Effects of Dexmedetomidine on Basic Cardiac Electrophysiology in Adults; a Descriptive Review and a Prospective Case Study
Abstract
:1. Introduction
2. Results
2.1. Descriptive Review of the Effects of DEX on Cardiac Functions
2.1.1. Experimental Evidence on New Concepts
2.1.2. Clinical Significance
2.2. Clinical Study
3. Discussion
4. Materials and Methods
4.1. Descriptive Review
4.2. Prospective Clinical Case Study
Electrophysiology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Trial registration
References
- Kaur, M.; Singh, P.M. Current Role of Dexmedetomidine in Clinical Anesthesia and Intensive Care. Anesth. Essays Res. 2011, 5, 128–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, G.M. Dexmedetomidine: A Review of Its Use for Sedation in the Intensive Care Setting. Drugs 2015, 75, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Barends, C.R.; Absalom, A.; van Minnen, B.; Vissink, A.; Visser, A. Dexmedetomidine Versus Midazolam in Procedural Sedation. A Systematic Review of Efficacy and Safety. PLoS ONE 2017, 12, e0169525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weerink, M.A.S.; Struys, M.R.F.; Hannivoort, L.N.; Barends, C.R.M.; Absalom, A.B.; Colin, P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin. Pharmacokinet. 2017, 56, 893–913. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhou, H.; Ni, Y.; Wu, C.; Zhang, C.; Ling, X. Can dexmedetomidine reduce atrial fibrillation after cardiac surgery? A Systematic Review and Meta-analysis. Drug. Des. Devel. Ther. 2018, 12, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Preskorn, S.H.; Zeller, S.; Citrome, L.; Finman, J.; Goldberg, J.F.; Fava, M.; Kakar, R.; De Vivo, M.; Yocca, F.D.; Risinger, R. Effect of Sublingual Dexmedetomidine vs Placebo on Acute Agitation Associated with Bipolar Disorder: A Randomized Clinical Trial. JAMA 2022, 327, 727–736. [Google Scholar] [CrossRef]
- Bao, N.; Tang, B. Organ-Protective Effects and the Underlying Mechanism of Dexmedetomidine. Mediat. Inflamm. 2020, 2020, 6136105. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Kang, L.; Wang, Q. Recent Advances in the Clinical Value and Potential of Dexmedetomidine. J. Inflamm. Res. 2021, 14, 7507–7527. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, L.-Y.; Liang, W.-D.; Rao, D.-Y.; Zhu, P.-P.; Huang, K.-N.; Deng, Z.-H.; Zhong, M.-L. Intrathecal Dexmedetomidine Combined with Ropivacaine in Cesarean Section: A Prospective Randomized Double-Blind Controlled Study. Front. Med. 2022, 9, 922611. [Google Scholar] [CrossRef]
- Allam, A.A.; Eleraky, N.E.; Diab, N.H.; Elsabahy, M.; Mohamed, S.A.; Abdel-Ghaffar, H.S.; Hassan, N.A.; Shouman, S.A.; Omran, M.M.; Hassan, S.B.; et al. Development of Sedative Dexmedetomidine Sublingual IN Situ Gels: In Vitro and In Vivo Evaluations. Pharmaceutics. 2022, 14, 220. [Google Scholar] [CrossRef]
- Nishizawa, T.; Suzuki, H.; Hosoe, N.; Ogata, H.; Kanai, T.; Yahagi, N. Dexmedetomidine vs propofol for gastrointestinal endoscopy: A meta-analysis. United Eur. Gastroenterol. J. 2017, 5, 1037–1104. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Xu, Y.; Li, B.; Chang, E.; Zhang, L.; Zhang, J. Intravenous Administration of Dexmedetomidine and Quality of Recovery after Elective Surgery in Adult Patients: A Meta-analysis of Randomized Controlled Trials. J. Clin. Anesth. 2020, 65, 109849. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.; Lee, L.H.N.; Lee, B.; Chau, A.; Wang, E.H.Z. The Safety of High-dose Dexmedetomidine after Cardiac Surgery: A Historical Cohort Study. Can. J. Anaesth. 2022, 69, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Wei, J.; Zhang, X. Effects of Dexmedetomidine on Neurocognitive Disturbance after Elective non-Cardiac Surgery in Senile Patients: A Systematic Review and Meta-analysis. J. Int. Med. Res. 2021, 49, 03000605211014294. [Google Scholar] [CrossRef]
