Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview
Abstract
:1. Introduction
2. Lentils and Sustainability
3. Polyphenol Constituents in Lentils
3.1. Phenolic Acids
3.2. Flavonoids
4. Saponin Constituents in Lentils
4.1. Saponins in Lentils
4.2. Quantitative Analysis of Saponins in Lentils
5. Phytosterols Constituents in Lentils
5.1. Analysis of PS in Lentils
5.2. PS Levels in Lentils
6. Health Benefits of Lentils Polyphenols
6.1. Anti-Diabetic Activity
6.2. Anti-Oxidant Activity
6.3. Anti-Obesity Activity
6.4. Cardioprotective Effect
6.5. Anticancer Activity
7. Health Benefits of Saponins
7.1. Antioxidant Properties, Hypocholesterolemic Effect and Gut Microbiota Health Impact
7.2. Anti-Inflammatory Activities
7.3. Inhibition of Cancer
8. Health Benefits of Phytosterols in Lentils
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganesan, K.; Xu, B. Polyphenol-rich lentils and their health promoting effects. Int. J. Mol. Sci. 2017, 18, 2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faris, M.A.I.E.; Takruri, H.R.; Issa, A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterr. J. Nutr. Metab. 2013, 6, 3–16. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, H.; Deng, Z.; Tsao, R. Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. J. Food Bioact. 2018, 1, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Vasishtha, H.; Srivastava, R. Changes in sapogenols in lentils (Lens culinaris) during soaking and cooking. Indian J. Agric. Sci. 2013, 83, 8. [Google Scholar]
- Calles, T.; Del Castello, R.; Baratelli, M.; Xipsiti, M.; Navarro, D. The International Year of Pulses—Final Report; Food and Argiculture Organisation of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Maphosa, Y.; Jideani, V.A. The role of legumes in human nutrition. In Functional Food: Improve Health through Adequate Food; InTech: Rijeka, Croatia, 2017; Volume 1, p. 13. [Google Scholar]
- Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Am. Diet. Assoc. 2009, 109, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Varma, P. The Global Economy of Pulses; Rawal, V., Navarro, D.K., Eds.; Food and Agriculture Organization: Rome, Italy, 2019. [Google Scholar]
- Barneze, A.S.; Whitaker, J.; McNamara, N.P.; Ostle, N.J. Legumes increase grassland productivity with no effect on nitrous oxide emissions. Plant Soil 2020, 446, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Caprioli, G.; Nzekoue, F.K.; Giusti, F.; Vittori, S.; Sagratini, G. Optimization of an extraction method for the simultaneous quantification of sixteen polyphenols in thirty-one pulse samples by using HPLC-MS/MS dynamic-MRM triple quadrupole. Food Chem. 2018, 266, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for analysis of plant phenolic compounds. Molecules 2013, 18, 2328–2375. [Google Scholar]
- Magalhaes, S.C.; Taveira, M.; Cabrita, A.R.; Fonseca, A.J.; Valentão, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Dueñas, M.; Troszyńska, A.; Kosińska, A.; Pegg, R.B. Antioxidant activity of a red lentil extract and its fractions. Int. J. Mol. Sci. 2009, 10, 5513–5527. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chang, S.K. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J. Agric. Food Chem. 2010, 58, 1509–1517. [Google Scholar] [CrossRef]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Robredo, S.; Troszyńska, A.; Kosińska, A.; Pegg, R.B. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 2010, 121, 705–711. [Google Scholar] [CrossRef]
- Aguilera, Y.; Duenas, M.; Estrella, I.; Hernandez, T.; Benitez, V.; Esteban, R.M.; Martin-Cabrejas, M.A. Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. J. Agric. Food Chem. 2010, 58, 10101–10108. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 2015, 172, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Alshikh, N.; de Camargo, A.C.; Shahidi, F. Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. J. Funct. Foods 2015, 18, 1022–1038. [Google Scholar] [CrossRef]
- Yeo, J.; Shahidi, F. Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils. J. Funct. Foods 2017, 38, 716–722. [Google Scholar] [CrossRef]
- Dhull, S.B.; Punia, S.; Kidwai, M.K.; Kaur, M.; Chawla, P.; Purewal, S.S.; Sangwan, M.; Palthania, S. Solid-state fermentation of lentil (Lens culinaris L.) with Aspergillus awamori: Effect on phenolic compounds, mineral content, and their bioavailability. Legume Sci. 2020, 2, e37. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ragaee, S.; Marcone, M.F.; Abdel-Aal, E.-S.M. Composition of phenolic acids and antioxidant properties of selected pulses cooked with different heating conditions. Foods 2020, 9, 908. [Google Scholar] [CrossRef]
- Ghumman, A.; Singh, N.; Kaur, A. Influence of sprouting on phenolic composition and starch characteristics of lentil and horse gram. Int. J. Food Sci. Technol. 2020, 55, 1744–1753. [Google Scholar] [CrossRef]
