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Abstract: Dexmedetomidine (DEX) is a commonly used sedative agent with no or minimal effects on
breathing. DEX may also be beneficial in myocardial protection. Since the mechanisms of cardiac
effects are not well known, we carried out a descriptive review and examined the effects of DEX on
myocardial electrical conduction in a prospective and controlled manner. For the review, clinical
studies exploring DEX in myocardial protection published between 2020-2022 were explored. A
case study included 11 consecutive patients at a median (range) age of 48 (38–59), scheduled for
elective radiofrequency ablation of paroxysmal atrial fibrillation. A bolus dose of DEX 1 µg/kg
given in 15 min was followed by a continuous infusion of 0.2–0.7 µg/kg/h. Direct intracardiac
electrophysiologic measurements, hemodynamics and oxygenation were measured before and after
the DEX bolus. Experimental studies show that DEX protects the heart both via stabilizing cardiac
electrophysiology and reducing apoptosis and autophagy after cell injury. The clinical evidence shows
that DEX provides cardiac protection during different surgeries. In a clinical study, DEX increased
the corrected sinus node recovery time, prolongated the atrioventricular (AV) nodal refractory period
and cycle length producing AV nodal Wenckebach retrograde conduction block. DEX has a putative
role in organ protection against hypoxic, oxidative and reperfusion injury. DEX slows down the firing
of the sinus node and prolongs AV refractoriness.

Keywords: dexmedetomidine; fibrillation; ablation; sedation; electrophysiologic; organ protection

1. Introduction

Dexmedetomidine (DEX) is a selective α2-adrenergic receptor (α2-AR) agonist with
a high affinity on the 2A and 2C subtypes of the receptor [1]. DEX produces analgesia
and sedation, reduces delirium and agitation, provides stabilizing effects on cardiovas-
cular functions, and causes perioperative sympatholysis. DEX has been widely used for
algo-sedation in various invasive surgical, radiological and cardiac procedures, due to
easy arousability from sedation and minimal or no effects on spontaneous breathing [2–4].
During general anesthesia, DEX reduces the need of volatile and intravenous (iv) anesthet-
ics [4]. The use of DEX is currently studied in palliative care, psychiatry and prevention of
arrythmias [5–7]. Perhaps one of the most interesting targets of DEX would be prevention
of multiorgan failure [7] occurring during surgery, trauma or in intensive care. DEX has a
wide therapeutic dose window and can be administered intravenously, subcutaneously,
intranasally and sublingually in doses [8]. Spinal and sublingual administration of DEX
are currently examined [9,10]. The common dosage of DEX has been 0.25–1 mcg/kg iv,
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followed by an infusion of 0.2–1.4 mcg/kg/h titrated to the intended effect [11–13]. Bolus
doses for other routes than iv vary largely and depend on the desired effect.

Bradycardia and hypotension are the most common side-effects that may restrict the
use of DEX (Table 1), although in higher doses they may be less pronounced [1–3,12,14–21].
That is why in a recent review of sedation techniques for radiofrequency (RF) ablation of
aberrant conduits in paroxysmal atrial fibrillation the use of DEX was recommended with
caution [22]. Even asystole during DEX administration has been reported [23].

Table 1. Risk of bradycardia and hypotension in recent meta-analyses and systematic reviews.
N = number of patients, RR = relative risks, ICU = intensive care unit, LCC = laparoscopic cholecys-
tectomy, NIV = non-invasive ventilation, PACU = postanesthesia care unit.

Study Settings N of Patients/Trials RR for Hypotension
(95% CI)

RR for Bradycardia
(95% CI)

Miao et al., 2020 [12] non-cardiac surgery 682/9 1.48 (0.68–3.23) 1.78 (0.78–4.02)

Bi et al., 2021 [14] non-cardiac surgery, elderly
patients 4376/16 1.29 (1.12–1.49) 1.39 (1.15–1.67)

Lewis et al., 2021 [15] sedation for NIV in ICU 738/12 1.98 (1.32–2.98) 2.80 (1.92–4.07)

Zhong et al., 2022 [16] cardiac surgery 1001/7 1.10 (0.54–2.25) 2.78 (2.00–3.87)

Wang et al., 2022 [18] cardiac surgery 3171/18 1.08 (0.91–1.29) 2.14 (1.41–3.24)

DeCassai et al., 2022 [17] LCC 1.66 (0.92–2.9) 2.81 (1.34–5.91)