- Lewis, K.; Piticaru, J.; Chaudhuri, D.; Basmaji, J.; Fan, E.; Møller, M.H.; Devlin, J.D.; Alhazzani, W. Safety and Efficacy of Dexmedetomidine in Acutely Ill Adults Requiring Noninvasive Ventilation. A Systematic Review and Meta-analysis of Randomized Trials. Chest 2021, 159, 2274–2288. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Kumar, A.; Deshmukh, A.; Bennett, C. Dexmedetomidine Reduces Incidences of Ventricular Arrhythmias in Adult Patients: A Meta-Analysis. Cardiol. Res. Pract. 2022, 2022, 5158362. [Google Scholar] [CrossRef]
- De Cassai, A.; Sella, N.; Geraldini, F.; Zarantonello, F.; Pettenuzzo, T.; Pasin, L.; Iuzzolino, M.; Rossini, N.; Pesenti, E.; Zecchino, G.; et al. Preoperative Dexmedetomidine and Intraoperative Bradycardia in Laparoscopic Cholecystectomy: A Meta-analysis with Trial Sequential Analysis. Korean J. Anesthesiol. 2022, 75, 245–254. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Ye, H.; Wang, M.; Wang, T. Effect of Dexmedetomidine on Tachyarrhythmias after Cardiac Surgery: A Systematic Review and Meta-Analysis. J. Cardiovasc. Pharmacol. 2022, 79, 315–324. [Google Scholar] [CrossRef]
- Lewis, K.; Alshamsi, F.; Carayannopoulos, K.L.; Granholm, A.; Piticaru, J.; Duhailib, Z.A.; Chaudhuri, D.; Spatafora, L.; Yuan, Y.; Centofanti, J.; et al. Dexmedetomidine vs Other Sedatives in Critically Ill Mechanically Ventilated Adults: A Systematic Review and Meta-analysis of Randomized Trials. Intensive Care Med. 2022, 48, 811–840. [Google Scholar] [CrossRef]
- Kin Sin, J.C.; Tabah, A.; Campher, M.J.J.; Laupland, K.B.; Eley, V.A. The Effect of Dexmedetomidine on Postanesthesia Care Unit Discharge and Recovery: A Systematic Review and Meta-Analysis. Anesth. Analg. 2022, 134, 1229–1244. [Google Scholar] [CrossRef]
- Kamibayashi, T.; Maze, M. Clinical Uses of a2-Adrenergic Agonists. Anesthesiology 2000, 93, 1345–1349. [Google Scholar] [CrossRef] [PubMed]
- Vladinov, G.; Fermin, L.; Logini, R.; Ramos, Y.; Maratea, E., Jr. Choosing the Anesthetic and Sedative Drugs for Supraventricular Tachycardia Ablations: A Focused Review. Pacing Clin. Electrophysiol. 2018, 41, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Aikaterini, A.; Ioannis, D.; Dimitrios, G.; Konstantinos, S.; Vasilios, G.; George, P. Bradycardia Leading to Asystole Following Dexmedetomidine Infusion during Cataract Surgery: Dexmedetomidine-Induced Asystole for Cataract Surgery. Case Rep. Anesthesiol. 2018, 2018, 2896032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa-Sales, C.; Reid, K.; Maze, M. Inhibition of adenylate cyclase in the locus coeruleus mediates the hypnotic response to an alpha-2-agonist in the rat. J. Pharmacol. Exp. Ther. 1992, 263, 1046–1050. [Google Scholar]
- Kamibayashi, T.; Mammoto, T.; Hayashi, Y.; Yamatodani, A.; Takada, K.; Yoshiya, I. Further Characterization of the Receptor Mechanism Involved in the Antidysrhythmic Effect of Dexmedetomidine on Halothane/Epinephrine Dysrhythmias in Dogs. Anesthesiology 1995, 83, 1082–1089. [Google Scholar] [CrossRef]
