Surfactant Mediated Accelerated and Discriminatory In Vitro Drug Release Method for PLGA Nanoparticles of Poorly Water-Soluble Drug
Abstract
:1. Introduction
2. Results and Discussion
2.1. Differential Scanning Calorimetry (DSC)
2.2. Solubility of AC1LPSZG in Different pH Buffers
2.3. In Vitro Drug Release from PLGA-AC1LPSZG-NPs at pH 1.2 and 6.8
2.4. Surfactant Mediated Accelerated AC1LPSZG Release from PLGA NPs
2.4.1. Effect of Surfactants on AC1LPSZG Solubility and Stability
2.4.2. Effect of Surfactants on Sink Conditions
2.4.3. In Vitro Drug Release with Different % CTAB in Phosphate Buffer pH 6.8
2.4.4. Discriminatory In Vitro Drug Release Method
2.4.5. Release Kinetics Models
3. Materials and Methods
3.1. Materials
3.2. Preparation of PLGA-AC1LPSZG-NPs
3.3. Particle Size & Zeta Potential Measurement
3.4. Entrapment Efficiency (%EE)
3.5. In Vitro Drug Release Study
3.6. Sample Preparation for LC-MS/MS Analysis by Liquid–Liquid Extraction
3.7. Differential Scanning Calorimetry (DSC)
3.8. Analytical Methods
3.8.1. Ultra-Performance Liquid Chromatography (UPLC) Method
3.8.2. LC-MS/MS Method
3.9. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Taghavi, S.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett. 2017, 400, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dauda, K.; Busari, Z.; Morenikeji, O.; Afolayan, F.; Oyeyemi, O.; Meena, J.; Sahu, D.; Panda, A. Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: Formulation, antimalarial and toxicity assessments. J. Zhejiang Univ. Sci. B 2017, 18, 977–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, A.D.S.B.F.; Brito, G.A.D.C.; Lima, M.L.D.S.; Júnior, A.A.D.S.; Silva, E.D.S.; de Rezende, A.A.; Bortolin, R.H.; Galvan, M.; Pirih, F.Q.; Júnior, R.F.D.A.; et al. Metformin Hydrochloride-Loaded PLGA Nanoparticle in Periodontal Disease Experimental Model Using Diabetic Rats. Int. J. Mol. Sci. 2018, 19, 3488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalombo, L.; Lemmer, Y.; Semete-Makokotlela, B.; Ramalapa, B.; Nkuna, P.; Booysen, L.L.; Naidoo, S.; Hayeshi, R.; Verschoor, J.A.; Swai, H.S. Spray-Dried, Nanoencapsulated, Multi-Drug Anti-Tuberculosis Therapy Aimed at Once Weekly Administration for the Duration of Treatment. Nanomaterials 2019, 9, 1167. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Zhou, Q.; Zhu, H.; Zhuang, Y.; Bao, J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer 2020, 20, 354. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Mi, Y.; Zhang, B.; Gu, S.; Liu, G.; Li, X. PLGA nanoparticles for the oral delivery of nuciferine: Preparation, physicochemical characterization and in vitro/in vivo studies. Drug Deliv. 2017, 24, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, I.; Suzuki, T.; Makino, K. Skin permeability and transdermal delivery route of 50-nm indomethacin-loaded PLGA nanoparticles. Colloids Surf. B Biointerfaces 2017, 159, 312–317. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Patel, S.K.; Palmer, K.E.; Devlin, B.; Rohan, L.C. Design of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles for Vaginal Co-Delivery of Griffithsin and Dapivirine and Their Synergistic Effect for HIV Prophylaxis. Pharmaceutics 2019, 11, 184. [Google Scholar] [CrossRef] [Green Version]
- Calderó, G.; Fornaguera, C.; Zadoina, L.; Dols-Perez, A.; Solans, C. Design of parenteral MNP-loaded PLGA nanoparticles by a low-energy emulsification approach as theragnostic platforms for intravenous or intratumoral administration. Colloids Surf. B Biointerfaces 2017, 160, 535–542. [Google Scholar] [CrossRef]
- Phillips, D.J.; Pygall, S.R.; Cooper, V.B.; Mann, J.C. Overcoming sink limitations in dissolution testing: A review of traditional methods and the potential utility of biphasic systems. J. Pharm. Pharmacol. 2012, 64, 1549–1559. [Google Scholar] [CrossRef]
- Liu, P.; de Wulf, O.; Laru, J.; Heikkilä, T.; van Veen, B.; Kiesvaara, J.; Hirvonen, J.; Peltonen, L.; Laaksonen, T. Dissolution Studies of Poorly Soluble Drug Nanosuspensions in Non-sink Conditions. AAPS Pharm. Sci. Tech. 2013, 14, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Sahana, D.; Mittal, G.; Bhardwaj, V.; Kumar, M. PLGA Nanoparticles for Oral Delivery of Hydrophobic Drugs: Influence of Organic Solvent on Nanoparticle Formation and Release Behavior In Vitro and In Vivo Using Estradiol as a Model Drug. J. Pharm. Sci. 2008, 97, 1530–1542. [Google Scholar] [CrossRef]
