Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs
Abstract
:1. Introduction
2. Pathophysiology of Thrombotic Events: The Role of Platelets
2.1. Thromboembolic Events
2.2. Platelets in Hypercoagulation
3. Platelets in the Tumour Microenvironment
4. Anti-Platelet Therapy in Thromboembolic Disease and Cancer
4.1. Platelet Activation—The Impact of Tumour Cells
4.2. Inhibition of Cyclooxygenase (COX) Enzymes with Aspirin
4.3. Blocking of ADP Receptors: Clopidogrel
4.4. Targeting the Thrombin Pathway with Atopaxar
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, K.A.; Molsberry, R.; Khan, S.S.; Linder, J.A.; Cameron, K.A.; Benson, A. Preventing Venous Thromboembolism in Oncology Practice: Use of Risk Assessment and Anticoagulation Prophylaxis. Res. Pract. Thromb. Haemost. 2020, 4, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Donnellan, E.; Khorana, A.A. Cancer and Venous Thromboembolic Disease: A Review. Oncologist 2017, 22, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menter, D.G.; Tucker, S.C.; Kopetz, S.; Sood, A.K.; Crissman, J.D.; Kenneth, V. Platelets and Cancer: A Casual or Causal Relationship: Revisited. Cancer Metastasis Rev. 2014, 33, 231–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Aashima; Nanda, M.; Fronterre, C.; Sewagudde, P.; Ssentongo, A.E.; Yenney, K.; Arhin, N.D.; Oh, J.; Amponsah-Manu, F.; et al. Mapping Cancer in Africa: A Comprehensive and Comparable Characterization of 34 Cancer Types Using Estimates from GLOBOCAN 2020. Front. Public Health 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Kochel, T.J.; Reader, J.C.; Ma, X.; Kundu, N.; Fulton, A.M. Multiple Drug Resistance-Associated Protein (MRP4) Exports Prostaglandin E2 (PGE2) and Contributes to Metastasis in Basal/Triple Negative Breast Cancer. Oncotarget 2017, 8, 6540–6554. [Google Scholar] [CrossRef] [Green Version]
- De Lima Mota, A.; Evangelista, A.F.; Macedo, T.; Oliveira, R.; Scapulatempo-Neto, C.; Vieira, R.A.; Marques, M.M.C. Molecular Characterization of Breast Cancer Cell Lines by Clinical Immunohistochemical Markers. Oncol. Lett. 2017, 13, 4708–4712. [Google Scholar] [CrossRef] [Green Version]
- Polyak, K. Heterogeneity in Breast Cancer. J. Clin. Investig. 2011, 121, 3786–3788. [Google Scholar] [CrossRef] [Green Version]
- Martelotto, L.G.; Ng, C.K.Y.; Piscuoglio, S.; Weigelt, B.; Reis-Filho, J.S. Breast Cancer Intra-Tumor Heterogeneity. Breast Cancer Res. 2014, 16, 1–11. [Google Scholar] [CrossRef]
- Eliyatkin, N.; Yalcin, E.; Zengel, B.; Aktaş, S.; Vardar, E. Molecular Classification of Breast Carcinoma: From Traditional, Old-Fashioned Way to A New Age, and A New Way. J. Breast Health 2015, 11, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotimi, S.O.; Rotimi, O.A.; Salhia, B. A Review of Cancer Genetics and Genomics Studies in Africa. Front. Oncol. 2021, 10, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intratumoral Heterogeneity in Cancer Progression and Response to Immunotherapy. Nat. Med. 2021, 27, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Brothwell, M.R.S.; Barnett, G.C. Cancer Genetics and Genomics e Part 2 Somatic Genetic Changes in Cancer Cells. Clin. Oncol. 2022, 34, e262–e267. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Zhu, Q.; Zhan, P.; Zhu, S.; Zhang, J.; Lv, T.; Song, Y. Patterns and Functional Implications of Platelets upon Tumor “Education”. Int. J. Biochem. Cell Biol. 2017, 90, 68–80. [Google Scholar] [CrossRef]
- Razak, N.B.A.; Jones, G.; Bhandari, M.; Berndt, M.C.; Metharom, P. Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers 2018, 10, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Papaxoinis, G.; Kamposioras, K.; Germetaki, T.; Weaver, J.M.J.; Stamatopoulou, S.; Nasralla, M.; Kordatou, Z.; Owen-Holt, V.; Anthoney, A.; Mansoor, W. Predictive Factors of Thromboembolic Complications in Patients with Esophagogatric Adenocarcinoma Undergoing Preoperative Chemotherapy. Acta Oncol. 2018, 57, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Koupenova, M.; Kehrel, B.E.; Corkrey, H.A.; Freedman, J.E. Thrombosis and Platelets: An Update. Eur. Heart J. 2017, 38, 785–791. [Google Scholar] [CrossRef]
- Holinstat, M.; Yeung, J. Newer Agents in Antiplatelet Therapy: A Review. J. Blood Med. 2012, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Key, N.S.; Khorana, A.A.; Mackman, N.; McCarty, O.J.T.; White, G.C.; Francis, C.W.; McCrae, K.R.; Palumbo, J.S.; Raskob, G.E.; Chan, A.T.; et al. Thrombosis in Cancer: Research Priorities Identified by a National Cancer Institute/National Heart, Lung, and Blood Institute Strategic Working Group. Cancer Res. 2016, 76, 3671–3675. [Google Scholar] [CrossRef]