Lewis et al., 2022 [19] mechanical ventilation in
ICU 11997/77 1.32 (1.07–1.63) 2.39 (1.82–3.13)

Kin Sin et al., 2022 [20] Non-cardiac,
non-neurosurgical operations 2676/32 5.39 (1.12–5.89) 5.13 (0.96–27.47)

Both central and intracardiac mechanisms have been proposed for the possible in-
fluences of DEX on the heart. Firstly, bradycardia could be caused by reflectory vasocon-
striction due to reduced noradrenaline secretion following the activation of α2A-receptors
in locus coeruleus [24]. Presynaptic activation of central α2-receptors results in a sympa-
tholytic effect leading to hypotension and bradycardia, while postsynaptic activation in the
peripheral vasculature leads to vasoconstriction and hypertension [24–26]. Secondly, DEX
has been shown to decrease the intracellular levels of cAMP via G-protein activation, which
reduces the activity in the ion channels of cardiac myocytes [27]. An important mechanism
of vasodilatation after DEX administration is the activation of endothelial nitric oxide
synthase [28]. An α2-receptor mediated baroreceptor reflex and enhanced vagal activity
may also count for DEX-induced bradycardia [25,28,29]. In a famous study, Kamibayashi
et al. [25] demonstrated that DEX had no influence on the heart rate in vagotomized dogs.

Yet the mechanisms of DEX-induced arrythmias remain to be exclusively examined.
The same intracellular mechanisms may be activated in DEX-induced balancing of cardiac
electrophysiology and broad myocardial protection [7]. To analyze the most recent evidence
of the cardiovascular effects of DEX, we performed a descriptive review. Because only
few studies have been executed on the effects of DEX on the myocardial conductivity in
adults [30,31], we also aimed to examine the electrophysiologic cardiac effect of DEX during
elective ablation of paroxysmal atrial fibrillation.

2. Results
2.1. Descriptive Review of the Effects of DEX on Cardiac Functions
2.1.1. Experimental Evidence on New Concepts

In vitro studies with isolated rabbit and rat hearts have shown that DEX inhibits
voltage-gated Na channels (Nav1.5) and L-type calcium channels (IC-L) and opens large-
conductance Ca2+-sensitive potassium (BKCa) channels, which are important mediators
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in myocardial conduction [32–34]. In addition, DEX has been shown to inhibit pacemaker
cells in sinoatrial nodes and reduce ventricular arrythmias [35–37]. These effects were only
partly or not all reversed by the α-2-adrenergic antagonist, yohimbine, suggesting a direct
effect of DEX on the heart. α2-receptors are important in the development of myocardial
hypertrophy but nodal tissue lacks α2-receptors [38,39]. In addition, Xia et al. have shown
that DEX reduced bupivacaine-induced arrythmias and increased tolerance to bupivacaine-
induced cardiac toxicity in rats [40]. There is a growing bulk of evidence supporting
the cardiac and other organ protective effects of DEX as proven by several experimental
models of ischemic injury and via multiple mechanisms [7]. Examples of the most recent
findings [41–51] in the mechanisms of DEX-induced cardioprotection are given in Table 2.
DEX may be beneficial for a failing heart given both before (preconditioning-like effect)
and after (postconditioning-like effect) the ischemic injury. However, the dose–response
relationship of DEX was not clear in the studies. The results of this study propose that the
cumulated evidence on the cardiac protection caused by DEX at the cellular level could be
divided into the following main categories: inhibition of apoptosis, reversion of autophagy,
and stabilization of cardiac electrophysiology after cellular injury (Figure 1) [7,52].

Table 2. Summary of controlled experimental studies on the effects of DEX on myocardial protection.
↑ = increased, ↓ = decreased,→ = followed by. Yohimbine is an α2-adrenergic antagonist.

Study Species/Model DEX Effects Mechanisms

Bunte et al., 2020 [41]
rat/isolated heart
coronary flow stopped chemically
for 33 min→ reperfusion 60 min

↓ infarct size by 60% on average postconditioning

Yin et al., 2020 [42] rat/embryonic heart-derived
myoblast exposed to H2O2

↑ HO-1 and ↓ RIPK1 and RIPK3
expression
↓ necroptosis (reversed by
yohimbine)
↓ apoptosis (yohimbine had no
effect)

preconditioning reduction of
oxidative stress
partly α2-adrenergic
mechanism

Li et al., 2021 [43]

rat/LAD ligation for 30 min→
reperfusion 120 min
Functional, biochemical and
histological examination

