, melanocytes, sebaceous glands | AEA | Weak partial agonist |
CBD | Negative allosteric modulator | ||||
THC | Partial agonist | ||||
THCV | Antagonist | ||||
CB2R | Immunocytes, keratinocytes, melanocytes, sensory neurons, sebaceous glands | AEA | Weak partial agonist | ||
CBD | Inverse agonist | ||||
THC, THCV | Partial agonist | ||||
Secondary receptors | Transient potential ion channels | TRPV-1 | Sweat and sebaceous glands, keratinocytes, melanocytes, nerves, immunocytes | AEA, THC | Weak agonist |
CBD, CBGA, CBGV, THCV | Strong agonists | ||||
CBG | Agonist | ||||
TRPV-2 | Sensory nerves, keratinocytes, immunocytes, fibroblasts | CBD, CBG, CBGV, THC, THCA, THCV | Strong agonists | ||
TRPV-3 | Hair follicle, immunocytes, keratinocytes, fibroblasts, sensory nerves | CBD | Agonist (action similar to the typical agonist carvacrol) | ||
THCV | Strong agonist | ||||
THC | Weak agonist | ||||
TRPV-4 | Immunocytes, keratinocytes, fibroblasts, sensory nerves | AEA, 2-AG | Agonists (indirect activation) | ||
CBDV, THCV | Strong agonists | ||||
THC | Weak agonist | ||||
TRPA1 | Immunocytes, keratinocytes, fibroblasts, sensory nerves | AEA, THC | Agonist | ||
CBD, CBC, CBN | Strong agonists | ||||
TRPM8 | Immunocytes, keratinocytes, fibroblasts, sensory nerves | AEA, THC, THCA, CBD, CBN | Strong antagonists | ||
Peroxisome proliferator-activated receptors | PPAR-α | Immunocytes, keratinocytes, melanocytes | THC, CBGA | Agonists | |
CBDA, CBG | Partial agonists | ||||
PPAR-γ | Keratinocytes, melanocytes, fibroblasts, hair follicles | THC, CBD | Agonists | ||
Serotonin receptors | 5-HT1A | Immunocytes, keratinocytes, melanocytes, fibroblasts | CBG | Strong antagonist | |
CBD, THCV, CBDA | Agonists | ||||
5-HT2A | Immunocytes, keratinocytes, melanocytes, fibroblasts, sensory nerves | CBD | Partial agonist | ||
5-HT3 | Immunocytes, keratinocytes | CBD, THC | Antagonists |
Disease | Type of Study | Short Description | Results | Ref. |
---|---|---|---|---|
Acne and seborrhea | In vitro lab research | Production and effects of ECBs in cultured human SZ95 sebocytes. | Cells produced AEA and 2-AG and expressed CB2R but not CB1R. Lipid synthesis and apoptosis-driven cell death via CB2R were upregulated by AEA and 2-AG. | [63] |
In vitro lab research | Effect of CBD in cultured human SZ95 sebocytes and human skin organ culture. | CBD inhibited the lipogenic actions of several compounds, suppressed sebocyte proliferation and had anti-inflammatory action, inhibiting the NF-κB signaling pathway. | [64] | |
Single-blind comparative study (11 participants) | Effect of C. sativa seed extract cream (3%) on acne symptoms. | Decreased sebum and erythema levels. | [65] | |
In vitro lab research | Effect of cannabinoids in cultured human SZ95 sebocytes. | CBC, CBDV suppressed AA-induced seborrhea lipogenesis. THCV inhibited sebocyte proliferation and AA-induced seborrhea lipogenesis. CBG, CBGV had pro-lipogenic and pro-acne actions. | [66] | |
In vitro lab research | Effect of hemp seed extracts on human HaCaT keratinocytes and primary human sebocytes. | Hemp seed hexane extracts (HSHE) had antimicrobial activity against C. acnes, anti-inflammatory, anti-lipogenic, and collagen-promoting properties. | [67] | |
Clinical trial (368 participants) | Effect of BTX 1503 (topical solution with 5% CBD). | After 12 weeks of treatment there was a 40% reduction in acne lesions. | [68] | |
Allergic contact dermatitis (ACD) | In vivo lab research | Effect of CB2R antagonists/reverse agonists in a mice ear ACD model. | Mice ears showed swelling within 1 day after being treated with a 2-AG analogue and within 1-8 days after treatment with a CB2R agonist. Oral administration of a CB2R antagonist or reverse agonist decreased the swelling in these ACD models and also in an DNFB-induced ACD model. | [69] |
In vivo lab research | Effect of CB1R/CB2R antagonists on oxazolone-induced ACD in mice ears. | Oxazolone-challenged mice ears had increased concentrations of 2-AG. Treatment with a CB2R antagonist (but not CB1R antagonist) suppressed the inflammatory response. | [70] | |