- Fennerty, A. Venous Thromboembolic Disease and Cancer. Postgrad. Med. J. 2006, 82, 642–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.H.I.; Dang, C.; Zhu, K.U.N.; Zhang, Y.; Chang, D.; Xia, P.; Song, Y.; Li, K. Cyclophosphamide, Epirubicin and Fluorouracil Chemotherapy-Induced Alteration of Haemostasis Markers in Breast Cancer Patients. Mol. Clin. Oncol. 2015, 3, 1088–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haemmerle, M.; Stone, R.L.; Menter, D.G.; Afshar-Kharghan, V.; Sood, A.K. The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell 2018, 33, 965–983. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.J.; Afshar-Kharghan, V.; Schafer, A.I. Paraneoplastic Thrombocytosis: The Secrets of Tumor Self-Promotion. Blood 2014, 124, 184–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, S.E.R.; Ukoumunne, O.C.; Shephard, E.; Hamilton, W. How Useful Is Thrombocytosis in Predicting an Underlying Cancer in Primary Care? A Systematic Review. Fam. Pract. 2017, 34, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voutsadakis, I.A. Thrombocytosis as a Prognostic Marker in Gastrointestinal Cancers. World J. Gastrointest. Oncol. 2014, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Golebiewska, E.M.; Poole, A.W. Platelet Secretion: From Haemostasis to Wound Healing and Beyond. Blood Rev. 2015, 29, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemetson, K.J. Platelets and Primary Haemostasis. Thromb. Res. 2012, 129, 220–224. [Google Scholar] [CrossRef]
- Weber, M.R.; Zuka, M.; Lorger, M.; Tschan, M.; Torbett, B.E.; Zijlstra, A.; Quigley, J.P.; Staflin, K.; Eliceiri, B.P.; Krueger, J.S.; et al. Activated Tumor Cell Integrin Avβ3 Cooperates with Platelets to Promote Extravasation and Metastasis from the Blood Stream. Thromb. Res. 2016, 140, S27–S36. [Google Scholar] [CrossRef]
- Zhang, N.; Newman, P.J. Packaging Functionally Important Plasma Proteins into the α-Granules of Human-Induced Pluripotent Stem Cell-Derived Megakaryocytes. J. Tissue Eng. Regen. Med. 2019, 13, 244–252. [Google Scholar] [CrossRef]
- Leblanc, R.; Lee, S.C.; David, M.; Bordet, J.C.; Norman, D.D.; Patil, R.; Miller, D.; Sahay, D.; Ribeiro, J.; Clézardin, P.; et al. Interaction of Platelet-Derived Autotaxin with Tumor Integrin AVb3 Controls Metastasis of Breast Cancer Cells to Bone. Blood 2014, 124, 3141–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, S.; Goldfinger, L.E. Platelet Microparticles and MiRNA Transfer in Cancer Progression: Many Targets, Modes of Action, and Effects Across Cancer Stages. Front. Cardiovasc. Med. 2018, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Van Holten, T.C.; Bleijerveld, O.B.; Wijten, P.; De Groot, P.G.; Heck, A.J.R.; Barendrecht, A.D.; Merkx, T.H.; Scholten, A.; Roest, M. Quantitative Proteomics Analysis Reveals Similar Release Profiles Following Specific PAR-1 or PAR-4 Stimulation of Platelets. Cardiovasc. Res. 2014, 103, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokrovskaya, I.D.; Aronova, M.A.; Kamykowski, J.A.; Prince, A.A.; Hoyne, J.D.; Calco, G.N.; Kuo, B.C.; He, Q.; Leapman, R.D.; Storrie, B. STEM Tomography Reveals That the Canalicular System and α-Granules Remain Separate Compartments during Early Secretion Stages in Blood Platelets. J. Thromb. Haemost. 2016, 14, 572–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, C.G.; Michelson, A.D.; Flaumenhaft, R. Granule Exocytosis Is Required for Platelet Spreading: Differential Sorting of α-Granules Expressing VAMP-7. Blood 2012, 120, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Baaten, C.C.F.M.J.; ten Cate, H.; van der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet Populations and Priming in Hematological Diseases. Blood Rev. 2017, 31, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Kawato, M.; Shirakawa, R.; Kondo, H.; Higashi, T.; Ikeda, T.; Okawa, K.; Fukai, S.; Nureki, O.; Kita, T.; Horiuchi, H. Regulation of Platelet Dense Granule Secretion by the Ral GTPase-Exocyst Pathway. J. Biol. Chem. 2008, 283, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Ollivier, V.; Syvannarath, V.; Gros, A.; Butt, A.; Loyau, S.; Jandrot-Perrus, M.; Ho-Tin-Noé, B. Collagen Can Selectively Trigger a Platelet Secretory Phenotype via Glycoprotein VI. PLoS ONE 2014, 9, e104712. [Google Scholar] [CrossRef]
- Van Asten, I.; Schutgens, R.E.G.; Baaij, M.; Zandstra, J.; Roest, M.; Pasterkamp, G.; Huisman, A.; Korporaal, S.J.A.; Urbanus, R.T. Validation of Flow Cytometric Analysis of Platelet Function in Patients with a Suspected Platelet Function Defect. J. Thromb. Haemost. 2018, 16, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Ramström, S.; Södergren, A.L.; Tynngård, N.; Lindahl, T.L. Platelet Function Determined by Flow Cytometry: New Perspectives? Semin. Thromb. Hemost. 2016, 42, 268–281. [Google Scholar] [CrossRef]