- Shen, J.; Choi, S.; Qu, W.; Wang, Y.; Burgess, D.J. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J. Control. Release 2015, 218, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Siepmann, J.; Siepmann, F. Sink conditions do not guarantee the absence of saturation effects. Int. J. Pharm. 2020, 577, 119009. [Google Scholar] [CrossRef]
- Menei, P.; Daniel, V.; Montero-Menei, C.; Brouillard, M.; Pouplard-Barthelaix, A.; Benoit, J. Biodegradation and brain tissue reaction to poly(D,L-lactide-co-glycolide) microspheres. Biomaterials 1993, 14, 470–478. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Suzuki, T. Hydrolysis of polyesters by lipases. Nature 1977, 270, 76–78. [Google Scholar] [CrossRef]
- Ali, S.; Doherty, P.; Williams, D. Molecular biointeractions of biomedical polymers with extracellular exudate and inflammatory cells and their effects on the biocompatibility, in vivo. Biomaterials 1994, 15, 779–785. [Google Scholar] [CrossRef]
- Williams, D.F.; Mort, E. Enzyme-accelerated hydrolysis of polyglycolic acid. J. Bioeng. 1977, 1, 231–238. [Google Scholar]
- Lu, L.; Peter, S.J.; Lyman, M.D.; Lai, H.-L.; Leite, S.M.; Tamada, J.A.; Uyama, S.; Vacanti, J.P.; Langer, R.; Mikos, A.G. In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams. Biomaterials 2000, 21, 1837–1845. [Google Scholar] [CrossRef]
- Park, C.-W.; Lee, H.-J.; Oh, D.-W.; Kang, J.-H.; Han, C.-S.; Kim, D.-W. Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection. Drug Des. Dev. Ther. 2018, 12, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Burgess, D.J. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms. J. Pharm. Pharmacol. 2012, 64, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, J.; Tang, X.; Li, M.; Ma, S.; Liu, C.; Gao, Y.; Zhang, Y.; Liu, Y.; Yu, F.; et al. An Accelerated Release Method of Risperidone Loaded PLGA Microspheres with Good IVIVC. Curr. Drug Deliv. 2018, 15, 87–96. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, S.; Faraj, J.A.; Giovagnoli, S.; DeLuca, P.P. IVIVC from Long Acting Olanzapine Microspheres. Int. J. Biomater. 2014, 2014, 407065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ncecayir, T. The effects of surfactants on the solubility and dissolution profiles of a poorly water-soluble basic drug, carvedilol. Die Pharm. 2015, 70, 784–790. [Google Scholar]
- Gander, B.; Ventouras, K.; Gurny, R.; Doelker, E. In vitro dissolution medium with supramicellar surfactant concentration and its relevance for in vivo absorption. Int. J. Pharm. 1985, 27, 117–124. [Google Scholar] [CrossRef]
- Zolnik, B.S.; Leary, P.E.; Burgess, D.J. Elevated temperature accelerated release testing of PLGA microspheres. J. Control. Release 2006, 112, 293–300. [Google Scholar] [CrossRef]
- Zolnik, B.S.; Burgess, D.J. In Vitro—In Vivo Correlation on Parenteral Dosage Forms; Springer: Boston, MA, USA, 2008. [Google Scholar]
- Huang, Z.; Parikh, S.; Fish, W.P. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior. Int. J. Pharm. 2018, 535, 350–359. [Google Scholar] [CrossRef]
- Gowthamarajan, K. Dissolution Testing for Poorly Soluble Drugs: A Continuing Perspective. Dissolut. Technol. 2010, 17, 24–32. [Google Scholar] [CrossRef]
- Shah, V.P.; Konecny, J.J.; Everett, R.L.; McCullough, B.; Noorizadeh, A.C.; Skelly, J.P. In Vitro Dissolution Profile of Water-Insoluble Drug Dosage Forms in the Presence of Surfactants. Pharm. Res. 1989, 6, 612–618. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Rege, B.D.; Amidon, G.L.; Polli, J.E. Surfactant-mediated dissolution: Contributions of solubility enhancement and relatively low micelle diffusivity. J. Pharm. Sci. 2004, 93, 2064–2075. [Google Scholar] [CrossRef]
- Cregg, J. Compounds and Methods for Promoting Stress Resistance. Patent Appl. PCT/US2016/055964. 2017. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017062751 (accessed on 10 May 2022).