- Yeo, J.; Shahidi, F. Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. Food Chem. 2020, 315, 126202. [Google Scholar] [CrossRef]
- Irakli, M.; Kargiotidou, A.; Tigka, E.; Beslemes, D.; Fournomiti, M.; Pankou, C.; Stavroula, K.; Tsivelika, N.; Vlachostergios, D.N. Genotypic and Environmental Effect on the Concentration of Phytochemical Contents of Lentil (Lens culinaris L.). Agronomy 2021, 11, 1154. [Google Scholar] [CrossRef]
- Giusti, F.; Caprioli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S.; Sagratini, G. Analysis of 17 polyphenolic compounds in organic and conventional legumes by high-performance liquid chromatography-diode array detection (HPLC-DAD) and evaluation of their antioxidant activity. Int. J. Food Sci. Nutr. 2018, 69, 557–565. [Google Scholar] [CrossRef]
- Mirali, M.; Ambrose, S.J.; Wood, S.A.; Vandenberg, A.; Purves, R.W. Development of a fast extraction method and optimization of liquid chromatography–mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J. Chromatogr. B 2014, 969, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Liberal, Â.; Fernandes, Â.; Dias, M.I.; Pinela, J.; Vivar-Quintana, A.M.; Ferreira, I.C.; Barros, L. Phytochemical and Antioxidant Profile of Pardina Lentil Cultivars from Different Regions of Spain. Foods 2021, 10, 1629. [Google Scholar] [CrossRef] [PubMed]
- Bubelova, Z.; Sumczynski, D.; Salek, R.N. Effect of cooking and germination on antioxidant activity, total polyphenols and flavonoids, fiber content, and digestibility of lentils (Lens culinaris L.). J. Food Process. Preserv. 2018, 42, e13388. [Google Scholar] [CrossRef]
- Djabali, S.; Makhlouf, F.; Ertas, A.; Barkat, M. Effect of heat treatment on polyphenolic compounds and antioxidant activity of lentils (Lens culinaris). Acta Sci. Nat. 2020, 7, 58–71. [Google Scholar] [CrossRef]
- Ali-Melki, A.; Mokaddem, Y.; Esteve-Turrillas, F.A.; Guardia, M.d.l. Hard Cap Espresso Machine Extraction of Polyphenolic Compounds from Pulses. J. Mex. Chem. Soc. 2018, 62, 371–378. [Google Scholar]
- Zou, Y.; Chang, S.K.; Gu, Y.; Qian, S.Y. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 2011, 59, 2268–2276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, A.L.; Ozga, J.A.; Lopes-Lutz, D.; Schieber, A.; Reinecke, D.M. Characterization of proanthocyanidins in pea (Pisum sativum L.), lentil (Lens culinaris L.), and faba bean (Vicia faba L.) seeds. Food Res. Int. 2012, 46, 528–535. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, S.-k.; Wang, H.; Cai, M. In vitro antioxidant activity of extracts from common legumes. Food Chem. 2014, 152, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.M.; Hassan, A.A.; Mansour, E.H.; Fahmy, H.A.; El-Bedawey, A.E.-F.A. Melatonin, phenolics content and antioxidant activity of germinated selected legumes and their fractions. J. Saudi Soc. Agric. Sci. 2019, 18, 294–301. [Google Scholar] [CrossRef]
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-based, biological-active surfactants from plants. Appl. Charact. Surfactants 2017, 6, 184–205. [Google Scholar]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in pulses and their health promoting activities: A review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef]
- Mo’ez Al-Islam, E.F.; Mohammad, M.G.; Soliman, S. Lentils (Lens culinaris L.): A candidate chemopreventive and antitumor functional food. Funct. Foods Cancer Prev. Ther. 2020, 99–120. [Google Scholar] [CrossRef]
- Conti, M.V.; Guzzetti, L.; Panzeri, D.; De Giuseppe, R.; Coccetti, P.; Labra, M.; Cena, H. Bioactive compounds in legumes: Implications for sustainable nutrition and health in the elderly population. Trends Food Sci. Technol. 2021, 117, 139–147. [Google Scholar] [CrossRef]
- Micioni Di Bonaventura, M.V.; Cecchini, C.; Vila-Donat, P.; Caprioli, G.; Cifani, C.; Coman, M.M.; Cresci, A.; Fiorini, D.; Ricciutelli, M.; Silvi, S. Evaluation of the hypocholesterolemic effect and prebiotic activity of a lentil (Lens culinaris Medik) extract. Mol. Nutr. Food Res. 2017, 61, 1700403. [Google Scholar] [CrossRef] [Green Version]
- Sagratini, G.; Zuo, Y.; Caprioli, G.; Cristalli, G.; Giardina, D.; Maggi, F.; Molin, L.; Ricciutelli, M.; Traldi, P.; Vittori, S. Quantification of soyasaponins I and βg in Italian lentil seeds by solid-phase extraction (SPE) and high-performance liquid chromatography−mass spectrometry (HPLC-MS). J. Agric. Food Chem. 2009, 57, 11226–11233. [Google Scholar] [CrossRef]
- Donat, P.V.; Caprioli, G.; Conti, P.; Maggi, F.; Ricciutelli, M.; Torregiani, E.; Vittori, S.; Sagratini, G. Rapid Quantification of Soyasaponins I and β g in Italian Lentils by High-Performance Liquid Chromatography (HPLC)–Tandem Mass Spectrometry (MS/MS). Food Anal. Methods 2014, 7, 1024–1031. [Google Scholar] [CrossRef]