- Schwarz, S.; Gockel, L.M.; Naggi, A.; Barash, U.; Gobec, M.; Bendas, G.; Schlesinger, M. Glycosaminoglycans as Tools to Decipher the Platelet Tumor Cell Interaction: A Focus on P-Selectin. Molecules 2020, 25, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leytin, V.; Mody, M.; Semple, J.W.; Garvey, B.; Freedman, J. Quantification of Platelet Activation Status by Analyzing P-Selectin Expression. Biochem. Biophys. Res. Commun. 2000, 273, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustine, T.N.; Van Der Spuy, W.J.; Kaberry, L.L.; Shayi, M. Thrombin-Mediated Platelet Activation of Lysed Whole Blood and Platelet-Rich Plasma: A Comparison between Platelet Activation Markers and Ultrastructural Alterations. Microsc. Microanal. 2016, 22, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.S.; Li, J.; Gonzalez-Delgado, R.; Lee, H.; Vasquez, M.; He, T.; He, Y.; Liu, K.; Sasano, T.; Nürnberg, B.; et al. The Effect of Platelet G Proteins on Platelet Extravasation and Tumor Growth in the Murine Model of Ovarian Cancer. Blood Adv. 2021, 5, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Pather, K.; Augustine, T.N. Tamoxifen Induces Hypercoagulation and Alterations in ERα and ERβ Dependent on Breast Cancer Sub-Phenotype Ex Vivo. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Plantureux, L.; Mege, D.; Crescence, L.; Carminita, E.; Robert, S.; Cointe, S.; Brouilly, N.; Ezzedine, W.; Dignat-George, F.; Dubois, C.; et al. The Interaction of Platelets with Colorectal Cancer Cells Inhibits Tumor Growth but Promotes Metastasis. Cancer Res. 2020, 80, 291–303. [Google Scholar] [CrossRef]
- Xulu, K.R.; Augustine, T.N. Antiplatelet Therapy Combined with Anastrozole Induces Features of Partial EMT in Breast Cancer Cells and Fails to Mitigate Breast–Cancer Induced Hypercoagulation. Int. J. Mol. Sci. 2021, 22, 4153. [Google Scholar] [CrossRef]
- Burnouf, T.; Goubran, H.A.; Chou, M.L.; Devos, D.; Radosevic, M. Platelet Microparticles: Detection and Assessment of Their Paradoxical Functional Roles in Disease and Regenerative Medicine. Blood Rev. 2014, 28, 155–166. [Google Scholar] [CrossRef]
- Meikle, C.K.S.; Kelly, C.A.; Garg, P.; Wuescher, L.M.; Ali, R.A.; Worth, R.G. Cancer and Thrombosis: The Platelet Perspective. Front. Cell Dev. Biol. 2017, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Heemskerk, J.W.M.; Mattheij, N.J.A.; Cosemans, J.M.E.M. Platelet-Based Coagulation: Different Populations, Different Functions. J. Thromb. Haemost. 2013, 11, 2–16. [Google Scholar] [CrossRef]
- Blair, T.A.; Michelson, A.D.; Frelinger, A.L. Mass Cytometry Reveals Distinct Platelet Subtypes in Healthy Subjects and Novel Alterations in Surface Glycoproteins in Glanzmann Thrombasthenia. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pather, K.; Dix-Peek, T.; Duarte, R.; Chetty, N.; Augustine, T.N. Breast Cancer Cell-Induced Platelet Activation Is Compounded by Tamoxifen and Anastrozole in Vitro. Thromb. Res. 2019, 177, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Eckly, A.; Rinckel, J.Y.; Proamer, F.; Ulas, N.; Joshi, S.; Whiteheart, S.W.; Gachet, C. Respective Contributions of Single and Compound Granule Fusion to Secretion by Activated Platelets. Blood 2016, 128, 2538–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedl, J.; Riedl, J.; Pabinger, I.; Ay, C. Platelets in Cancer and Thrombosis. Hamostaseologie 2014, 34, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Koltsova, E.M.; Sorokina, M.A.; Pisaryuk, A.S.; Povalyaev, N.M.; Ignatova, A.A.; Polokhov, D.M.; Kotova, E.O.; Balatskiy, A.V.; Ataullakhanov, F.I.; Panteleev, M.A.; et al. Hypercoagulation Detected by Routine and Global Laboratory Hemostasis Assays in Patients with Infective Endocarditis. PLoS ONE 2021, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Falanga, A.; Piccioli, A. Cancer and Venous Thromboembolism. Clinical Implications of Strong Association. Pathophysology Haemost. Thromb. 2006, 35, 111–115. [Google Scholar] [CrossRef]
- Ishikawa, S.; Miyashita, T.; Inokuchi, M.; Hayashi, H.; Oyama, K.; Tajima, H.; Takamura, H.; Ninomiya, I.; Ahmed, A.K.; Harman, J.W.; et al. Platelets Surrounding Primary Tumor Cells Are Related to Chemoresistance. Oncol. Rep. 2016, 36, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, T.; Tajima, H.; Makino, I.; Nakagawara, H.; Kitagawa, H.; Fushida, S.; Harmon, J.W.; Ohta, T. Metastasis-Promoting Role of Extravasated Platelet Activation in Tumor. J. Surg. Res. 2015, 193, 289–294. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Fushida, S.; Kinoshita, J.; Okazaki, M.; Ishikawa, S.; Ohbatake, Y.; Terai, S.; Okamoto, K.; Nakanuma, S.; Makino, I.; et al. Extravasated Platelet Aggregation Contributes to Tumor Progression via the Accumulation of Myeloid-Derived Suppressor Cells in Gastric Cancer with Peritoneal Metastasis. Oncol. Lett. 2020, 20, 1879–1887. [Google Scholar] [CrossRef]
- Saito, H.; Fushida, S.; Miyashita, T.; Oyama, K.; Yamaguchi, T.; Tsukada, T.; Kinoshita, J.; Tajima, H.; Ninomiya, I.; Ohta, T. Potential of Extravasated Platelet Aggregation as a Surrogate Marker for Overall Survival in Patients with Advanced Gastric Cancer Treated with Preoperative Docetaxel, Cisplatin and S-1: A Retrospective Observational Study. BMC Cancer 2017, 17, 1–11. [Google Scholar] [CrossRef]