- Nacif-Coelho, C.; Correas-Sales, C.; Chang, L.L.; Maze, M. Perturbation of Ion-Channel Conductance Alters the Hypnotic Response to Alpha2-agonist Dexmedetomidine in the Locus Coeruleus of the Rat. Anesthesiology 1994, 81, 1527–1534. [Google Scholar] [CrossRef]
- Sculptoreanu, A.; Scheuer, T.; Catterall, W.A. Voltage-dependent Potention of L-type Ca2+ Channels Due to Phosphorylation by cAMP-dependent Protein Kinase. Nature 1993, 364, 240–243. [Google Scholar] [CrossRef]
- Snapir, A.; Talke, P.; Posti, J.; Huiku, M.; Kentala, E.; Scheinin, M. Effects of Nitric Oxide Synthase Inhibition on Dexmedetomidine Induced Vasoconstriction in Healthy Human Volunteers. Br. J. Anaesth. 2009, 102, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Tank, J.; Diedrich, A.; Szczech, E.; Luft, F.C.; Jordan, J. Alpha-2 adrenergic Transmission and Human Baroreflex Regulation. Hypertension 2004, 43, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
- Sairaku, A.; Nakano, Y.; Suenari, K.; Tokuyama, T.; Kawazoe, H.; Matsumura, H.; Tomomori, S.; Amioka, M.; Kihara, Y. Dexmedetomidine Depresses Sinoatrial and Atrioventricular Nodal Function Without Any Change in Atrial Fibrillation Inducibility. J. Cardiovasc. Pharmacol. 2016, 68, 473–478. [Google Scholar] [CrossRef]
- Slupe, A.M.; Minnier, J.; Raitt, M.H.; Zarraga, I.G.E.; MacMurdy, K.S.; Jessel, P.M. Dexmedetomidine Sedation for Paroxysmal Supraventricular Tachycardia Ablation is Not Associated with Alteration of Arrhythmia Inducibility. Anesth. Analg. 2019, 129, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Stoetzer, C.; Reuter, S.; Doll, T.; Foadi, N.; Wegner, F.; Leffler, A. Inhibition of the Cardiac Na⁺ channel α-subunit Nav1.5 by Propofol and Dexmedetomidine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhou, C.-L.; Xia, Z.-Y.; Wang, L. Effects of Dexmedetomidine on L-Type Calcium Current in Rat Ventricular Myocytes. Acta Cardiol. Sin. 2013, 29, 175–180. [Google Scholar] [PubMed]
- Behmenburg, F.; Pickert, E.; Mathes, A.; Heinen, A.; Hollmann, M.H.; Ragnar Huhn, R.; Berger, M.M. The Cardioprotective Effect of Dexmedetomidine in Rats Is Dose-Dependent and Mediated by BKCa Channels. J. Cardiovasc. Pharmacol. 2017, 69, 228–235. [Google Scholar] [CrossRef]
- Pan, X.; Zhang, Z.; Huang, Y.-Y.; Zhao, J.; Wang, L. Electrophysiological Effects of Dexmedetomidine on Sinoatrial Nodes of Rabbits. Acta Cardiol. Sin. 2015, 31, 543–549. [Google Scholar]
- Wu, S.-J.; Lin, Z.-H.; Lin, Y.-Z.; Rao, Z.-H.; Lin, J.-F.; Wu, L.-P.; Li, L. Dexmedetomidine Exerted Anti-arrhythmic Effects in Rat With Ischemic Cardiomyopathy via Upregulation of Connexin 43 and Reduction of Fibrosis and Inflammation. Front. Physiol. 2020, 11, 33. [Google Scholar] [CrossRef]
- Tsutsui, K.; Hayami, N.; Kunishima, T.; Sugiura, A.; Mikamo, T.; Kanamori, K.; Yamagishi, N.; Yamagishi, S.; Watanabe, H.; Ajiki, K.; et al. Dexmedetomidine and Clonidine Inhibit Ventricular Tachyarrhythmias in a Rabbit Model of Acquired Long QT Syndrome. Circ. J. 2012, 76, 2343–2347. [Google Scholar] [CrossRef] [Green Version]
- Gilsbach, R.; Schneider, J.; Lother, A.; Schickinger, S.; Leemhuis, J.; Hein, L. Sympathetic a2 adrenoceptors prevent cardiac hypertrophy and fibrosis in mice at baseline but not after chronic pressure overload. Cardiovasc. Res. 2010, 86, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, D.E.; Price, D.T.; Bello, E.A.; Page, S.O.; Schwinn, D.A. Localization of Messenger RNA for Three Distinct Alpha 2-adrenergic receptor Subtypes in human Tissues. Evidence for Species Heterogeneity and Implications for Human Pharmacology. Anesthesiology 1994, 81, 1235–1244. [Google Scholar]