- Ha, T.J.; Lee, B.W.; Park, K.H.; Jeong, S.H.; Kim, H.-T.; Ko, J.-M.; Baek, I.-Y.; Lee, J.H. Rapid characterisation and comparison of saponin profiles in the seeds of Korean Leguminous species using ultra performance liquid chromatography with photodiode array detector and electrospray ionisation/mass spectrometry (UPLC–PDA–ESI/MS) analysis. Food Chem. 2014, 146, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Herrera, T.; Navarro del Hierro, J.; Fornari, T.; Reglero, G.; Martin, D. Acid hydrolysis of saponin-rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin-rich extracts and other bioactive compounds. J. Sci. Food Agric. 2019, 99, 3157–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, R.; Vasishtha, H. Saponins and lectins of Indian chickpeas (Cicer arietinum) and lentils (Lens culinaris). Indian J. Agric. Biochem. 2012, 25, 44–47. [Google Scholar]
- Sagratini, G.; Caprioli, G.; Maggi, F.; Font, G.; Giardinà, D.; Mañes, J.; Meca, G.; Ricciutelli, M.; Sirocchi, V.; Torregiani, E. Determination of soyasaponins I and βg in raw and cooked legumes by solid phase extraction (SPE) coupled to liquid chromatography (LC)–mass spectrometry (MS) and assessment of their bioaccessibility by an in vitro digestion model. J. Agric. Food Chem. 2013, 61, 1702–1709. [Google Scholar] [CrossRef]
- Savarino, P.; Demeyer, M.; Decroo, C.; Colson, E.; Gerbaux, P. Mass spectrometry analysis of saponins. Mass Spectrom. Rev. 2021. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Salman, H.A.K.; Sulaiman, R. Extraction and quantification of saponins: A review. Food Res. Int. 2014, 59, 16–40. [Google Scholar] [CrossRef]
- Ruiz, R.G.; Price, K.R.; Arthur, A.E.; Rose, M.E.; Rhodes, M.J.; Fenwick, R.G. Effect of soaking and cooking on the saponin content and composition of chickpeas (Cicer arietinum) and lentils (Lens culinaris). J. Agric. Food Chem. 1996, 44, 1526–1530. [Google Scholar] [CrossRef]
- Del Hierro, J.N.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Navarro del Hierro, J.; Reglero, G.; Martin, D. Chemical Characterization and Bioaccessibility of Bioactive Compounds from Saponin-Rich Extracts and Their Acid-Hydrolysates Obtained from Fenugreek and Quinoa. Foods 2020, 9, 1159. [Google Scholar] [CrossRef]
- Ahuja, H.; Kaur, S.; Gupta, A.K.; Singh, S.; Kaur, J. Biochemical mapping of lentil (Lens culinaris Medik) genotypes for quality traits. Acta Physiol. Plant. 2015, 37, 179. [Google Scholar] [CrossRef]
- Ruiz, R.; Price, K.; Rose, M.; Rhodes, M.; Fenwick, G. Determination of saponins in lupin seed (Lupinus angustifolius) using high-performance liquid chromatography: Comparison with a gas chromatographic method. J. Liq. Chromatogr. Relat. Technol. 1995, 18, 2843–2853. [Google Scholar] [CrossRef]
- Ruiz, R.G.; Price, K.R.; Rose, M.E.; Fenwick, G.R. Effect of seed size and testa colour on saponin content of Spanish lentil seed. Food Chem. 1997, 58, 223–226. [Google Scholar] [CrossRef]
- Gachumi, G.; Poudel, A.; Wasan, K.M.; El-Aneed, A. Analytical strategies to analyze the oxidation products of phytosterols, and formulation-based approaches to reduce their generation. Pharmaceutics 2021, 13, 268. [Google Scholar] [CrossRef]
- Miras-Moreno, B.; Sabater-Jara, A.B.; Pedreno, M.; Almagro, L. Bioactivity of phytosterols and their production in plant in vitro cultures. J. Agric. Food Chem. 2016, 64, 7049–7058. [Google Scholar] [CrossRef]
- Sipeniece, E.; Mišina, I.; Qian, Y.; Grygier, A.; Sobieszczańska, N.; Sahu, P.K.; Rudzińska, M.; Patel, K.S.; Górnaś, P. Fatty acid profile and squalene, tocopherol, carotenoid, sterol content of seven selected consumed legumes. Plant Foods Hum. Nutr. 2021, 76, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Jeong, B.-G.; Kerr, W.L.; Chun, J. Validation of phytosterol analysis by alkaline hydrolysis and trimethylsilyl derivatization coupled with gas chromatography for rice products. J. Cereal Sci. 2021, 101, 103305. [Google Scholar] [CrossRef]
- Saini, R.K.; Song, M.-H.; Yu, J.-W.; Shang, X.; Keum, Y.-S. Phytosterol Profiling of Apiaceae Family Seeds Spices Using GC-MS. Foods 2021, 10, 2378. [Google Scholar] [CrossRef]
- de Figueiredo, L.C.; Bonafe, E.G.; Martins, J.G.; Martins, A.F.; Maruyama, S.A.; Junior, O.d.O.S.; Biondo, P.B.F.; Matsushita, M.; Visentainer, J.V. Development of an ultrasound assisted method for determination of phytosterols in vegetable oil. Food Chem. 2018, 240, 441–447. [Google Scholar] [CrossRef]
- Huang, Z.; Yao, Y.-N.; Li, W.; Hu, B. Analytical properties of electrospray ionization mass spectrometry with solid substrates and nonpolar solvents. Anal. Chim. Acta 2019, 1050, 105–112. [Google Scholar] [CrossRef]