- Blair, P.; Flaumenhaft, R. Platelet α-Granules: Basic Biology and Clinical Correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Undas, A.; Ariëns, R.A.S. Fibrin Clot Structure and Function: A Role in the Pathophysiology of Arterial and Venous Thromboembolic Diseases. Arterioscler. Thromb. Vasc. Biol. 2011, 31, e88–e99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretorius, E. The Role of Platelet and Fibrin Ultrastructure in Identifying Disease Patterns. Pathophysology Haemost. Thromb. 2007, 8, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Gomes, F.G.; Sandim, V.; Almeida, V.H.; Rondon, A.M.R.; Succar, B.B.; Hottz, E.D.; Leal, A.C.; Verçoza, B.R.F.; Rodrigues, J.C.F.; Bozza, P.T.; et al. Breast-Cancer Extracellular Vesicles Induce Platelet Activation and Aggregation by Tissue Factor-Independent and -Dependent Mechanisms. Thromb. Res. 2017, 159, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Spillane, C.D.; Cooke, N.M.; Ward, M.P.; Kenny, D.; Blackshields, G.; Kelly, T.; Bates, M.; Huang, Y.; Martin, C.; Skehan, S.; et al. The Induction of a Mesenchymal Phenotype by Platelet Cloaking of Cancer Cells Is a Universal Phenomenon. Transl. Oncol. 2021, 14, 101229. [Google Scholar] [CrossRef] [PubMed]
- Le Chapelain, O.; Ho-Tin-noé, B. Intratumoral Platelets: Harmful or Incidental Bystanders of the Tumor Microenvironment? Cancers 2022, 14, 2192. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ren, M.; Chen, N.; Luo, M.; Deng, X.; Xia, J.; Yu, G.; Liu, J.; He, B.; Zhang, X.; et al. Presence of Intratumoral Platelets Is Associated with Tumor Vessel Structure and Metastasis. BMC Cancer 2014, 14, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obermann, W.M.J.; Brockhaus, K.; Eble, J.A. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front. Cell Dev. Biol. 2021, 9, 941. [Google Scholar] [CrossRef]
- Mezouar, S.; Frère, C.; Darbousset, R.; Mege, D.; Crescence, L.; Dignat-george, F.; Panicot-dubois, L.; Dubois, C. Role of Platelets in Cancer and Cancer-Associated Thrombosis: Experimental and Clinical Evidences. Thromb. Res. 2016, 139, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Ward, Y.; Lake, R.; Faraji, F.; Sperger, J.; Martin, P.; Gilliard, C.; Ku, K.P.; Rodems, T.; Niles, D.; Tillman, H.; et al. Platelets Promote Metastasis via Binding Tumor CD97 Leading to Bidirectional Signaling That Coordinates Transendothelial Migration. Cell Rep. 2018, 23, 808–822. [Google Scholar] [CrossRef]
- Li, N. Platelets in Cancer Metastasis: To Help the “Villain” to Do Evil. Int. J. Cancer 2016, 138, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Placke, T.; Kopp, H.-G.; Kanz, L.; Salih, H.R. Coating of Tumor Cells by Platelets Confers Expression of Immunoregulatory Molecules which Impair NK Cell Anti-Tumor Reactivity. Blood 2009, 114, 2993. [Google Scholar] [CrossRef]
- Raab, S.; Kropp, K.N.; Steinle, A.; Kanz, L.; Kopp, H.-G.; Salih, H.R. Platelets Impair NK Cell Immunosurveillance of Metastasizing Tumor Cells by Altering Surface Expression and Shedding of Ligands for the Activating Immunoreceptor NKG2D. Blood 2013, 122, 3488. [Google Scholar] [CrossRef]
- Clar, K.L.; Hinterleitner, C.; Schneider, P.; Salih, H.R.; Maurer, S. Inhibition of NK Reactivity against Solid Tumors by Platelet-Derived RANKL. Cancers 2019, 11, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadallah, S.; Schmied, L.; Eken, C.; Charoudeh, H.N.; Amicarella, F.; Schifferli, J.A. Platelet-Derived Ectosomes Reduce NK Cell Function. J. Immunol. 2016, 197, 1663–1671. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, M. Role of Platelets and Platelet Receptors in Cancer Metastasis. J. Hematol. Oncol. 2018, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Abrahams, J.M.; Smith, L.M.; McVey, J.H.; Lechler, R.I.; Dorling, A. Regenerative Repair after Endoluminal Injury in Mice with Specific Antagonism of Protease Activated Receptors on CD34+ Vascular Progenitors. Blood 2008, 111, 4155–4164. [Google Scholar] [CrossRef] [Green Version]
- Janowska-Wieczorek, A.; Wysoczynski, M.; Kijowski, J.; Marquez-Curtis, L.; Machalinski, B.; Ratajczak, J.; Ratajczak, M.Z. Microvesicles Derived from Activated Platelets Induce Metastasis and Angiogenesis in Lung Cancer. Int. J. Cancer 2005, 113, 752–760. [Google Scholar] [CrossRef]
- Zarà, M.; Canobbio, I.; Visconte, C.; Canino, J.; Torti, M.; Guidetti, G.F. Molecular Mechanisms of Platelet Activation and Aggregation Induced by Breast Cancer Cells. Cell. Signal. 2018, 48, 45–53. [Google Scholar] [CrossRef]
- Augustine, T.N.; Pather, K.; Mak, D.; Klonaros, D.; Xulu, K.; Dix-Peek, T.; Duarte, R.; van der Spuy, W.J. Ex Vivo Interaction between Blood Components and Hormone-Dependent Breast Cancer Cells Induces Alterations Associated with Epithelial-Mesenchymal Transition and Thrombosis. Ultrastruct. Pathol. 2020, 44, 262–272. [Google Scholar] [CrossRef]
- Labelle, M.; Begum, S.; Hynes, R.O. Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-like Transition and Promotes Metastasis. Cancer Cell 2011, 20, 576–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.I.; Lee, J.I.E.J.; Chen, W.E.I.F.; Chou, D.S.; Huang, S.Y.; Sheu, J.R. A Novel Role for Tamoxifen in the Inhibition of Human Platelets. Transl. Res. 2011, 157, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.E.; Forward, J.A.; Tippy, M.D.; Ceglowski, J.R.; El-Husayni, S.; Kulenthirarajan, R.; Machlus, K.R.; Mayer, E.L.; Italiano, J.E.; Battinelli, E.M. Tamoxifen Directly Inhibits Platelet Angiogenic Potential and Platelet-Mediated Metastasis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 664–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pather, K.; Augustine, T.N. Modelling the Procoagulatory Effect of Anastrozole Relative to ERα and ERβ Expression in Breast Cancer Cells. J. Thromb. Thrombolysis 2022, 54, 401–410. [Google Scholar] [CrossRef]