- Xia, F.; Jin, Z.; Lin, T.; Cai, X.; Pan, L.; Wang, S.; Cai, Y.; Chen, H. Dexmedetomidine Enhances Tolerance to Bupivacaine Cardiotoxicity in the Isolated Rat Hearts: Alpha 2-adrenoceptors Were Not Involved. BMC. Pharmacol. Toxicol. 2019, 20, 70. [Google Scholar] [CrossRef] [Green Version]
- Bunte, S.; Behmenburg, F.; Majewski, N.; Stroethoff, M.; Raupach, A.; Mathes, A.; Heinen, A.; Hollmann, M.W.; Huhn, R. Characteristics of Dexmedetomidine Postconditioning in the Field of Myocardial Ischemia-Reperfusion Injury. Anesth. Analg. 2020, 130, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, C.; Peng, Y.; Yuan, W.; Zhang, Z.; Liu, H.; Xia, Z.; Ren, C.; Qian, J. Dexmedetomidine Alleviates H2O2-induced Oxidative Stress and Cell Necroptosis Through Activating of α2-adrenoceptor in H9C2 Cells. Molecul. Biol. Rep. 2020, 47, 3629–3639. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qu, M.; Xing, F.; Li, H.; Cheng, D.; Xing, N.; Zhang, W. The Protective Mechanism of Dexmedetomidine in Regulating Atg14L-Beclin1-Vps34 Complex against Myocardial Ischemia-Reperfusion Injury. J. Cardiovasc. Transl. Res. 2021, 14, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Li, Y.-P.; Yin, Y.-Q.; Hu, B.-L.; Gao, H. Dexmedetomidine Inhibits Pyroptosis by Down-Regulating miR-29b in Myocardial Ischemia Reperfusion Injury in Rats. Int. Immunopharmacol. 2020, 86, 106768. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Wang, H.; Song, N.; Jiang, Y.-H.; Zhang, J.; Meng, X.-W.; Feng, X.-M.; Liu, H.; Peng, K.; Ji, F.-H. Dexmedetomidine Attenuates Ischemia/Reperfusion-Induced Myocardial Inflammation and Apoptosis Through Inhibiting Endoplasmic Reticulum Stress Signaling. J. Inflamm. Res. 2021, 14, 1217–1233. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, S.; Juan, Z.; Zhang, R.; Wang, R.; Meng, S.; Zhou, J.; Li, Y.; Xu, K.; Xie, K. Dexmedetomidine Attenuates Myocardial Ischemia-Reperfusion Injury in vitro by Inhibiting NLRP3 Inflammasome Activation. BMC. Anesthesiol. 2021, 21, 104. [Google Scholar] [CrossRef]
- Xiong, W.; Zhou, R.; Qu, Y.; Yang, Y.; Wang, Z.; Song, N.; Liang, R.; Qian, J. Dexmedetomidine Preconditioning Mitigates Myocardial Ischemia/Reperfusion Injury via Inhibition of Mast Cell Degranulation. Biomed. Pharmacother. 2021, 141, 111853. [Google Scholar] [CrossRef]
- Sun, T.; Gong, Q.; Wu, Y.; Shen, Z.; Zhang, Y.; Ge, S.; Duan, J.-S. Dexmedetomidine Alleviates Cardiomyocyte Apoptosis and Cardiac Dysfunction May Be Associated with Inhibition of RhoA/ROCK Pathway in Mice with Myocardial Infarction. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 1569–1577. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, J.; Qiu, L.; Jiang, C.; Huang, Y.; Liu, J.; Sun, Q.; Hong, H.; Ye, L. Dexmedetomidine Protects Human. Cardiomyocytes against Ischemia-Reperfusion Injury Through α2-Adrenergic Receptor/AMPK-Dependent Autophagy. Front. Pharmacol. 2021, 12, 615424. [Google Scholar] [CrossRef]
- Song, J.; Du, J.; Tan, X.; Wu, Z.; Yuan, J.; Cong, B. Dexmedetomidine Protects the Heart Against ischemia Reperfusion Injury via Regulation of the Bradykinin Receptors. Eur. J. Pharmacol. 2021, 911, 174493. [Google Scholar] [CrossRef]
- Shen, R.; Pan, D.; Wang, Z.; Jin, X.; Li, Z.; Wang, H. The Effects of Dexmedetomidine Post-Conditioning on Cardiac and Neurological Outcomes after Cardiac Arrest and Resuscitation in Swine. Shock 2021, 55, 388–395. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, W.; Lin, X.; Shen, M.; Yan, Z.; Yu, S.; Luo, Y. Protective Effects of Dexmedetomidine in Vital Organ Injury: Crucial Roles of Autophagy. Cell. Mol. Biol. Lett. 2022, 27, 34. [Google Scholar] [CrossRef] [PubMed]