- Decloedt, A.I.; Van Landschoot, A.; Watson, H.; Vanderputten, D.; Vanhaecke, L. Plant-based beverages as good sources of free and glycosidic plant sterols. Nutrients 2017, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Flakelar, C.L.; Prenzler, P.D.; Luckett, D.J.; Howitt, J.A.; Doran, G. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chem. 2017, 214, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Nzekoue, F.K.; Caprioli, G.; Ricciutelli, M.; Cortese, M.; Alesi, A.; Vittori, S.; Sagratini, G. Development of an innovative phytosterol derivatization method to improve the HPLC-DAD analysis and the ESI-MS detection of plant sterols/stanols. Food Res. Int. 2020, 131, 108998. [Google Scholar] [CrossRef] [PubMed]
- He, W.-S.; Zhu, H.; Chen, Z.-Y. Plant sterols: Chemical and enzymatic structural modifications and effects on their cholesterol-lowering activity. J. Agric. Food Chem. 2018, 66, 3047–3062. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.; Karathanos, V.T.; Hassapidou, M.; Andrikopoulos, N.K. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010, 121, 682–690. [Google Scholar] [CrossRef]
- Nyström, L.; Schär, A.; Lampi, A.M. Steryl glycosides and acylated steryl glycosides in plant foods reflect unique sterol patterns. Eur. J. Lipid Sci. Technol. 2012, 114, 656–669. [Google Scholar] [CrossRef]
- Nzekoue, F.K.; Alessandroni, L.; Caprioli, G.; Khamitova, G.; Navarini, L.; Ricciutelli, M.; Sagratini, G.; Sempere, A.N.; Vittori, S. Analysis of Phytosterols Content in Italian-Standard Espresso Coffee. Beverages 2021, 7, 61. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar]
- Świeca, M.; Baraniak, B.; Gawlik-Dziki, U. In vitro digestibility and starch content, predicted glycemic index and potential in vitro antidiabetic effect of lentil sprouts obtained by different germination techniques. Food Chem. 2013, 138, 1414–1420. [Google Scholar] [CrossRef]
- Aslani, Z.; Mirmiran, P.; Alipur, B.; Bahadoran, Z.; Farhangi, M.A. Lentil sprouts effect on serum lipids of overweight and obese patients with type 2 diabetes. Health Promot. Perspect. 2015, 5, 215. [Google Scholar] [CrossRef] [Green Version]
- Shams, H.; Tahbaz, F.; hassan Entezari, M.; Abadi, A. Effects of cooked lentils on glycemic control and blood lipids of patients with type 2 diabetes. ARYA Atheroscler. J. 2010, 4, 1–5. [Google Scholar]
- Al-Tibi, A.M.; Takruri, H.R.; Ahmad, M.N. Effect of dehulling and cooking of lentils (Lens culinaris L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays. J. Nutr. 2010, 16, 409–418. [Google Scholar] [PubMed]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Chung, H.-J.; Liu, Q.; Pauls, K.P.; Fan, M.Z.; Yada, R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 2008, 41, 869–875. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes. Food Chem. 2008, 110, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kiran, S.; Johnson, J.B.; Mani, J.S.; Portman, A.; Mizzi, T.; Naiker, M. Commercial Lentils (Lens culinaris) Provide Antioxidative and Broad-spectrum Anti-cancerous Effects. Legume Res. Int. J. 2021, 1, 5. [Google Scholar] [CrossRef]
- Mollard, R.; Zykus, A.; Luhovyy, B.; Nunez, M.; Wong, C.; Anderson, G. The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br. J. Nutr. 2012, 108, 509–517. [Google Scholar] [CrossRef]
- McCrory, M.A.; Hamaker, B.R.; Lovejoy, J.C.; Eichelsdoerfer, P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. 2010, 1, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Balasubramaniam, V.; Mustar, S.; Khalid, N.M.; Abd Rashed, A.; Noh, M.F.M.; Wilcox, M.D.; Chater, P.I.; Brownlee, I.A.; Pearson, J.P. Inhibitory activities of three Malaysian edible seaweeds on lipase and α-amylase. J. Appl. Phycol. 2013, 25, 1405–1412. [Google Scholar] [CrossRef]
- Hanson, M.G.; Zahradka, P.; Taylor, C.G. Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. Br. J. Nutr. 2014, 111, 690–698. [Google Scholar] [CrossRef] [Green Version]
- Lukito, W. Candidate foods in the Asia–Pacific region for cardiovascular protection: Nuts, soy, lentils and tempe. Asia Pac. J. Clin. Nutr. 2001, 10, 128–133. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Thompson, A.M.; Tees, M.T.; Nguyen, C.H.; Winham, D.M. Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 94–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caccialupi, P.; Ceci, L.R.; Siciliano, R.A.; Pignone, D.; Clemente, A.; Sonnante, G. Bowman-Birk inhibitors in lentil: Heterologous expression, functional characterisation and anti-proliferative properties in human colon cancer cells. Food Chem. 2010, 120, 1058–1066. [Google Scholar] [CrossRef]
- Mo'ez Al-Islam, E.F.; Takruri, H.R.; Shomaf, M.S.; Bustanji, Y.K. Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutr. Res. 2009, 29, 355–362. [Google Scholar]
- Shomaf, M.S.; Hamed, R.T. Lentils [Lens culmans, L.] attenuate colonic lesions and neoplasms in fischer 344 rats. Jordan Med. J. 2011, 45, 231–239. [Google Scholar]
- Turco, I.; Bacchetti, T.; Morresi, C.; Padalino, L.; Ferretti, G. Polyphenols and the glycaemic index of legume pasta. Food Funct. 2019, 10, 5931–5938. [Google Scholar] [CrossRef]