- Onitilo, A.A.; Doi, S.A.R.; Engel, J.M.; Glurich, I.; Johnson, J.; Berg, R. Clustering of Venous Thrombosis Events at the Start of Tamoxifen Therapy in Breast Cancer: A Population-Based Experience. Thromb. Res. 2012, 130, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Asghar, S.; Parvaiz, F.; Manzoor, S. Multifaceted Role of Cancer Educated Platelets in Survival of Cancer Cells. Thromb. Res. 2019, 177, 42–50. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Guo, E.; Mao, X.; Miao, S. Emerging Roles of Platelets in Cancer Biology and Their Potential as Therapeutic Targets. Front. Oncol. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Tello-Montoliu, A.; Tomasello, S.D.; Ueno, M.; Angiolillo, D.J. Antiplatelet Therapy: Thrombin Receptor Antagonists. Br. J. Clin. Pharmacol. 2011, 72, 658–671. [Google Scholar] [CrossRef]
- Yun, S.H.; Sim, E.H.; Goh, R.Y.; Park, J.I.; Han, J.Y. Platelet Activation: The Mechanisms and Potential Biomarkers. Biomed Res. Int. 2016, 2016, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Osafo, N.; Agyare, C.; Obiri, D.D.; Antwi, A.O. Mechanism of Action of Nonsteroidal Anti-Inflammatory Drugs. In Nonsteroidal Anti-Inflammatory Drugs; Al-Kaf, A.G., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3444-2. [Google Scholar]
- Cadavid, A.P. Aspirin: The Mechanism of Action Revisited in the Context of Pregnancy Complications. Front. Immunol. 2017, 8, 261. [Google Scholar] [CrossRef]
- Awtry, E.H.; Loscalzo, J. Aspirin. Circulation 2000, 101, 1206–1218. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.; Dovizio, M.; Tacconelli, S.; Contursi, A.; Ballerini, P.; Patrignani, P. Antithrombotic Agents and Cancer. Cancers 2018, 10, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, P.P.N.; Knaus, E.E. Evolution of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Cyclooxygenase (COX) Inhibition and Beyond. J. Pharm. Pharm. Sci. 2008, 11, 81–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, R.; Resch, U.; Sinzinger, H. Do Human Platelets Express COX-2? Prostaglandins Leukot. Essent. Fat. Acids 2001, 64, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.R.; Yousef, G.M.; Ni, H. Cancer and Platelet Crosstalk: Opportunities and Challenges of Aspirin and Other Antiplatelet Agents. Blood 2018, 131, 1777–1789. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro, J.L.; Angiolillo, D.J. New Directions in Antiplatelet Therapy. Circ. Cardiovasc. Interv. 2012, 5, 433–445. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Dubois, R.N. Prostaglandins and Cancer. Gut 2006, 55, 115–122. [Google Scholar] [CrossRef]
- Hoellen, F.; Kelling, K.; Dittmer, C.; Diedrich, K.; Friedrich, M.; Thill, M. Impact of Cyclooxygenase-2 in Breast Cancer. Anticancer Res. 2011, 31, 4359–4367. [Google Scholar]
- Kochel, T.J.; Goloubeva, O.G.; Fulton, A.M. Upregulation of Cyclooxygenase-2/Prostaglandin E2 (COX-2/PGE2) Pathway Member Multiple Drug Resistance-Associated Protein 4 (MRP4) and Downregulation of Prostaglandin Transporter (PGT) and 15-Prostaglandin Dehydrogenase (15-PGDH) in Triple-Negative Breast. Breast Cancer Basic Clin. Res. 2016, 10, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 Promotes Tumor Growth and Suppresses Tumor Immunity. Cancer Cell Int. 2015, 15, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Bowers, L.W.; Maximo, I.X.F.; Brenner, A.J.; Beeram, M.; Hursting, S.D.; Price, R.S.; Tekmal, R.R.; Jolly, C.A.; DeGraffenried, L.A. NSAID Use Reduces Breast Cancer Recurrence in Overweight and Obese Women: Role of Prostaglandin-Aromatase Interactions. Cancer Res. 2014, 74, 4446–4457. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, E.J.; Thun, M.J.; Bain, E.B.; Rodriguez, C.; Henley, S.J.; Calle, E.E. A Large Cohort Study of Long-Term Daily Use of Adult-Strength Aspirin and Cancer Incidence. J. Natl. Cancer Inst. 2007, 99, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Herrera, N.J.; Pérez-Plasencia, C.; Camacho-Zavala, E.; Figueroa González, G.; López Urrutia, E.; Garćia-Castillo, V.; Zentella-Dehesa, A. Clinical Evidence of the Relationship between Aspirin and Breast Cancer Risk (Review). Oncol. Rep. 2014, 32, 451–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucotti, S.; Cerutti, C.; Soyer, M.; Gil-Bernabé, A.M.; Gomes, A.L.; Allen, P.D.; Smart, S.; Markelc, B.; Watson, K.; Armstrong, P.C.; et al. Aspirin Blocks Formation of Metastatic Intravascular Niches by Inhibiting Platelet-Derived COX-1/Thromboxane A2. J. Clin. Investig. 2019, 129, 1845–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisk, G.; Ekberg, S.; Lidbrink, E.; Eloranta, S.; Sund, M.; Fredriksson, I.; Lambe, M.; Smedby, K.E. No Association between Low-Dose Aspirin Use and Breast Cancer Outcomes Overall: A Swedish Population-Based Study. Breast Cancer Res. 2018, 20, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loomans-Kropp, H.A.; Pinsky, P.; Umar, A. Evaluation of Aspirin Use with Cancer Incidence and Survival among Older Adults in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. JAMA Netw. Open 2021, 4, 1–13. [Google Scholar] [CrossRef]