- Heng, D.; Cutler, D.J.; Chan, H.-K.; Yun, J.; Raper, J.A. What is a Suitable Dissolution Method for Drug Nanoparticles? Pharm. Res. 2008, 25, 1696–1701. [Google Scholar] [CrossRef]
- Bhardwaj, U.; Burgess, D.J. A novel USP apparatus 4 based release testing method for dispersed systems. Int. J. Pharm. 2010, 388, 287–294. [Google Scholar] [CrossRef]
- Eaton, J.W.; Tran, D.; Hauck, W.W.; Stippler, E.S. Development of a Performance Verification Test for USP Apparatus 4. Pharm. Res. 2012, 29, 345–351. [Google Scholar] [CrossRef]
- Singh, I.; Aboul-Enein, H.Y. Advantages of USP Apparatus IV (flow-through cell apparatus) in dissolution studies. J. Iran. Chem. Soc. 2006, 3, 220–222. [Google Scholar] [CrossRef]
- Yoshida, H.; Kuwana, A.; Shibata, H.; Izutsu, K.-I.; Goda, Y. Particle Image Velocimetry Evaluation of Fluid Flow Profiles in USP 4 Flow-Through Dissolution Cells. Pharm. Res. 2015, 32, 2950–2959. [Google Scholar] [CrossRef]
- Kakhi, M. Mathematical modeling of the fluid dynamics in the flow-through cell. Int. J. Pharm. 2009, 376, 22–40. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, B.; Xia, G.; Choi, S.H. FDA’s Poly (Lactic-Co-Glycolic Acid) Research Program and Regulatory Outcomes. AAPS J. 2021, 23, 92. [Google Scholar] [CrossRef]
- Ravi, S.; Peh, K.; Darwis, Y.; Murthy, B.; Singh, T.R.; Mallikarjun, C. Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery system. Indian J. Pharm. Sci. 2008, 70, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Tsume, Y.; Mudie, D.M.; Langguth, P.; Amidon, G.E.; Amidon, G.L. The Biopharmaceutics Classification System: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur. J. Pharm. Sci. 2014, 57, 152–163. [Google Scholar] [CrossRef] [Green Version]
- FDA. M9 Biopharmaceutics Classification System-Based Biowaivers. Available online: https://www.fda.gov/media/148472/download (accessed on 4 November 2022).