- Tefera, M.M.; Altaye, B.M.; Yimer, E.M.; Berhe, D.F.; Bekele, S.T. Antidiabetic effect of germinated Lens culinaris medik seed extract in streptozotocin-induced diabetic mice. J. Exp. Pharmacol. 2020, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Aravind, S.M.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef]
- Elessawy, F.M.; Vandenberg, A.; El-Aneed, A.; Purves, R.W. An untargeted metabolomics approach for correlating pulse crop seed coat polyphenol profiles with antioxidant capacity and iron chelation ability. Molecules 2021, 26, 3833. [Google Scholar] [CrossRef]
- Attou, A.; Bouderoua, K.; Cheriguene, A. Effects of roasting process on nutritional and antinutritional factors of two lentils varieties (Lens culinaris. Medik) cultivated in Algeria. South Asian J. Exp. Biol. 2020, 10, 445–454. [Google Scholar] [CrossRef]
- Rico, D.; Peñas, E.; del Carmen García, M.; Rai, D.K.; Martínez-Villaluenga, C.; Frias, J.; Martín-Diana, A.B. Development of Antioxidant and Nutritious Lentil (Lens culinaris) Flour Using Controlled Optimized Germination as a Bioprocess. Foods 2021, 10, 2924. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Baraniak, B.; Sikora, M.; Jakubczyk, A.; Kapusta, I.; Świeca, M. Potentially Bioaccessible Phenolic and Antioxidant Potential of Fresh and Stored Lentil Sprouts—Effect of Lactobacillus plantarum 299v Enrichment. Molecules 2021, 26, 2109. [Google Scholar] [CrossRef] [PubMed]
- Benmeziane-Derradji, F.; Djermoune-Arkoub, L.; Ayat, N.E.-H.; Aoufi, D. Impact of roasting on the physicochemical, functional properties, antioxidant content and microstructure changes of Algerian lentil (Lens culinaris) flour. J. Food Meas. Charact. 2020, 14, 2840–2853. [Google Scholar] [CrossRef]
- Chen, K.; Gao, C.; Han, X.; Li, D.; Wang, H.; Lu, F. Co-fermentation of lentils using lactic acid bacteria and Bacillus subtilis natto increases functional and antioxidant components. J. Food Sci. 2021, 86, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Kluska, M.; Juszczak, M.; Wysokiński, D.; Żuchowski, J.; Stochmal, A.; Woźniak, K. Kaempferol derivatives isolated from Lens culinaris Medik. reduce DNA damage induced by etoposide in peripheral blood mononuclear cells. Toxicol. Res. 2019, 8, 896–907. [Google Scholar] [CrossRef]
- Jung, Y.-S.; Lee, S.-H.; Chun, S.Y.; Kim, D.H.; Jang, B.I.; Han, M.-H.; Lee, S.-O. In Vitro and In Vivo Protective Effects of Lentil (Lens culinaris) Extract against Oxidative Stress-Induced Hepatotoxicity. Molecules 2022, 27, 59. [Google Scholar] [CrossRef] [PubMed]
- You, A. Dietary Guidelines for Americans; US Department of Health and Human Services and US Department of Agriculture: Washington, DC, USA, 2015. [Google Scholar]
- Zhao, D. Challenges associated with elucidating the mechanisms of the hypocholesterolaemic activity of saponins. J. Funct. Foods 2016, 23, 52–65. [Google Scholar] [CrossRef]
- Sarikahya, N.B.; Mkouboi, M.C.; Nalbantsoy, A.; Elibol, M. Cytotoxic and immunomodulator potential of hederagenin saponins from Cephalaria tchihatchewii. Phytochem. Lett. 2021, 44, 216–221. [Google Scholar] [CrossRef]
- Tian, C.; Chang, Y.; Wang, R.; Kang, Z.; Wang, Q.; Tong, Z.; Zhou, A.; Cui, C.; Liu, M. Optimization of ultrasound extraction of Tribulus terrestris L. leaves saponins and their HPLC-DAD-ESI-MSn profiling, anti-inflammatory activity and mechanism in vitro and in vivo. J. Ethnopharmacol. 2021, 278, 114225. [Google Scholar] [CrossRef] [PubMed]
- Navarro del Hierro, J.N.; Cueva, C.; Tamargo, A.; Núñez-Gómez, E.; Moreno-Arribas, M.V.; Reglero, G.; Martin, D. In vitro colonic fermentation of saponin-rich extracts from quinoa, lentil, and fenugreek. Effect on sapogenins yield and human gut microbiota. J. Agric. Food Chem. 2019, 68, 106–116. [Google Scholar] [CrossRef]
- El Barky, A.; Hussein, S.; Alm-Eldeen, A.; Hafez, Y.; Mohamed, T. Saponins and their potential role in diabetes mellitus. Diabetes Manag. 2017, 7, 148–158. [Google Scholar]
- El Aziz, M.; Ashour, A.; Melad, A. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res 2019, 8, 282–288. [Google Scholar]
- Nguyen, L.; Farcas, A.; Socaci, S.A.; Tofana, M.; Diaconeasa, Z.M.; Pop, O.L.; Salanta, L. An Overview of Saponins–A Bioactive Group. Bull. UASVM Food Sci. Technol. 2020, 77. [Google Scholar] [CrossRef]
- Luo, J.; Cai, W.; Wu, T.; Xu, B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem. 2016, 201, 350–360. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.K.; Zhang, Y. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. 2017, 214, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Gu, X.; Chen, J.; Liu, M.; Xiong, F.; Wu, X.; Zhang, Y.; Chen, F.; Chen, H.; Li, M. Soyasaponins reduce inflammation and improve serum lipid profiles and glucose homeostasis in high fat diet-induced obese mice. Mol. Nutr. Food Res. 2018, 62, 1800205. [Google Scholar] [CrossRef]
- Aicr’s Foods That Fight Cancer. Available online: https://www.aicr.org/cancer-prevention/food-facts/ (accessed on 11 November 2021).