- Penttilä, J.; Helminen, A.; Anttila, M.; Hinkka, S.; Scheinin, H. Cardiovascular and Parasympathetic Effects of Dexmedetomidine in Healthy Subjects. Can. J. Physiol. Pharmacol. 2004, 82, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.; Sankar, A.; Beattie, W.S.; Wijeysundera, D.N. Alpha-2 adrenergic Agonists for the Prevention of Cardiac Complications among Adults Undergoing Surgery. Cochrane Database Syst. Rev. 2018, CD004126. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Wang, S.; Lu, F.; Zhen, J.; Chen, W. Dexmedetomidine Reduces Atrial Fibrillation after Adult Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials. Am. J. Cardiovasc. Drugs 2020, 20, 271–281. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Mu, G. Myocardial Protective and Anti-inflammatory Effects of Dexmedetomidine in Patients Undergoing Cardiovascular Surgery with Cardiopulmonary Bypass: A Systematic Review and Meta-analysis. J. Anesth. 2022, 36, 5–16. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Zhang, M. Effect of Dexmedetomidine on Hemodynamics in Patients Undergoing Hysterectomy: A Meta-analysis and Systematic Review. J. Internat. Med. Res. 2021, 49, 1–13. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, F.; Xu, H.; Wu, L.; Gao, G. Effects of Dexmedetomidine on Intraoperative Hemodynamics, Recovery Profile and Postoperative Pain in Patients Undergoing Laparoscopic Cholecystectomy: A Randomized Controlled Trial. BMC Anesthesiol. 2021, 21, 63. [Google Scholar] [CrossRef]
- Raatikainen, M.J.P. Anatomy and Physiology of the Atrioventricular Node. In The ESC Textbook of Cardiovascular Medicine, 3rd ed.; Camm, A.J., Lüscher, T.F., Maurer, G.P.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1958–1959. [Google Scholar] [CrossRef]
- Rollin, A.; Gandjbakhch, E.; Giustetto, C.; Scrocco, C.; Fourcade, C.; Monteil, B.; Mondoly, P.; Cardin, C.; Maupain, C.; Gaita, F.; et al. Shortening of the Short Refractory Periods in Short QT Syndrome. J. Am. Heart Assoc. 2017, 6, e005684. [Google Scholar] [CrossRef]
- Fox, K.; Borer, J.S.; Camm, A.J.; Danchin, N.; Ferrari, R.; Lopez Sendon, J.L.; Steg, P.G.; Tardif, J.C.; Tavazzi, L.; Tendera, M.; et al. Resting Heart Rate in Cardiovascular Disease. J. Am. Coll. Cardiol. 2007, 50, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Guasch, E.; Mont, L. Diagnosis, Pathophysiology, and Management of Exercise-induced arrhytmias. Nat. Rev. Cardiol. 2017, 14, 88–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilde, A.A.M.; Amin, A.S.; Postema, P.G. Diagnosis, Management and Therapeutic Strategies for Congenital Long QT Syndrome. Heart 2022, 108, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.J.; Karner, C.; Trevor, N.; Wakefield, V.; Salih, F. Dual-chamber Pacemakers for Treating Symptomatic Bradycardia Due to Sick Sinus Syndrome without Atrioventricular Block: A Systematic Review and Economic Evaluation. Health. Technol. Assess. 2015, 19, 1–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosaki, A. ArrhythmoGenoPharmacoTherapy. Front. Pharmacol. 2020, 11, 616. [Google Scholar] [CrossRef] [PubMed]
- Tosaki, A.; Szekeres, L.; Hearse, D.J. Diltiazem and the Reduction of Reperfusion-induced Arrhythmias in the Rat: Protection is Secondary to Modification of Ischemic Injury and Heart Rate. J. Mol. Cell Cardiol. 1987, 19, 441–451. [Google Scholar] [CrossRef]