In vivo lab research | Response of WT and CB1R/CB2R knockout mutant mice to DNFB-induced ACD. | Mice knocked-out for CB1R/CB2R showed exacerbated allergic inflammation to DNFB-induced ACD. Antagonists of CBRs led to exacerbated allergic inflammation in WT mice, while agonists attenuated the inflammatory response. Mice deficient in FAAH had increased concentrations of AEA and reduced allergic responses. | [44] | |
In vitro and in vivo lab research | Production and effect of PEA in an DNFB-induced ACD mice model and HaCaT keratinocytes. | Endogenous production and exogenous application of PEA decreased symptoms of DNFB-induced ACD. Keratinocytes induced with poly-(I:C) had higher levels of PEA, and exogenous PEA treatment inhibited the secretion of pro-inflammatory mediators, an effect reversed by TRPV1 antagonists, but not PPAR-α or CB2R antagonists. | [71] | |
In vitro and in vivo lab research | Effect of THC in a DNFB-induced mice model of ACD | Topical application of THC decreased ear swelling independently of CB1R/CB2R by decreasing the secretion of IFN-γ by T cells and myeloid immune cell infiltration. In vitro, THC inhibited the IFN-γ-dependent production of chemokines by mice primary epidermal keratinocytes. | [72] | |
In vitro lab research | Effect of CBD in poly-(I:C)-stimulated human HaCaT keratinocytes. | Treatment with CBD increased AEA levels and inhibited the production of MCP-2, IL-6, IL-8 and TNF-α. This was reversed by treatment with CB2R and TRPV1 antagonists. | [73] | |
Asteatotic eczema | Randomized double-blind controlled study (60 participants) | Compare PEA/AEA (0.3%/0.21%) emollient cream with a traditional emollient. | Improved scaling, dryness, and itching at day 28. Increased skin hydration (measured by change in capacitance of the skin surface), back to normal levels in 7 days. No difference in TEWL between PEA/AEA and control creams. | [74] |
Atopic dermatitis (AD) | In vivo lab research | Research the role of CB1R in fluorescein isothiocyanate (FTIC)-induced AD in mice ears. | Mice knocked out for CB1R globally or in keratinocytes had enhanced responses to FTIC and delayed epidermal barrier repair. Inflamed ear tissue had higher pro-inflammatory cytokines and chemokines mRNA level, and higher eosinophil activity. CB1R-deficient epidermal keratinocytes secreted higher levels of TSLP and CCL8, inducing a Th2-type skin inflammation. | [75] |
In vivo lab research | Effects of CB1R agonists on skin inflammation in acute and chronic oxazolone-induced AD animal models. | The topical application of the agonists accelerated the recovery of the epidermal barrier function and had anti-inflammatory effects, confirmed by histological studies. | [76] | |
In vivo lab research | Effects of CB1R agonists (AEA derived) on mast cell activation. | CB1R agonists suppressed mast cell proliferation in a dose-dependent manner, suggesting an important role for CB1R plays in the modulation of antigen-dependent IgE-mediated mast cell activation. | [77] | |
Single-blind crossover (20 participants) | Effect of dietary hempseed oil. | Improvement of skin dryness and itchiness. Decrease in dermal medication usage. | [78] | |
Investigator-blinded comparative study (43 participants) | Effect of PEA-containing non-steroidal cream. | Increased the mean time to the next flare by an average of 28 days, compared to moisturizer cream (both combined with a topical corticosteroid cream). | [79] | |
Cohort (2546 participants) | Effect of emollient cream containing PEA. | Decreased severity, flare-ups and use of topical steroids. Improved symptoms, disease tolerance and sleep. | [80] | |
In vitro (skin model); in vivo (3 human volunteers) | Effect of PCL patch with hemp seed oil. | Long-term release of hemp seed oil from the patches (55% over 6 h) and 20–25% increase in skin hydration. | [81] | |