- Feng, S.; Wang, L.; Belwal, T.; Li, L.; Luo, Z. Phytosterols extraction from hickory (Carya cathayensis Sarg.) husk with a green direct citric acid hydrolysis extraction method. Food Chem. 2020, 315, 126217. [Google Scholar] [CrossRef]
- Chávez-Santoscoy, R.A.; Tovar, A.R.; Serna-Saldivar, S.O.; Torres, N.; Gutiérrez-Uribe, J.A. Conjugated and free sterols from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors and their effect on lipid metabolism and cholesterol transport in rat primary hepatocytes. Genes Nutr. 2014, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Santas, J.; Codony, R.; Rafecas, M. Phytosterols: Beneficial effects. Nat. Prod. 2013, 685, 3437–3464. [Google Scholar]
- Yu, X.-H.; Qian, K.; Jiang, N.; Zheng, X.-L.; Cayabyab, F.S.; Tang, C.-K. ABCG5/ABCG8 in cholesterol excretion and atherosclerosis. Clin. Chim. Acta 2014, 428, 82–88. [Google Scholar] [CrossRef]
- Brauner, R.; Johannes, C.; Ploessl, F.; Bracher, F.; Lorenz, R.L. Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver X receptor α activation, and expression of the basolateral sterol exporter ATP-binding cassette A1 in Caco-2 enterocytes. J. Nutr. 2012, 142, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.-Y.; Ma, K.Y.; Liang, Y.; Peng, C.; Zuo, Y. Role and classification of cholesterol-lowering functional foods. J. Funct. Foods 2011, 3, 61–69. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, F.; Jia, S.; Xie, J.; Shen, M. Differences between phytosterols with different structures in regulating cholesterol synthesis, transport and metabolism in Caco-2 cells. J. Funct. Foods 2020, 65, 103715. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef]
- Attlee, A. Lentils (Lens culinaris, L.): A Novel Functional Food. In Exploring the Nutrition and Health Benefits of Functional Foods; IGI Global: Hershey, OA, USA, 2017; pp. 42–72. [Google Scholar]
- Modak, B. Anti-Cancer Diet: Eat Well To Live Longer. Int. J. Res. Rev. 2020, 7, 2237–2454. [Google Scholar]
Sample | TFC | CTC | TPC | |
---|---|---|---|---|
Lentil varieties | 3.04 to 4.54 mg CE/g DW | 3.73 to 10.20 mg CE/g DW | 4.9 to 7.8 mg GAE/g DW | [11] |
Red Chief lentil from Spokane | 2.21 mg CE/g DW | - | 7.53 mg GAE/g DW | [11] |
Lentil varieties | - | - | 12 mg GAE/g DW | [11] |
Red Lentil | - | 70 A500/g | 58 mg CE/g crude extract | [15] |
Lentil (11 cultivars) | 2840 to 6870 μg/g DW | - | 1543 to 2551 μg/g DW | [16] |
Green lentil | - | 93 A500/g | 68 mg CE/g DW | [17] |
Morton lentils | 30.0 mg CE/g DW | 61.6 mg CE/g DW | 70.0 mg GAE/g DW | [33] |
Green lentil seed and hull | - | - | Entire: 5.0 to 19.3 Hull: 24.6 to 82.9 mg CE/g DW | [11] |
Red lentil seed and hull | - | - | Entire: 5.1 to 20.8 Hull: 27.2 to 87.2 mg CE/g DW | |
Lentils (3 cultivars) | - | 269.0–37.8 mg/100 g FW. | - | [34] |
Lentil | - | 47.6 mg GAE/g DW | [35] | |
Green lentil (10 cultivars) | 0.7 to 1.9 mg CE/g DW | 3.4 to 7.8 mg CE/g DW | 4.6 to 8.3 mg GAE/g DW | [19] |
Red lentil (10 cultivars) | 0.6 to 1.6 mg CE/g DW | 3.0 to 5.8 mg CE/g DW | 4.6 to 7.6 mg GAE/g DW | |
Lentil cultivars | Free: 0.01 to 0.8 mg CE/g. Esterified: 0.4–4.1 mg CE/g. Insoluble bound: 0.08–2.95 mg CE/g | Free: 0.4 to 2.7 mg CE/g. Esterified: 0.6–10.5 mg CE/g. Insoluble bound: 0.03–4.3 mg CE/g | Free: 1.4 to 5.5 mg GAE/g. Esterified: 2.3–21.5 mg GAE/g. Insoluble bound: 2.6–17.5 mg GAE/g | [20] |
Lentil cultivars | -Before boiling: 3.9 to 5.4 mg CE/g.-After boiling: 3.5 to 4.4 mg CE/g | - | -Before boiling: 6.2 to 7.9mg GAE/g. -After -After Boiling: 5.5 to 6.6 mg GAE/g | [21] |
Lentil seeds | 8.43 mg quercetin/g | - | 5.21 mg GAE/g | [36] |
Three lentil cultivars | - | 1.56 to 2.40 mg CE/g DW | 15.8 to 17.5 mg GAE/g DW | [22] |
Lentils | - | - | 4.13 mg ferulic acid equivalents/g DW | [23] |
Lentil hulls of four different varieties | soluble phenolics in lentil hulls (10.71–45.85 mg/g) insoluble- bound phenolics in lentil hulls (6.71–4.18 mg/g) | [25] | ||
Pardina variety (34 samples) | - | - | 30 to 150 μg/100 g FW | [29] |
5 genotypes of lentil at 10 different locations | 4.34 to 5.31 mg CE/g DW | 2.67 to 3.98 mg GAE/g DW | 5.62 to 6.38 mg GAE/g DW | [26] |
Chemical Class | Chemical Sub-Class | Phenolic Compounds | Quantity | References |
---|---|---|---|---|
Phenolic acids | Hydroxybenzoic acids | Gallic acid | 90.9–136.8, 15.5 8 μg/g | [11,16,20,22,24,26,27] |
Protocatechuic acid or Dihydroxybenzoic acid | 1.45, 3.68, 20.2–37.7 μg/g | [11,16,18,19,20,26] | ||