- Bertrand, K.A.; Bethea, T.N.; Gerlovin, H.; Coogan, P.F.; Barber, L.; Rosenberg, L.; Palmer, J.R. Aspirin Use and Risk of Breast Cancer in African American Women. Breast Cancer Res. 2020, 22, 1–9. [Google Scholar] [CrossRef]
- Huang, X.Z.; Gao, P.; Sun, J.X.; Song, Y.X.; Tsai, C.C.; Liu, J.; Chen, X.W.; Chen, P.; Xu, H.M.; Wang, Z.N. Aspirin and Nonsteroidal Anti-Inflammatory Drugs after but Not before Diagnosis Are Associated with Improved Breast Cancer Survival: A Meta-Analysis. Cancer Causes Control 2015, 26, 589–600. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, F.; Yang, M.; Wu, X.; Liu, A. Effect of Aspirin Use on Survival Benefits of Breast Cancer Patients. Medicine 2021, 100, e26870. [Google Scholar] [CrossRef]
- McNeil, J.J.; Nelson, M.R.; Woods, R.L.; Lockery, J.E.; Wolfe, R.; Reid, C.M.; Kirpach, B.; Shah, R.C.; Ives, D.G.; Storey, E.; et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1519–1528. [Google Scholar] [CrossRef]
- Li, H.; Lee, M.-H.; Liu, K.; Wang, T.; Song, M.; Han, Y.; Yao, K.; Xie, H.; Zhu, F.; Grossmann, M.; et al. Inhibiting Breast Cancer by Targeting the Thromboxane A2 Pathway. NPJ Precis. Oncol. 2017, 1, 8. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Brummel-Ziedins, K.E.; Mann, K.G. Antithrombotic Properties of Aspirin and Resistance to Aspirin: Beyond Strictly Antiplatelet Actions. Blood 2007, 109, 2285–2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, L.; Li, W.; Li, Z.Y.; Mao, Y.X.; Zhang, Y.T.; Zhao, Y.M.; Chen, K.; Duan, W.M.; Tao, M. Inhibition of MCF-7 Breast Cancer Cell-Induced Platelet Aggregation Using a Combination of Antiplatelet Drugs. Oncol. Lett. 2013, 5, 675–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.E.; Ceglowski, J.R.; Roweth, H.G.; Forward, J.A.; Tippy, M.D.; El-Husayni, S.; Kulenthirarajan, R.; Malloy, M.W.; Machlus, K.R.; Chen, W.Y.; et al. Aspirin Inhibits Platelets from Reprogramming Breast Tumor Cells and Promoting Metastasis. Blood Adv. 2019, 3, 198–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passacquale, G.; Ferro, A. Current Concepts of Platelet Activation: Possibilities for Therapeutic Modulation of Heterotypic vs. Homotypic Aggregation. Br. J. Clin. Pharmacol. 2011, 72, 604–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eikelboom, J.W.; Hirsh, J.; Spencer, F.A.; Baglin, T.P.; Weitz, J.I. Antiplatelet Drugs—Antithrombotic Therapy and Prevention of Thrombosis, 9th Ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012, 141, e89S–e119S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damman, P.; Woudstra, P.; Kuijt, W.J.; De Winter, R.J.; James, S.K. P2Y12 Platelet Inhibition in Clinical Practice. J. Thromb. Thrombolysis 2012, 33, 143–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballerini, P.; Dovizio, M.; Bruno, A.; Tacconelli, S.; Patrignani, P. P2Y 12 Receptors in Tumorigenesis and Metastasis. Front. Pharmacol. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denslow, A.; Świtalska, M.; Jarosz, J.; Papiernik, D.; Porshneva, K.; Nowak, M.; Wietrzyk, J. Clopidogrel in a Combined Therapy with Anticancer Drugs—Effect on Tumor Growth, Metastasis, and Treatment Toxicity: Studies in Animal Models. PLoS ONE 2017, 12, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Purinergic Signaling in the Cardiovascular System. Circ. Res. 2017, 120, 207–228. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Lin, J.; Wang, Y.; Zhou, Q.; Wang, C.; Cheng, W.; Chi, L. Association of Cytochrome P450 Genetic Variants with Clopidogrel Resistance and Outcomes in Acute Ischemic Stroke. J. Atheroscler. Thromb. 2016, 23, 1188–1200. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.; Douglas, I.; Smeeth, L.; Thompson, M. Determinants of Cholesterol and Triglycerides Recording in Patients Treated with Lipid Lowering Therapy in UK Primary Care. Pharmacoepidemiol. Drug Saf. 2007, 16, 228. [Google Scholar] [CrossRef]
- Roden, D.M.; Stein, C.M. Clopidogrel and the Concept of High-Risk Pharmacokinetics. Circulation 2009, 119, 2127–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangkuhl, K.; Klein, T.E.; Altman, R.B. Clopidogrel Pathway. Pharmacogenet. Genom. 2010, 20, 463–465. [Google Scholar] [CrossRef]
- Elmariah, S.; Doros, G.; Benavente, O.R.; Bhatt, D.L.; Connolly, S.J.; Yusuf, S.; Steinhubl, S.R.; Liu, Y.; Hsieh, W.H.; Yeh, R.W.; et al. Impact of Clopidogrel Therapy on Mortality and Cancer in Patients with Cardiovascular and Cerebrovascular Disease: A Patient-Level Meta-Analysis. Circ. Cardiovasc. Interv. 2018, 11, e005795. [Google Scholar] [CrossRef]