LVEF ↑ by ≈30%, S-LDH, CKMB
and TnT ↓, activation of
PI3K/Akt pathway, upregulation
of Beclin1 phosphorylation

decreased autophagy

Zhong et al., 2020 [44]
(a) rat/LAD ligation for 30 min→
reperfusion 120 min
(b) rat/myocardial cells histology

↓ pyroptosis
↑ NLRP3, ASC and
cleaved-caspase-1

FoxO3a/ARC axis activation

Yang et al., 2021 [45] rat/ischaemia-reperfusion injury

↓ cytotoxicity in cardiomyocytes
↓ ERS signaling pthw, ↓ GRP78,
PERK, CHOP, IRE1
↑ ATF6
yohimbine inhibition

inhibition of inflammation
and apoptosis
α2-adrenergic
mechanism

Huang et al., 2021 [46] rat/cardiomyocytes exposed for
hypoxia 6 h→ reoxygenation 4 h

↑ beating rates and viability of
cardiomyocytes
↑ expression of the NLRP3 protein
↓ expression of Bcl2 and BAX
↓ IL-1β, IL-18 and TNF-α and
H/R-induced NLRP3
inflammasome activation

inhibition of inflammatory
response
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Table 2. Cont.

Study Species/Model DEX Effects Mechanisms

Xiong et al., 2021 [47]

rat/LAD ligation for 30 min→
reperfusion 120 min;
in vivo: cardiac ultrasound for
hemodynamics, in vitro: cell
histology

↓ degranulation of mast cells and
the apoptosis of cardiomyocytes
↓ inhibits the activation of
inflammatory related factors
HMGB1, TLR4 and NF-κB p65

preconditioning

Sun et al., 2021 [48] mice/ischemia model

↑ EF and FS 7 d after infarction
↓ expression of ROCK1 and 2
protein
↓ apoptosis

inhibition of the RhoA/ROCK
signaling pathway

Xiao et al., 2021 [49]

Human ventricular tissue from
tetralogy of Fallot (TOF) patients
and CMs derived from
human-induced pluripotent stem
cells/reperfusion injury and
hypoxic injury

↑ AMP-activated protein kinase
(AMPK) and phospho AMPK
(pAMPK) during the I/R process
inhibited by yohimbine

α2-adrenergic mechanism in
suppression of autophagy

Song et al., 2021 [50] rat/LAD ligation for 60 min→
reperfusion for 120 min

preconditioning average infarct
size ↓30%
yohimbine prevented

bradykinin receptor
upregulation
α2-adrenergic mechanism

Shen et al., 2021 [51]
swine/resuscitation for 5 min
after surgically induced cardiac
arrest of 8 min

↓ inflammation, oxidative stress,
and cell apoptosis and
necroptosis in the heart and brain

postconditioning

Abbreviations: apoptosis-associated speck-like protein containing CARD (ASC), activating transcription factor
6 (ATF6), glucose-regulated protein 78 (GRP78), heme oxygenase 1 (HO-1), protein kinase R-like endoplasmic
reticulum kinase (PERK), C/EBP homologous protein (CHOP), inositol-requiring protein 1 (IRE1), NOD-, LRR-
and pyrin domain-containing protein 3 (NLRP3), receptor interacting protein kinase 1 (RIPK1), receptor interacting
protein kinase 3 (RIPK3) silent information regulator factor 2-related enzyme 1 (SIRT1)/mammalian target of
rapamycin (mTOR), left ascending coronary artery (LAD), ischemia/reperfusion (I/R), TnT (troponin-T), LDH
(lactate dehydrogenase), CKMB (myocardial creatine kinase), PI3K/Akt (phosphoinositide-3-kinase–protein
kinase B).
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Figure 1. A model for main mechanisms (with two examples) of cardiac protection of DEX.

2.1.2. Clinical Significance

The loading dose of dexmedetomidine results in a transient increase in blood pressure
and a reflexive drop in heart rate, especially in young, healthy individuals [53]. This initial
cardiovascular response is most likely due to vasoconstriction induced by the stimulation
of peripheral α-2B receptors in vascular smooth muscle; however, subsequent hypotension
occurs when the vasodilatory effects of the central α-2A receptors predominate.