p-Hydroxybenzoic acid | 1.90, 3.25, 73.46, 15.7–44.9, 22.8, 3.62–5.80 μg/g DW (red lentils), 2.93–5.74 μg/g DW (green lentils). | [11,15,16,18,19,23,26] | ||
2,3,4 Trihydroxy benzoic | 16.9–29.2 μg/g | [16] | ||
Syringic acid | [19,27] | |||
Vanillic acid | 0.59–3.22 μg/g | [16,26] | ||
Hydroxycinnamic acids | trans-p-Coumaric acid | 5.74, 38.84, 37.3, 2.14, 4.24–11.19 μg/g DW (red lentils), 4.70–12.94 μg/g DW (green lentils) | [11,15,16,17,18,19,20,22,23,24,26] | |
cis-p-Coumaric acid | 0.73 μg/g | [11,16,18] | ||
m-Coumaric acid | [16] | |||
trans-Ferulic acid | 0.74, 15.99, 10.1 μg/g | [11,15,16,17,20,23,24,27] | ||
trans-p-Coumaroyl-malic acid | 10.02 μg/g | [11,18,19] | ||
trans-p-Coumaroyl-glycolic acid | 2.88 μg/g | [11,18] | ||
Sinapic acid | 0.06, 1099–2217 μg/g | [15,16,20,23,24] | ||
Chlorogenic acid | 159–213 μg/g | [16,24] | ||
Caffeic acid | - | [16,20,27] | ||
Cinnamic acid | - | [22] | ||
- | ||||
Flavonoids | Flavones and flavonols | Quercetin 3-O-rutinoside | - | [11] |
Apigenin hydrate | - | [25] | ||
Apigenin 7-O apiofuranosyl glucoside | 6.20 μg/g | [11] | ||
Apigenin 7-O glucoside | 1.87 μg/g | [11] | ||
Apigenin hexose | - | [15] | ||
Quercetin | 3300 μg/g | [17,22,25] | ||
Quercetin diglycoside or Quercetin diglucoside | 114 μg/g | [15,25] | ||
Quercetin hexose | - | [15] | ||
acylated quercetin hexose | 37.2 μg/g | [17] | ||
Quercetin-O-pentoside | - | [25] | ||
Dihydroquercetin | - | [17] | ||
Quercetin-3-O-glucoside | - | [17,19,25,28] | ||
Quercetin-3-O-galactoside, | - | [17,28] | ||
Quercetin-3-O-rutinoside | 5.24 μg/g | [17] | ||
Carboxylated quercetin | - | [21] | ||
Kaempferol | - | [25] | ||
Kaempferol-3-O-rutinoside | 5.95 μg/g | [17,18] | ||
Kaempferol -dirutinoside | - | [18,20] | ||
Kaempferol derivative | - | [15] | ||
Kaempferol 3-glucoside, | 19.4 μg/g | [18,19,25,28] | ||
Dihydrokaempferol hydrate | - | [25] | ||
Dihydrokaempferol glycoside | - | [18] | ||
Dihydrokaempferol dimer | - | [25] | ||
Kaempferol acetylglycoside | - | [18] | ||
Kaempferol–rhamnoside hexose-hexose | - | [18] | ||
Kaempferol 3-robinoside-7-rhamnoside | - | [18] | ||
- | ||||
Kaempferol triglycoside | - | [19] | ||
Kaempferol tetraglycoside or Kaempferol tetraglucoside | - | [19,25] | ||
Kaempferol-deoxyhexoside-hexoside isomer I | 23.0 to 157.8 g/100 g FW | [29] | ||
Kaempferol-deoxyhexoside-hexoside isomer II | 0.0–157.8 g/100 g FW | [29] | ||
Kaempferol-O-hexoside-O-deoxyhexoside-hexoside | 0.0–157.8 g/100 g FW | [29] | ||
Apigenin methyl ether | - | [18] | ||
Myricetin | - | [25] | ||
Myricetin 3-rhamnoside | 5.95 μg/g | [11,18,28] | ||
Luteolin | 18–77 μg/g | [11,24,25,28] | ||
Luteolin 3′-7-diglucoside | 4.55 μg/g | [18,20] | ||
Luteolin-7-O-glucoside | - | [11,25,28] | ||
Luteolin-4′-O-glucoside | - | [25,28] | ||
Isoflavones | Formononetin rhamnoside | - | [25] | |
Flavanones | Eriodictyol 7-rutinoside | - | [18] | |
Eriodictyol 5,7-dimethoxyflavone | - | [18] | ||
Naringenin | - | [28] | ||
Naringenin glucoside | - | [25] | ||
Dihydrochalcones | Phloridzin | - | [15] | |
Flavan-3-ols and procyanidins | Catechin | 36.02, 2410, 267–1899 μg/g, 320–2160 μg/g DW | [15,16,17,18,20,21,22,24,25,26,28] | |
Catechin-3-glucoside | 31.50, 51.95, 289, 39.89, 6590, 2230, 2790 μg/g | [15,18,19,20,25] | ||
Gallocatechin | - | [26,28] | ||
Catechin gallate | - | [19,26] | ||
Epicatechin | 98.21, 2535–4946 μg/g | [15,16,17,18,20,21,25] | ||
Epicatechin glucoside | 59.5 μg/g | [15] | ||
Epicatechin gallate | - | [19] | ||
Procyanidin | - | [18,25] | ||
Procyanidin dimer | 65.98, 100, 3240 μg/g | [15,18,19,21,25] | ||
Digallate procyanidin dimer | 83.29 μg/g | [15] | ||
Procyanidin dimer A | - | [20] | ||
Procyanidin dimer B or procyanidin B2 | - | [20,26] | ||
Procyanidin dimer I | 438.3 μg/g | [26] | ||
Procyanidin trimer | 87.5, 9.30, 2590 μg/g | [15,18,25] | ||
Procyanidin trimer A | - | [20] | ||
Procyanidin trimer C1 | - | [20] | ||
Procyanidin gallate | 32.78 μg/g | [15,25] | ||
Prodelphinidins | Prodelphinidin | - | ||
Prodelphinidin dimer | 161.6, 3340, 5800 μg/g | [15,20,25] | ||
Prodelphinidin trimer (2GC-C) | 31.05 μg/g | [11,15] | ||
Anthocyanins | Delphinidin- 3-glucoside | - | [16] | |
Malvidin-3-O-galactoside | - | [28] | ||
Stilbenes | - | trans-Resveratrol-3-O-glucoside | - | [11] |
trans-Resveratrol. | - | [11] | ||
Coumarins | - | 4-Hydroxy-6-methylcoumarin | - | [28] |
Lentils | β-Sitosterol | Campesterol | Stigmasterol | Δ5Avenasterol | Stanols |
---|---|---|---|---|---|