- Dudhipala, N.; Puchchakayala, G. Capecitabine lipid nanoparticles for anti-colon cancer activity in 1,2-dimethylhydrazine-induced colon cancer: Preparation, cytotoxic, pharmacokinetic, and pathological evaluation. Drug Dev. Ind. Pharm. 2018, 44, 1572–1582. [Google Scholar] [CrossRef]
- Gao, W.; Chan, J.M.; Farokhzad, O.C. pH-Responsive Nanoparticles for Drug Delivery. Mol. Pharm. 2010, 7, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Sun, C.C. Pharmaceutical Lauryl Sulfate Salts: Prevalence, Formation Rules, and Formulation Implications. Mol. Pharm. 2022, 19, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Mishra, M.K.; Wang, C.; Sun, C.C. Crystallographic and Energetic Insights into Reduced Dissolution and Physical Stability of a Drug–Surfactant Salt: The Case of Norfloxacin Lauryl Sulfate. Mol. Pharm. 2020, 17, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Keles, H.; Naylor, A.; Clegg, F.; Sammon, C. Investigation of factors influencing the hydrolytic degradation of single PLGA microparticles. Polym. Degrad. Stab. 2015, 119, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Kamberi, M.; Nayak, S.; Myo-Min, K.; Carter, T.P.; Hancock, L.; Feder, D. A novel accelerated in vitro release method for biodegradable coating of drug eluting stents: Insight to the drug release mechanisms. Eur. J. Pharm. Sci. 2009, 37, 217–222. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, X.; Gupta, R.; Ma, J.; Dere, R.; Liang, D.; Xie, H. Development and Validation of an LC–MS/MS Method for AC1LPSZG and Pharmacokinetics Application in Rats. J. Chromatogr. Sci. 2021, 60, 26–34. [Google Scholar] [CrossRef]
PLGA Grade | Size | PdI | Zeta | EE% |
---|---|---|---|---|
PLGA (50:50) | 124 ± 6.19 | 0.078 ± 0.02 | −15.0 ± 3.28 | 41.2 ± 13.30 |
PLGA (75:25) | 133 ± 9.12 | 0.095 ± 0.01 | −12.8 ± 3.54 | 38.3 ± 2.52 |
Resomer RG 503H | 136 ± 13.21 | 0.060 ± 0.02 | −53.6 ± 2.11 | 49 ± 7.55 |
Surfactant | Saturation Solubility (Cs) (µg/mL) | Rel. Sink (Cs/Cd) |
---|---|---|
Water | 24 | 0.8 |
Blank buffer (pH 6.8) | 33 | 1.1 |
0.5% SLS | 15 | 0.5 |
1% SLS | 40 | 1.3 |
0.5% Tween 80 | 40 | 1.3 |
1% Tween 80 | 61 | 2.0 |
0.5% CTAB | 147 | 4.9 |
1% CTAB | 264 | 8.8 |
1.5% CTAB | 366 | 12.2 |
2% CTAB | 432 | 14.4 |
% CTAB | No_CTAB | 0.5_CTAB | 1_CTAB | 1.5_CTAB | 2_CTAB |
---|---|---|---|---|---|
DE (%) | 0.07 | 0.12 | 0.14 | 0.15 | 0.20 |
AUC (percent–hour) | 533 | 843 | 981 | 1084 | 1432 |
Surfactant Pair | Difference (DE) | Tukey’s HSD Significance | Difference (AUC) | Tukey’s HSD Significance | |
---|---|---|---|---|---|
no_CTAB | 0.5_CTAB | 0.043 (0.006, 0.081) | No | 310 (−13, 633) | No |
no_CTAB | 1_CTAB | 0.063 * (0.025, 0.101) | Yes | 449 * (126, 772) | Yes |
no_CTAB | 1.5_CTAB | 0.077 * (0.039, 0.115) | Yes | 551 * (228, 874) | Yes |
no_CTAB | 2_CTAB | 0.126 * (0.089, 0.164) | Yes | 899 * (576, 1222) | Yes |
0.5_CTAB | 1_CTAB | 0.020 (−0.022, 0.061) | No | 139 (−215, 492) | No |
0.5_CTAB | 1.5_CTAB | 0.034 (−0.008, 0.075) | No | 241 (−113, 595) | No |
1_CTAB | 1.5_CTAB | 0.014 (−0.027, 0.055) | No | 103 (−251, 456) | No |
2_CTAB | 0.5_CTAB | 0.083 * (0.041, 0.124) | Yes | 589 * (235, 943) | Yes |