Due to its sympatholytic properties and ability to activate the parasympathetic tone,
DEX might reduce arrythmias during and after surgery and in the intensive care. Recently,
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three meta-analyses and systematic reviews have been published with different results
on the effects of DEX on the prevention of atrial fibrillation [18,54,55]. While two reviews
found no significant effect of DEX on arrythmias after cardiac surgery, Wang et al. reported
a 17% reduction in AF, 70% reduction in supraventricular tachycardia and an 80% reduction
in ventricular arrythmias by DEX in the intensive care units. Another recent review [16]
found that DEX effectively reduces ventricular arrythmias, but was based only on six
studies with a total number of 1001 patients.

DEX seems to stabilize cardiovascular functions and protect the heart from reperfusion
injury in humans. The most recent systematic review by Chen et al. [2022], based on 9
controlled studies including a total of 418 patients, found out that DEX reduced CK-MB, IL6
and TNF-α levels up to 24 h after open-heart surgery performed with CPB. Additionally, it
shortened the length of patients’ intensive care department stays, but it had no influence on
the total length of the stay at the hospital [56]. The original studies had a very low bias but
the dosing regimen of DEX varied greatly. Yet, in all but one trial the administration started
in the induction phase and lasted at least until the end of the procedure. Another review,
examining the use of DEX during hysterectomies, explored 22 studies including a total
of 857 women and concluded that DEX was associated with more stable haemodynamics
observed as less drastic fluctuations in blood pressure and heart rate during surgery [57].
This review also demonstrated a very low bias risk for the included studies. Rather
similar results were obtained in a prospective, randomized and placebo-controlled study
assessing the effects of a bolus dose of 0.6 µg/kg of DEX iv in the induction of anesthesia
for laparoscopic cholecystectomy [58]. In this study, the patients receiving DEX experienced
also less cough during emergence and less postoperative pain than the patients treated
with placebo.

2.2. Clinical Study

Our clinical study included two females and nine males at a median (range) age of
48 (38–59) years. Their median weights and heights (with ranges) were 88 (60–108) kgs
and 183 (161–196) cm, respectively. All patients had SR during the measurements. During
cannulation the patients received a median dose of 1 (range 0.5–2) mg of alfentanil and a
median volume of 707 (range 606–716) mL of fluids. The haemodynamic and oxygenation
measurements are given in Table 3. The electrophysiological measurements are given in
Table 4. No ventricular arrythmias were detected during the procedures.

Table 3. Hemodynamics and oxygenation measurements before (pre) and after (post) DEX infusion.
Median values (and ranges) are given. Pre = baseline, Post = after DEX.

Timing SAP (mmHg) DAP (mmHg) MAP (mmHg) SpO2 (%) Hr (b/min)

Pre 125 (109–156) 78.5 (67–106) 94.5 (91–98) 95 (91–98) 69 (52–100)

Post 122 (99–145) 81 (69–95) 93.5 (84–112) 93.5 (91–97) 73 (51–92)
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Table 4. Electrophysiological properties. Figures represent time in milliseconds (ms). Pre = baseline,
Post = after DEX. Statistically significant difference between pre- and post-DEX measures is marked
with * (p < 0.05).

Variable Pre (ms) Post (ms)

P (duration of P-wave) 125 (105–155) 121 (103–155)

PQ (PQ interval) 172 (133–201) 176 (133–205)

QRS (duration of QRS) 94 (83–123) 97 (80–124)

QTc (duration of QT-interval) 416 (382–473) 421 (398–468)

SCL (sinus cycle length) 913 (671–1179) 941 (762–1082)

SNRT (Sinus node recovery time) 1291 (1012–1744) 1340 (1110–1806)

CSNRT (Corrected sinus node recovery time) 377 (250–734) 468 (144–742) *

AVNW (cycle length producing AV nodal
Wenckebach antegrade conduction block) 340 (310–430) 365 (320–420)

AVNERP600 (AV nodal refractory time at 600
millisecond atrial pacing) 270 (230–350) 290 (240–370) *

AVNERP400 (AV nodal refractory time at 400
millisecond atrial pacing) 290 (240–360) 285 (270–340)

AERP (atrial effective refractory period) 250 (180–280) 260 (210–280)

AVNWret (cycle length producing AV nodal
Wenckebach retrograde conduction block) 455 (310–680) 505 (340–690) *

AVNERPret (retrograde AV nodal refractory period) 305 (220–430) 290 (220–420)

VERP (Ventricular effective refractory period) 240 (220–260) 240 (220–260)

3. Discussion

The main finding of our clinical case study is that infusion of DEX depressed both
sinus and AV nodal functions in patients undergoing atrial fibrillation ablation with no
bradycardia or hypotension. A significant prolongation in the corrected sinus node recovery
time and the AV nodal antegrade refractoriness were observed after a DEX infusion in a
situation where haemodynamic fluctuations were eliminated.