L. green small 1 | 58.5 ± 3.3 | 7.0 ± 0.5 | 9.3 ± 0.6 | - | 3.7 ± 0.5 |
L. green large 1 | 62.5 ± 1.4 | 9.1 ± 0.6 | 8.3 ± 0.3 | - | 3.7 ± 0.3 |
L. orange 1 | 54.4 ± 2.4 | 7.7 ± 0.3 | 6.8 ± 0.2 | - | 3.0 ± 0.5 |
L. yellow 1 | 53.5 ± 3.1 | 4.2 ± 0.2 | 2.7 ± 0.2 | - | 2.1 ± 0.1 |
L. small Fakés 2 | 24.2 ± 1.0 | 2.1 ± 0.2 | 2.6 ± 0.1 | 2.5 ± 0.2 | - |
L. small 3 | 123.4 ± 4.1 | 15 ± 0.4 | 20 ± 0.6 | - | - |
Health Benefits | Mechanism of Action | Ref. |
---|---|---|
Prevention and management of diabetes | Improves blood glucose, lipid and lipoprotein metabolism. | [73,74] |
Anti-diabetic | Reduces fasting blood sugar (FBS), glycemic load and glycemic index in streptozocin (STZ)-induced diabetic animals. | [75,76,90,91] |
Reduced diabetic complications | Regulates starch digestibility, glycemic load and glycemic index. | [78] |
Anti-obesity | Controls post-prandial glucose and fat digestion. | [83] |
Reduction of CVDs | Reduces the total cholesterol (TC), triglycerides (TG), low density lipoprotein (LDL) and pathological manifestation of cardio-morphometric analysis. | [86] |
Reduce the glycemic index and hyperlipidemic effects in diabetic animal model | Increases the high density lipoprotein (HDL) levels and reduces blood glucose levels. | [76] |
Chemo-preventive on colorectal carcinogenesis | Reduces the number of dysplastic lesions and neoplasms in the colon of rats. | [88,89] |
Antioxidant | Reduces the formation of reactive oxygen species. | [79,80,92,93,94,95,96,97,98] |
Reduction of CVDs | Reduces blood pressure by inhibiting angiotensin I-converting enzyme. | [84] |
Reduced risk of hypertension and coronary artery disease | Antihyperlipidemic, hypohomocysteinemic, anti-cholesterolemic effects. | [85] |
Chemo-preventive, anticancer | Uptake of carcinogens, activation or formation, detoxification, binding to DNA and fidelity of DNA repair. | [88,99] |
Gut motility and potential role in diabetic patients | Prevents the impairment of metabolic control in diabetic rats. | [1] |
Oxidative Stress-Induced Hepatotoxicity | Lentil phenolic extract protects liver cells against oxidative stress, partly by inducing cellular antioxidant system; thus, it has hepatoprotective effects | [100] |
Biological Activity of Saponins | Main Findings | Reference |
---|---|---|
Gut microbiota health | Saponins in lentil extracts can be transformed into sapogenins by human gut microbiota, with a modulatory effect on the growth of selected intestinal bacteria. | [105] |
Anticancer | Estimated lentil saponin content is 34 mg/100 g. Extracted lentil saponins have been reported as possible antitumor agents. Saponins in lentils are expressed as soya sapogenol B. | [39] |
Anti-inflammatory | Soyasaponins from lentils and other legumes inhibit the production of pro-inflammatory cytokines (TNF-α and MCP-1, PGE2 and NO), inflammatory enzymes (COX-2 and iNOS) and the degradation of IκB-α (an inhibitor of NF-κB, in LPS-stimulated macrophages). | [40] |
Hypocholesterolemic and prebiotic | Ethanol/water saponin-rich extracts from lentils can reduce the cholesterol level of rats by 16.8% and increase bile acid levels in the feces of rats. Tested lentils extract shows the same prebiotic activity of inulin and good bifidogenic activity. | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafa, A.M.; Abouelenein, D.; Acquaticci, L.; Alessandroni, L.; Angeloni, S.; Borsetta, G.; Caprioli, G.; Nzekoue, F.K.; Sagratini, G.; Vittori, S. Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview. Pharmaceuticals 2022, 15, 1225. https://doi.org/10.3390/ph15101225
Mustafa AM, Abouelenein D, Acquaticci L, Alessandroni L, Angeloni S, Borsetta G, Caprioli G, Nzekoue FK, Sagratini G, Vittori S. Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview. Pharmaceuticals. 2022; 15(10):1225. https://doi.org/10.3390/ph15101225
Chicago/Turabian StyleMustafa, Ahmed M., Doaa Abouelenein, Laura Acquaticci, Laura Alessandroni, Simone Angeloni, Germana Borsetta, Giovanni Caprioli, Franks Kamgang Nzekoue, Gianni Sagratini, and Sauro Vittori. 2022. "Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview" Pharmaceuticals 15, no. 10: 1225. https://doi.org/10.3390/ph15101225
APA StyleMustafa, A. M., Abouelenein, D., Acquaticci, L., Alessandroni, L., Angeloni, S., Borsetta, G., Caprioli, G., Nzekoue, F. K., Sagratini, G., & Vittori, S. (2022). Polyphenols, Saponins and Phytosterols in Lentils and Their Health Benefits: An Overview. Pharmaceuticals, 15(10), 1225. https://doi.org/10.3390/ph15101225