- Mauri, L.; Kereiakes, D.J.; Yeh, R.W.; Driscoll-Shempp, P.; Cutlip, D.E.; Steg, P.G.; Normand, S.T.; Wiviott, S.D.; Cohen, D.J.; Holmes, D.R., Jr.; et al. Twelve or 30 Months of Dual Antiplatelet Therapy After Drug-Eluting Stents. N. Engl. J. Med. 2014, 371, 2155–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capodanno, D.; Ferreiro, J.L.; Angiolillo, D.J. Antiplatelet Therapy: New Pharmacological Agents and Changing Paradigms. J. Thromb. Haemost. 2013, 11, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Roop, R.P.; Naughton, M.J.; Van Poznak, C.; Schneider, J.G.; Lammers, P.E.; Pluard, T.J.; Johnson, F.; Eby, C.S.; Weilbaecher, K.N. A Randomized Phase Ii Trial Investigating the Effect of Platelet Function Inhibition on Circulating Tumor Cells in Patients with Metastatic Breast Cancer. Clin. Breast Cancer 2013, 13, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Roe, M.T.; Cyr, D.D.; Eckart, D.; Schulte, P.J.; Morse, M.A.; Blackwell, K.L.; Ready, N.E.; Zafar, S.Y.; Beaven, A.W.; Strickler, J.H.; et al. Ascertainment, Classification, and Impact of Neoplasm Detection during Prolonged Treatment with Dual Antiplatelet Therapy with Prasugrel vs. Clopidogrel Following Acute Coronary Syndrome. Eur. Heart J. 2016, 37, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Serebruany, V.L.; Cherepanov, V.; Cabrera-Fuentes, H.A.; Kim, M.H. Solid Cancers after Antiplatelet Therapy: Confirmations, Controversies, and Challenges. Thromb. Haemost. 2015, 114, 1104–1112. [Google Scholar] [CrossRef]
- Yusuf, S.; Zhao, F.; Mehta, S.; Chrolavicius, S.; Tognoni, K.; Fox, K. Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators Effects of Clopidogrel in Addition to Aspirin in Patients with Acute Coronary Syndromes without ST-Segment Elevation. N. Engl. J. Med. 2001, 345, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Active Investigators. Effect of Clopidogrel Added to Aspirin in Patients with Atrial Fibrillation. N. Engl. J. Med. 2009, 360, 2066–2078. [Google Scholar] [CrossRef] [PubMed]
- Leader, A.; Zelikson-Saporta, R.; Pereg, D.; Spectre, G.; Rozovski, U.; Raanani, P.; Hermoni, D.; Lishner, M. The Effect of Combined Aspirin and Clopidogrel Treatment on Cancer Incidence. Am. J. Med. 2017, 130, 826–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauri, L.; Elmariah, S.; Yeh, R.W.; Cutlip, D.E.; Steg, P.G.; Windecker, S.; Wiviott, S.D.; Cohen, D.J.; Massaro, J.M.; D’Agostino, R.B.; et al. Causes of Late Mortality with Dual Antiplatelet Therapy after Coronary Stents. Eur. Heart J. 2016, 37, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Wiviott, S.D.; Braunwald, E.; McCabe, C.; Giles Montalescot, B.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.J.; Ardissino, D.; De Servi, S.; Murphy, S.; et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef] [Green Version]
- Smeda, M.; Kieronska, A.; Proniewski, B.; Jasztal, A.; Selmi, A.; Wandzel, K.; Zakrzewska, A.; Wojcik, T.; Przyborowski, K.; Derszniak, K.; et al. Dual Antiplatelet Therapy with Clopidogrel and Aspirin Increases Mortality in 4T1 Metastatic Breast Cancer-Bearing Mice by Inducing Vascular Mimicry in Primary Tumour. Oncotarget 2018, 9, 17810–17824. [Google Scholar] [CrossRef]
- Xulu, K.; Duarte, R.; Augustine, T. Combined Anastrozole and Antiplatelet Therapy Treatment Differentially Promotes Breast Cancer Cell Survival. Microsc. Microanal. 2020, 26, 497–508. [Google Scholar] [CrossRef]
- Jennings, L.K. Mechanisms of Platelet Activation: Need for New Strategies to Protect against Platelet-Mediated Atherothrombosis. Thromb. Haemost. 2009, 102, 248–257. [Google Scholar] [CrossRef]
- Wojtukiewicz, M.Z.; Hempel, D.; Sierko, E.; Tucker, S.C.; Honn, K.V. Thrombin—Unique Coagulation System Protein with Multifaceted Impacts on Cancer and Metastasis. Cancer Metastasis Rev. 2016, 35, 213–233. [Google Scholar] [CrossRef]
- Heuberger, D.M.; Schuepbach, R.A. Correction to: Protease-Activated Receptors (PARs): Mechanisms of Action and Potential Therapeutic Modulators in PAR-Driven Inflammatory Diseases. Thromb. J. 2019, 17, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Mihara, K.; Ramachandran, R.; Saifeddine, M.; Hansen, K.K.; Renaux, B.; Polley, D.; Gibson, S.; Vanderboor, C.; Hollenberg, M.D. Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling. Mol. Pharmacol. 2016, 89, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Holinstat, M.; Preininger, A.M.; Milne, S.B.; Hudson, W.J.; Brown, H.A.; Hamm, H.E. Irreversible Platelet Activation Requires Protease-Activated Receptor 1-Mediated Signaling to Phosphatidylinositol Phosphates. Mol. Pharmacol. 2009, 76, 301–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tourdot, B.E.; Stoveken, H.; Trumbo, D.; Yeung, J.; Kanthi, Y.; Edelstein, L.C.; Bray, P.F.; Tall, G.G.; Holinstat, M. Genetic Variant in Human PAR (Protease-Activated Receptor) 4 Enhances Thrombus Formation Resulting in Resistance to Antiplatelet Therapeutics. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1632–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, N.; Jin, K.; He, K.; Cao, J.; Teng, L. Protease-Activated Receptors in Cancer: A Systematic Review. Oncol. Lett. 2011, 2, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Schuepbach, R.A.; Madon, J.; Ender, M.; Galli, P.; Riewald, M. Protease-Activated Receptor-1 Cleaved at R46 Mediates Cytoprotective Effects. J. Thromb. Haemost. 2012, 10, 1675–1684. [Google Scholar] [CrossRef] [Green Version]