- Bernier, M.; Curtis, M.J.; Hearse, D.J. Ischemia-induced and Reperfusion-induced Arrhythmias: Importance of Heart Rate. Am. J. Physiol. 1989, 256, H21–H31. [Google Scholar]
- Ikeda, M.; Ide, T.; Furusawa, S.; Ishimaru, K.; Tadokoro, T.; Miyamoto, H.D.; Ikeda, S.; Okabe, K.; Ishikita, A.; Abe, K.; et al. Heart Rate Reduction with Ivabradine Prevents Cardiac Rupture after Myocardial Infarction in Mice. Cardiovasc. Drugs Ther. 2022, 36, 257–262. [Google Scholar] [CrossRef]
- Josephson, M.E. Electrophysiological Investigation: General Concepts. In Clinical Cardiac Electrophysiology; Techniques and Interpretations; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009; pp. 19–67. [Google Scholar]
Study | Settings | N of Patients/Trials | RR for Hypotension (95% CI) | RR for Bradycardia (95% CI) |
---|---|---|---|---|
Miao et al., 2020 [12] | non-cardiac surgery | 682/9 | 1.48 (0.68–3.23) | 1.78 (0.78–4.02) |
Bi et al., 2021 [14] | non-cardiac surgery, elderly patients | 4376/16 | 1.29 (1.12–1.49) | 1.39 (1.15–1.67) |
Lewis et al., 2021 [15] | sedation for NIV in ICU | 738/12 | 1.98 (1.32–2.98) | 2.80 (1.92–4.07) |
Zhong et al., 2022 [16] | cardiac surgery | 1001/7 | 1.10 (0.54–2.25) | 2.78 (2.00–3.87) |
Wang et al., 2022 [18] | cardiac surgery | 3171/18 | 1.08 (0.91–1.29) | 2.14 (1.41–3.24) |
DeCassai et al., 2022 [17] | LCC | 1.66 (0.92–2.9) | 2.81 (1.34–5.91) | |
Lewis et al., 2022 [19] | mechanical ventilation in ICU | 11997/77 | 1.32 (1.07–1.63) | 2.39 (1.82–3.13) |
Kin Sin et al., 2022 [20] | Non-cardiac, non-neurosurgical operations | 2676/32 | 5.39 (1.12–5.89) | 5.13 (0.96–27.47) |
Study | Species/Model | DEX Effects | Mechanisms |
---|---|---|---|
Bunte et al., 2020 [41] | rat/isolated heart coronary flow stopped chemically for 33 min → reperfusion 60 min | ↓ infarct size by 60% on average | postconditioning |
Yin et al., 2020 [42] | rat/embryonic heart-derived myoblast exposed to H2O2 | ↑ HO-1 and ↓ RIPK1 and RIPK3 expression ↓ necroptosis (reversed by yohimbine) ↓ apoptosis (yohimbine had no effect) | preconditioning reduction of oxidative stress partly α2-adrenergic mechanism |
Li et al., 2021 [43] | rat/LAD ligation for 30 min → reperfusion 120 min Functional, biochemical and histological examination | LVEF ↑ by ≈30%, S-LDH, CKMB and TnT ↓, activation of PI3K/Akt pathway, upregulation of Beclin1 phosphorylation | decreased autophagy |
Zhong et al., 2020 [44] | (a) rat/LAD ligation for 30 min → reperfusion 120 min (b) rat/myocardial cells histology | ↓ pyroptosis ↑ NLRP3, ASC and cleaved-caspase-1 | FoxO3a/ARC axis activation |
Yang et al., 2021 [45] | rat/ischaemia-reperfusion injury | ↓ cytotoxicity in cardiomyocytes ↓ ERS signaling pthw, ↓ GRP78, PERK, CHOP, IRE1 ↑ ATF6 yohimbine inhibition | inhibition of inflammation and apoptosis α2-adrenergic mechanism |
Huang et al., 2021 [46] | rat/cardiomyocytes exposed for hypoxia 6 h → reoxygenation 4 h | ↑ beating rates and viability of cardiomyocytes ↑ expression of the NLRP3 protein ↓ expression of Bcl2 and BAX ↓ IL-1β, IL-18 and TNF-α and H/R-induced NLRP3 inflammasome activation | inhibition of inflammatory response |
Xiong et al., 2021 [47] | rat/LAD ligation for 30 min → reperfusion 120 min; in vivo: cardiac ultrasound for hemodynamics, in vitro: cell histology | ↓ degranulation of mast cells and the apoptosis of cardiomyocytes ↓ inhibits the activation of inflammatory related factors HMGB1, TLR4 and NF-κB p65 | preconditioning |