Our findings agree with two other cardiac catheterization studies in adults, although
the measurements in those studies were performed only after DEX administration [30,31].
A prolongation of the AV nodal effective refractory period, the AV node block cycle length
and the AH interval but not of the QTc time were also observed in all these studies. The
physiological role of the AV node is to slow down the impulse propagation between atrial
and ventricular tissues. This decremental function was achieved under strict autonomous
nervous control. An increase in AV nodal refractoriness, as shown in our study, further
restricts any conduction through the node by cutting down the number of atrial impulses
entering the node. During sinus rhythm, DEX might lead to an AV block but in atrial
tachyarrhythmias, such as atrial fibrillation, it can reduce the ventricular rate and thus,
be protective. [59]. A longer ventricular refractory period may be beneficial since the
opposite has been associated with an increased risk of ventricular extrasystolia [60]. In 2007,
Fox and colleagues calculated that a 10-bpm reduction in HR produces a 30% reduction
in the relative risk of cardiac death after a heart infarction [61]. Yet, sinus bradycardia is
recognized as a risk factor for AF and ventricular dysrhythmias, particularly if the refractory
period is shortened or the QT time is prolonged [62,63]. A pathological sinus bradycardia
is a serious cause of morbidity and mortality in situations such as the sick sinus, Brugada
or Wollf-Parkinson-White syndromes [64,65]. Neither bradycardia nor prolongation of the
QT time were observed in the current study. Significant hypotension due to sympatholysis
was not observed in the current study because of standardized prophylactic hydration in
our patients.
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The representativeness of the current study is limited by the small number of pa-
tients and the lack of placebo. However, our study is the first of its kind examining the
electrical conductivity before and after the administration of DEX in adults. Prior to any
electrophysiological measurements, our patients received only paracetamol and diazepine
orally but no other sedative or analgesic medications. Thus, instead of a parallel placebo-
group our patients served as their own controls. In addition, we used a typical loading
dose and infusion of DEX, administered only after the baseline measurements had been
performed. No ventricular arrythmias during procedures were observed. The clinical
implications of the electrophysiological findings on arrhythmia incidence in our study must
be drawn cautiously since specific programmed arrhythmia stimulation protocols were
not utilized. Although we did not observe significant bradycardia and hypotension, these
side-effects occur commonly in the clinical use of DEX (Table 3). However, reduced heart
rate has been shown to diminish the occurrence of myocardial injury after an experimental
ischaemia and the risk of ventricular arrythmias, probably due to decreased metabolism in
cardiomyocytes [66–68].

4. Materials and Methods
4.1. Descriptive Review

For the descriptive mini-review, PubMed, Cochrane, and EMBASE were searched for
meta-analyses, critical and systematic reviews on the clinical effects of DEX on cardiac
functions published between 2020 and 2022. The following search terms were applied:
dexmedetomidine, α2-receptors and agonists, cardiology, cardiac protection, arrythmia,
myocardial injury. The search was extended to include the most recent experimental
evidence on DEX-induced protective myocardial effects. Only peer-reviewed articles in
English were accepted.

4.2. Prospective Clinical Case Study

The clinical study was performed following the principles defined in the Helsinki
Declaration, and it was registered in the European Union Drug Regulating Authorities
Clinical Trials Database, Eudract, with a register number EudraCT 2010-020782-24. After
the approval of the institutional Ethics Committee (25 August 2010, 137/13/03/01/2010), a
written informed consent was obtained from 11 consecutive patients scheduled for elective
RF energy catheter ablation of pAF in a tertiary hospital. Patients with a suspected opioid
or benzodiazepine addiction or allergy, on amiodarone, having AF during the procedure,
aged over 70, with a known allergy to DEX or a tendency to hypotension were excluded.
Antiarrhythmic drugs were discontinued at least five half-lives prior to the clinical study.

One hour before the procedure all patients received 1 g paracetamol and 10 mg
diazepam orally as premedication. Femoral cannulation was performed under local anes-
thesia (lidocaine 1%). If needed, alfentanil was used as the rescue analgesic in 0.25–0.50 mg
bolus doses during the cannulation, but not when the electrophysiological measurements
were performed. The procedural sedation was performed using a bolus DEX dose of
1 µg/kg given in 15 min, followed by a continuous DEX infusion of 0.2–0.7 µg/kg/h.