- Reddel, C.J.; Tan, C.W.; Chen, V.M. Thrombin Generation and Cancer: Contributors and Consequences. Cancers 2019, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ay, C.; Dunkler, D.; Simanek, R.; Thaler, J.; Koder, S.; Marosi, C.; Zielinski, C.; Pabinger, I. Prediction of Venous Thromboembolism in Patients with Cancer by Measuring Thrombin Generation: Results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 2011, 29, 2099–2103. [Google Scholar] [CrossRef]
- Renni, M.J.P.; Cerqueira, M.H.; de Araújo Trugilho, I.; Araujo Junior, M.L.C.; Marques, M.A.; Koch, H.A. Mechanisms of Venous Thromboembolism in Cancer: A Literature Review. J. Vasc. Bras. 2017, 16, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Covic, L.; Kuliopulos, A. Protease-Activated Receptor 1 as Therapeutic Target in Breast, Lung, and Ovarian Cancer: Pepducin Approach. Int. J. Mol. Sci. 2018, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liao, R.; Chen, X.; Ying, X.; Chen, G.; Li, M.; Dong, C. Twist-Mediated PAR1 Induction Is Required for Breast Cancer Progression and Metastasis by Inhibiting Hippo Pathway. Cell Death Dis. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Schweickert, P.G.; Yang, Y.; White, E.E.; Cresswell, G.M.; Elzey, B.D.; Ratliff, T.L.; Arumugam, P.; Antoniak, S.; Mackman, N.; Flick, M.J.; et al. Thrombin-PAR1 Signaling in Pancreatic Cancer Promotes an Immunosuppressive Microenvironment. J. Thromb. Haemost. 2021, 19, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Moschonas, I.C.; Goudevenos, J.A.; Tselepis, A.D. Protease-Activated Receptor-1 Antagonists in Long-Term Antiplatelet Therapy. Current State of Evidence and Future Perspectives. Int. J. Cardiol. 2015, 185, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kogushi, M.; Matsuoka, T.; Kawata, T.; Kuramochi, H.; Kawaguchi, S.; Murakami, K.; Hiyoshi, H.; Suzuki, S.; Kawahara, T.; Kajiwara, A.; et al. The Novel and Orally Active Thrombin Receptor Antagonist E5555 (Atopaxar) Inhibits Arterial Thrombosis without Affecting Bleeding Time in Guinea Pigs. Eur. J. Pharmacol. 2011, 657, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Pang, X.; Liu, Z.; Yang, G.; Tao, W.; Pei, Q.; Cui, Y. Progress in the Development of Antiplatelet Agents: Focus on the Targeted Molecular Pathway from Bench to Clinic. Pharmacol. Ther. 2019, 203, 107393. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Flather, M.D.; O’Donoghue, M.L.; Goto, S.; Fitzgerald, D.J.; Cura, F.; Aylward, P.; Guetta, V.; Dudek, D.; Contant, C.F.; et al. Randomized Trial of Atopaxar in the Treatment of Patients with Coronary Artery Disease: The Lessons from Antagonizing the Cellular Effect of Thrombin–Coronary Artery Disease Trial. Circulation 2011, 123, 1854–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, S.; Ogawa, H.; Takeuchi, M.; Flather, M.D. Double-Blind, Placebo-Controlled Phase II Studies of the Protease-Activated Receptor 1 Antagonist E5555 (Atopaxar) in Japanese Patients with Acute Coronary Syndrome or High-Risk Coronary Artery Disease. Eur. Heart J. 2010, 31, 2601–2613. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, J.; Song, S.; Yue, X.; Li, Q. Protease-Activated Receptor-1 (PAR-1): A Promising Molecular Target for Cancer. Oncotarget 2017, 8, 107334–107345. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.; Boire, A.; Agarwal, A.; Nguyen, N.; O’Callaghan, K.; Tu, P.; Kuliopulos, A.; Covic, L. Blockade of PAR1 Signaling with Cell-Penetrating Pepducins Inhibits Akt Survival Pathways in Breast Cancer Cells and Suppresses Tumor Survival and Metastasis. Cancer Res. 2009, 69, 6223–6231. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, J.; Ying, X.; Lin, P.C.; Zhou, B.P. Twist-Mediated Epithelial-Mesenchymal Transition Promotes Breast Tumor Cell Invasion via Inhibition of Hippo Pathway. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Du, Y.; Zhang, X.; Wang, Z.; Lin, Y.; Song, Q.; Wang, X.; Guo, J.; Li, S.; Nan, J.; et al. Discovery and Evaluation of Atopaxar Hydrobromide, a Novel JAK1 and JAK2 Inhibitor, Selectively Induces Apoptosis of Cancer Cells with Constitutively Activated STAT3. Investig. New Drugs 2019, 38, 1003–1011. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xulu, K.R.; Augustine, T.N. Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs. Pharmaceuticals 2022, 15, 1532. https://doi.org/10.3390/ph15121532
Xulu KR, Augustine TN. Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs. Pharmaceuticals. 2022; 15(12):1532. https://doi.org/10.3390/ph15121532
Chicago/Turabian StyleXulu, Kutlwano R., and Tanya N. Augustine. 2022. "Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs" Pharmaceuticals 15, no. 12: 1532. https://doi.org/10.3390/ph15121532
APA StyleXulu, K. R., & Augustine, T. N. (2022). Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs. Pharmaceuticals, 15(12), 1532. https://doi.org/10.3390/ph15121532