Sun et al., 2021 [48] | mice/ischemia model | ↑ EF and FS 7 d after infarction ↓ expression of ROCK1 and 2 protein ↓ apoptosis | inhibition of the RhoA/ROCK signaling pathway |
Xiao et al., 2021 [49] | Human ventricular tissue from tetralogy of Fallot (TOF) patients and CMs derived from human-induced pluripotent stem cells/reperfusion injury and hypoxic injury | ↑ AMP-activated protein kinase (AMPK) and phospho AMPK (pAMPK) during the I/R process inhibited by yohimbine | α2-adrenergic mechanism in suppression of autophagy |
Song et al., 2021 [50] | rat/LAD ligation for 60 min → reperfusion for 120 min | preconditioning average infarct size ↓30% yohimbine prevented | bradykinin receptor upregulation α2-adrenergic mechanism |
Shen et al., 2021 [51] | swine/resuscitation for 5 min after surgically induced cardiac arrest of 8 min | ↓ inflammation, oxidative stress, and cell apoptosis and necroptosis in the heart and brain | postconditioning |
Timing | SAP (mmHg) | DAP (mmHg) | MAP (mmHg) | SpO2 (%) | Hr (b/min) |
---|---|---|---|---|---|
Pre | 125 (109–156) | 78.5 (67–106) | 94.5 (91–98) | 95 (91–98) | 69 (52–100) |
Post | 122 (99–145) | 81 (69–95) | 93.5 (84–112) | 93.5 (91–97) | 73 (51–92) |
Variable | Pre (ms) | Post (ms) |
---|---|---|
P (duration of P-wave) | 125 (105–155) | 121 (103–155) |
PQ (PQ interval) | 172 (133–201) | 176 (133–205) |
QRS (duration of QRS) | 94 (83–123) | 97 (80–124) |
QTc (duration of QT-interval) | 416 (382–473) | 421 (398–468) |
SCL (sinus cycle length) | 913 (671–1179) | 941 (762–1082) |
SNRT (Sinus node recovery time) | 1291 (1012–1744) | 1340 (1110–1806) |
CSNRT (Corrected sinus node recovery time) | 377 (250–734) | 468 (144–742) * |
AVNW (cycle length producing AV nodal Wenckebach antegrade conduction block) | 340 (310–430) | 365 (320–420) |
AVNERP600 (AV nodal refractory time at 600 millisecond atrial pacing) | 270 (230–350) | 290 (240–370) * |
AVNERP400 (AV nodal refractory time at 400 millisecond atrial pacing) | 290 (240–360) | 285 (270–340) |
AERP (atrial effective refractory period) | 250 (180–280) | 260 (210–280) |
AVNWret (cycle length producing AV nodal Wenckebach retrograde conduction block) | 455 (310–680) | 505 (340–690) * |
AVNERPret (retrograde AV nodal refractory period) | 305 (220–430) | 290 (220–420) |
VERP (Ventricular effective refractory period) | 240 (220–260) | 240 (220–260) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pöyhiä, R.; Nieminen, T.; Tuompo, V.W.T.; Parikka, H. Effects of Dexmedetomidine on Basic Cardiac Electrophysiology in Adults; a Descriptive Review and a Prospective Case Study. Pharmaceuticals 2022, 15, 1372. https://doi.org/10.3390/ph15111372
Pöyhiä R, Nieminen T, Tuompo VWT, Parikka H. Effects of Dexmedetomidine on Basic Cardiac Electrophysiology in Adults; a Descriptive Review and a Prospective Case Study. Pharmaceuticals. 2022; 15(11):1372. https://doi.org/10.3390/ph15111372
Chicago/Turabian StylePöyhiä, Reino, Teija Nieminen, Ville W. T. Tuompo, and Hannu Parikka. 2022. "Effects of Dexmedetomidine on Basic Cardiac Electrophysiology in Adults; a Descriptive Review and a Prospective Case Study" Pharmaceuticals 15, no. 11: 1372. https://doi.org/10.3390/ph15111372
APA StylePöyhiä, R., Nieminen, T., Tuompo, V. W. T., & Parikka, H. (2022). Effects of Dexmedetomidine on Basic Cardiac Electrophysiology in Adults; a Descriptive Review and a Prospective Case Study. Pharmaceuticals, 15(11), 1372. https://doi.org/10.3390/ph15111372