During patient preparation, a Ringer-Acetat (RAC)-infusion of 20 mL/h was intro-
duced and continued until the end of the procedure. To prevent hypovolemia, 6% Hydroxy-
Ethyl starch (HES) 500 mL was infused in one hour. If the patient became hypotonic, a
more rapid infusion of RAC could be given. In addition, during the procedure, patients
were given a Glucose–Electrolyte solution (G5% Na0.3) infusion of 30 mL/h for the femoral
vein socket clearing, an RAC infusion of 120 mL/h for the transseptal sheet flushing and
an RAC infusion of 2–10 mL/h for the magnetic catheter flushing.

Electrophysiology

The electrophysiological measurements were performed in the fasting state. Two
quadripolar electrode catheters (Supreme™ CRD, St. Jude Medical Company, St. Paul,
MN, USA) were introduced via femoral access to the right ventricular apex and His bundle
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region, respectively. A deflectable decapolar catheter (Inquiry™, Irvine Biomedical, Inc., St.
Jude Medical Company, Irvine, CA, USA) was inserted into the coronary sinus (CS). A bipo-
lar pacing from the most proximal CS pair of electrodes was used for atrial pacing and the
ventricular and VA conduction studies were accomplished by RV apical pacing. Care was
used to record stable His bundle electrograms. Incremental pacing and single extrastimulus
techniques were used to determine the antegrade and retrograde AV conduction properties
and the atrial and ventricular effective refractory periods, as well as sinus node recovery
time (SNRT) and corrected sinus node recovery time (CSNRT). Pacing was performed with
a programmable stimulator (EP-4™ Cardiac Stimulator (St. Jude medical, Inc., St. Paul,
MN, USA) using stimuli of 2 ms duration and amplitudes twice the diastolic threshold,
which was defined also after the dexmedetomidine infusion. The programmed electrical
stimulation was performed prior to transseptal puncture, in the baseline and in the steady
state on continuous dexmedetomidine infusion. The protocol and definitions used for
the stimulation program were as utilized in clinical studies [69]. In short, an incremental
atrial and right ventricular extrastimulus technique with driving cycle lengths of 600 ms
and 400 ms was used to determine the atrial and ventricular effective refractory periods
(AERP and VERP, respectively), as well as the AV nodal antegrade and retrograde effective
refractory periods (AVN ERP600, AVNERP400 and AVNERPret, respectively). Incremental
atrial and right ventricular pacing were used to define the cycle lengths producing AV nodal
Wenckebach antegrade (AVNW) and retrograde (AVNWret) conduction blocks, respectively.
Conduction over the accessory pathway or dual AV conduction physiology were not found
in either direction. To determine the effect of dexmedetomidine on the sinus node function,
overdrive suppression with rapid atrial pacing at a cycle length of 100 ms shorter than the
spontaneous sinus rate for one minute was used. From the return cycle length sinus node
recovery time (SNRT) and corrected SNRT (CSNRT) were calculated.

A 12 lead ECG was recorded during the stable sinus rhythm just prior to the baseline
electrophysiological study, and repeated after the completion of the clinical study drug
infusion and before starting the second set of electrophysiological measurements. Systolic
arterial pressure (SAP), diastolic arterial pressure (DAP), mean arterial pressure (MAP) and
heart rate (HR) were measured non-invasively. Peripheral arterial blood saturation (SpO2)
was measured with pulse-oximetry.

All measurements were performed twice, before and after the DEX bolus. The data on
stimulations and recordings were stored digitally and analyzed off-line, using the mean
values of five consecutive measurements. The Wilcoxon signed-rank test was used for
pairwise comparisons of statistically significant (p < 0.05) differences of hemodynamic,
oxygenation and electrophysiological measurements.

5. Conclusions

The most recent experimental studies suggest both an α2-receptor related and a direct
effect on cardiomyocyte mechanisms for DEX-induced cardiac protection for oxidative
and hypoxic injuries of the heart. In surgical and intensive care, DEX has been shown to
reduce the incidence of ventricular arrythmias and to stabilize haemodynamics in humans.
Further studies are needed to establish the role of DEX in clinical organ protection both
after surgery and myocardial infarction. Our clinical study shows that DEX has a slight
inhibitory effect on sinus node function, and that it prolongs atrioventricular refractoriness
in patients undergoing atrial fibrillation ablation. Whether these are direct actions remains
unclear, but if proper hydration is provided and hypotension avoided, the response is
evident.
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