2_CTAB | 1_CTAB | 0.064 * (0.022, 0.105) | Yes | 451 * (97, 804) | Yes |
2_CTAB | 1.5_CTAB | 0.050 * (0.008, 0.091) | Yes | 348 (−6, 702) | No |
Polymer Pair | Difference (DE) | Tukey’s HSD Significance | Difference (AUC) | Tukey’s HSD Significance | |
---|---|---|---|---|---|
Resomer RG 503H | Drug Suspension | 0.186 (0.126, 0.247) | Yes | 1341 (915, 1767) | Yes |
PLGA (50:50) | Drug Suspension | 0.126 (0.066, 0.187) | Yes | 914 (487, 1340) | Yes |
PLGA (75:25) | Drug Suspension | 0.086 (0.026, 0.147) | Yes | 647 (220, 1073) | Yes |
Resomer RG 503H | PLGA (50:50) | 0.06 (−0.001, 0.121) | No | 428 (2, 854) | No |
PLGA (50:50) | PLGA (75:25) | 0.04 (−0.021, 0.101) | No | 267 (−159, 693) | No |
Resomer RG 503H | PLGA (75:25) | 0.1 (0.039, 0.161) | Yes | 695 (268, 1121) | Yes |
Parameter/Model | PLGA (50:50) NPs | PLGA (75:25) NPs | Resomer RG 503H NPs | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2_adj | AIC | MSE | MSC | R2_adj | AIC | MSE | MSC | R2_adj | AIC | MSE | MSC | |
Zero-order | 0.76 | 97.31 | 27.95 | 1.28 | 0.71 | 94.12 | 22.6 | 1.03 | 0.8 | 103.3 | 42.85 | 1.4 |
First-order | 0.83 | 91.44 | 20.03 | 1.65 | 0.77 | 90.2 | 17.77 | 1.28 | 0.87 | 97.22 | 28.13 | 1.78 |
Hixson-Crowell | 0.81 | 93.49 | 22.47 | 3.49 | 0.75 | 91.54 | 19.28 | 1.2 | 0.85 | 99.26 | 32.5 | 1.65 |
Quadratic | 0.95 | 73.39 | 6.32 | 2.78 | 0.92 | 70.41 | 6.08 | 2.52 | 0.94 | 86.72 | 12.87 | 2.44 |
Higuchi | 0.97 | 65.3 | 3.8 | 3.28 | 0.97 | 58.33 | 2.41 | 3.27 | 0.96 | 79.27 | 9.03 | 2.9 |
Korsmeyer–Peppas | 0.98 | 62 | 2.93 | 3.49 | 0.97 | 56.79 | 2.12 | 3.37 | 0.97 | 77.8 | 7.23 | 2.99 |
Weibull | 0.99 | 35.22 | 0.59 | 5.16 | 0.99 | 42.84 | 0.79 | 4.24 | 0.98 | 54 | 3.96 | 4.48 |
Polymer Type/Parameter | Resomer RG 503H | PLGA (50:50) | PLGA (75:25) |
---|---|---|---|
α | 24.9 | 22.2 | 23.6 |
β | 0.56 | 0.49 | 0.45 |
Td | 10.6 days | 25.9 days | 81.4 days |
T50 | 5.1 days | 11.8 days | 30.2 days |
T75 | 20.8 days | 52.5 days | 201.0 days |
T80 | 28.3 days | 72.7 days | 305.5 days |
0.5_CTAB | 1_CTAB | 1.5_CTAB | 2_CTAB | |
---|---|---|---|---|
Correlation Coefficient (R) | 0.991068 | 0.954761 | 0.987057 | 0.990405 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.; Chen, Y.; Sarkar, M.; Xie, H. Surfactant Mediated Accelerated and Discriminatory In Vitro Drug Release Method for PLGA Nanoparticles of Poorly Water-Soluble Drug. Pharmaceuticals 2022, 15, 1489. https://doi.org/10.3390/ph15121489
Gupta R, Chen Y, Sarkar M, Xie H. Surfactant Mediated Accelerated and Discriminatory In Vitro Drug Release Method for PLGA Nanoparticles of Poorly Water-Soluble Drug. Pharmaceuticals. 2022; 15(12):1489. https://doi.org/10.3390/ph15121489
Chicago/Turabian StyleGupta, Ritu, Yuan Chen, Mahua Sarkar, and Huan Xie. 2022. "Surfactant Mediated Accelerated and Discriminatory In Vitro Drug Release Method for PLGA Nanoparticles of Poorly Water-Soluble Drug" Pharmaceuticals 15, no. 12: 1489. https://doi.org/10.3390/ph15121489
APA StyleGupta, R., Chen, Y., Sarkar, M., & Xie, H. (2022). Surfactant Mediated Accelerated and Discriminatory In Vitro Drug Release Method for PLGA Nanoparticles of Poorly Water-Soluble Drug. Pharmaceuticals, 15(12), 1489. https://doi.org/10.3390/ph15121489