Chronic pruritus | Double-blinded comparative study (12+6 participants) | Effect of cannabinoid receptor agonist HU210 (skin patch or microdialysis). | Reduced experimentally-induced itch and attenuated increase in blood flow. | [82] |
Clinical trial (21 participants) | Effect of AEA/PEA cream with Derma Membrane Structure (DMS) in uremic pruritus. | After a 3 week therapy, there was a complete elimination of pruritis in 38% patients and reduction in xerosis in 81% patients. The product was well tolerated by all patients. | [56] | |
Cohort (22 participants) | Effect of emollient cream containing PEA. | Reduced subjective severity of itch (average reduction of 86%). Antipruritic effect observed in 64% of the cases. | [57] | |
Single-blind comparative study (100 participants) | DMS-based dermatocosmetic lotion containing PEA. | No significant differences between DMS-based PEA lotion group and control group concerning itch, quality of life, or cosmetic acceptance. | [83] | |
Psoriasis | In vitro lab research | Effect of THC, CBD, CBN, CBG on keratinocyte proliferation. | Inhibition of cell proliferation, concentration-dependent and independent of CB1R/CB2R. | [84] |
In vitro and in situ lab research | Effect of CB1R agonist in the levels of keratins K6 and K16. | Downregulation of keratins expression in situ (organ-cultured human skin) and in vitro (HaCaT keratinocytes), suggesting the involvement of CB1R in the process. | [85] | |
Hypothesis | Use of JWH-133 (synthetic cannabinoid) as a therapy for psoriasis. | Study of JWH-133, a potent antiangiogenic and anti-inflammatory agent, for the treatment of psoriasis. | [86] | |
Patent | Effects of CBD/CBG oil in 2 psoriatic patients. | 16–33% reduction in lesions observed after 6 weeks. | [87] | |
Case study | Effect of products with THC distillate in a 33-year-old psoriasis patient. | Treatment with cream, soap and oil improved psoriasis symptoms as early as 2 days after beginning. Flare-ups could be controlled by reinitiating the treatment. | [88] |
Brand Name | Active Ingredients | Description | Indications | Dosage Forms | Countries Approved |
---|---|---|---|---|---|
Sativex® | Nabiximols | Plant based: THC/CBD (~1:1) | Spasticity due to multiple sclerosis | Oromucosal spray | UK, Norway, some EU countries, Canada |
Marinol®, Syndros® | Dronabinol * | Synthetic THC | Treatment of nausea and vomiting due to chemotherapy, anorexia due to AIDS | Gelatine capsules (Marinol), oral solution (Syndros) | USA, EU countries, Canada, others |
Cesamet® Canemes® | Nabilone ** | Synthetic cannabinoid similar to THC | Treat nausea and vomiting due to chemotherapy in cancer patients; chronic pain management | Capsules | USA, Canada, some EU countries |
Epidyolex® (EU) Epidiolex® (USA) | CBD | Purified CBD | Seizures associated with Lennox–Gastaut syndrome, Dravet syndrome | Oral solution | EU, USA |
Bedrocan [119] | Several | Plant material; (5 plant varieties available) | Various | Dried flower tips (sometimes powdered) | Australia, South Africa, some European countries |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, A.M.; Gomes, A.L.; Vilas Boas, I.; Marto, J.; Ribeiro, H.M. Cannabis-Based Products for the Treatment of Skin Inflammatory Diseases: A Timely Review. Pharmaceuticals 2022, 15, 210. https://doi.org/10.3390/ph15020210
Martins AM, Gomes AL, Vilas Boas I, Marto J, Ribeiro HM. Cannabis-Based Products for the Treatment of Skin Inflammatory Diseases: A Timely Review. Pharmaceuticals. 2022; 15(2):210. https://doi.org/10.3390/ph15020210
Chicago/Turabian StyleMartins, Ana M., Ana L. Gomes, Inês Vilas Boas, Joana Marto, and Helena M. Ribeiro. 2022. "Cannabis-Based Products for the Treatment of Skin Inflammatory Diseases: A Timely Review" Pharmaceuticals 15, no. 2: 210. https://doi.org/10.3390/ph15020210
APA StyleMartins, A. M., Gomes, A. L., Vilas Boas, I., Marto, J., & Ribeiro, H. M. (2022). Cannabis-Based Products for the Treatment of Skin Inflammatory Diseases: A Timely Review. Pharmaceuticals, 15(2), 210. https://doi.org/10.3390/ph15020210