Phytochemical Profiling, Antioxidant, Antimicrobial and Cholinesterase Inhibitory Effects of Essential Oils Isolated from the Leaves of Artemisia scoparia and Artemisia absinthium
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of the Artemisia scoparia Essential Oil (EOAS)
2.2. GC-MS Analysis of the Artemisia absinthium Essential Oil (EOAA)
2.3. Antioxidant Activity
2.4. Antibacterial Activities
2.5. Antifungal Activity
2.6. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE) Inhibition Activities
3. Materials and Methods
3.1. Identification of Plant Material and Collection
3.2. Isolation of Essential Oils (EOs)
3.3. Gas Chromatography and Mass Spectrometry (GC/MS) Analysis
3.4. 1,1-diphenyl-2-picryl-hydrazyl (DPPH) Free Radical Scavenging Assay
3.5. 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) Method
3.6. Antibacterial Assay
3.7. Fungicidal Assay
3.8. Cholinesterase Inhibitory Assay and IC50 Values Determination
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aljaafari, M.N.; Alali, A.O.; Baqais, L.; Alqubaisy, M.; Alali, M.; Molouki, A.; Ong-Abdullah, J.; Abushelaibi, A.; Lai, K.S.; Lim, S.H.E. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021, 26, 628. [Google Scholar] [CrossRef]
- Göksen, G.; Fabra, M.J.; Pérez-Cataluña, A.; Ekiz, H.I.; Sanchez, G.; López-Rubio, A. Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets. Food Packag. Shelf Life 2021, 27, 100613. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El Basuini, M.F.; Zaineldin, A.I.; Yilmaz, S.; Hasan, M.T.; Ahmadifar, E.; El Asely, A.M.; Abdel-Latif, H.M.R.; Alagawany, M.; Abu-Elala, N.M.; et al. Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens 2021, 10, 185. [Google Scholar] [CrossRef] [PubMed]
- Hasheminya, S.M.; Dehghannya, J. Chemical composition, antioxidant, antibacterial, and antifungal properties of essential oil from wild Heracleum rawianum. Biocatal. Agric. Biotechnol. 2021, 31, 101913. [Google Scholar] [CrossRef]
- Ansari, M.H.; Mahapatra, D.K. A short overview on Anti-diabetic natural products: Reviewing the herbotherapeutic potentials. In Natural Products Pharmacology and Phytochemicals for Health Care; Apple Academic Press: Palm Bay, FL, USA, 2021; pp. 1–22. [Google Scholar] [CrossRef]
- Arena, M.E.; Alberto, M.R.; Cartagena, E. Potential use of Citrus essential oils against acute respiratory syndrome caused by coronavirus. J. Essent. Oil Res. 2021, 33, 330–341. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus Artemisia. Arch. Pharmacal Res. 2021, 44, 439–474. [Google Scholar] [CrossRef]
- Ni, L.; Wu, H.; Du, C.; Li, X.; Li, Y.; Xu, C.; Wang, P.; Li, S.; Zhang, J.; Chen, X. Effects of allelochemical artemisinin in Artemisia annua on Microcystis aeruginosa: Growth, death mode and microcystin-LR changes. Environ. Sci. Pollut. Res. 2021, 28, 45253–45265. [Google Scholar] [CrossRef]
- Romeilah, R.M.; El-Beltagi, H.S.; Shalaby, E.A.; Younes, K.M.; El Moll, H.; Rajendrasozhan, S.; Mohamed, H.I. Antioxidant and cytotoxic activities of Artemisia monosperma L. and Tamarix aphylla L. essential oils. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12233. [Google Scholar] [CrossRef]
- Jan, G.; Ajab Khan, M.; Gul, F.; Ahmad, M.; Jan, M.; Zafar, M. Ethnobotanical study of common weeds of Dir Kohistan Valley, Khyber Pakhtoonkhwa, Pakistan. Pak. J. Weed Sci. Res. 2010, 16, 81–88. [Google Scholar]
- Hazrat, A.; Nisar, M.O.; Shah, J.; Ahmad, S. Ethnobotanical study of some elite plants belonging to Dir, Kohistan valley, Khyber Pukhtunkhwa, Pakistan. Pak. J. Bot. 2011, 43, 787–795. [Google Scholar]
- Van Hung, P.; Lan Phi, N.T.; Vy Vy, T.T. Effect of debranching and storage condition on crystallinity and functional properties of cassava and potato starches. Starch–Stärke 2012, 64, 964–971. [Google Scholar] [CrossRef]
- Esposito, E.R.; Bystrek, M.V.; Klein, J.S. An elective course in aromatherapy science. Am. J. Pharm. Educ. 2014, 78, 79. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Wang, L.; He, C.; Zhao, J.; Si, L.; Huang, H. Artemisia scoparia: Traditional uses, active constituents and pharmacological effects. J. Ethnopharmacol. 2021, 273, 113960. [Google Scholar] [CrossRef]
- Mihajilov-Krstev, T.; Jovanović, B.; Jović, J.; Ilić, B.; Miladinović, D.; Matejić, J.; Rajković, J.; Äorević, L.; Cvetković, V.; Zlatković, B. Antimicrobial, Antioxidative, and Insect Repellent Effects of Artemisia absinthium Essential Oil. Planta Med. 2014, 80, 1698–1705. [Google Scholar] [CrossRef] [Green Version]
- Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Benziane Ouaritini, Z.; Guemmouh, R. Antioxidant and antimicrobial activities of chemically-characterized essential oil from Artemisia aragonensis Lam. against drug-resistant microbes. Molecules 2022, 27, 1136. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Qureshi, K.A.; Ali, H.M.; Al-Omar, M.S.; Khan, O.; Mohammed, S.A. Bio-Evaluation of the Wound Healing Activity of Artemisia judaica L. as Part of the Plant’s Use in Traditional Medicine; Phytochemical, Antioxidant, Anti-Inflammatory, and Antibiofilm Properties of the Plant’s Essential Oils. Antioxidants 2022, 11, 332. [Google Scholar] [CrossRef]
- Duarte-Jurado, A.P.; Gopar-Cuevas, Y.; Saucedo-Cardenas, O.; Loera-Arias, M.D.J.; Montes-De-oca-luna, R.; Garcia-Garcia, A.; Rodriguez-Rocha, H. Antioxidant Therapeutics in Parkinson’s Disease: Current Challenges and Opportunities. Antioxidants 2021, 10, 453. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, L.H.C.; Ferreira, S.R.D.; Silva, M.D.C.C.; Ferreira, P.B.; Souza, I.L.L.D.; Cavalcante, F.D.A.; Silva, B.A.D. Uncovering the Role of Oxidative Imbalance in the Development and Progression of Bronchial Asthma. Oxid. Med. Cell. Longev. 2021, 2021, 6692110. [Google Scholar] [CrossRef] [PubMed]
- Reily-Bell, M.; Bahn, A.; Katare, R. Reactive Oxygen Species-Mediated Diabetic Heart Disease: Mechanisms and Therapies. Antiox. Redox Signal. 2022, 36, 608–630. [Google Scholar] [CrossRef]
- Kang, R.; Tang, D. Chapter 14: Ferroptosis, free radicals, and cancer. In Cancer, Oxidative Stress and Dietary Antioxidants, 2nd ed.; Acadamic Press; Elsevier: Cambridge, MA, USA, 2021; pp. 149–158. [Google Scholar] [CrossRef]
- Singh, H.P.; Kaur, S.; Mittal, S.; Batish, D.R.; Kohli, R.K. In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity. Food Chem.Toxicol. 2010, 48, 1040–1044. [Google Scholar] [CrossRef]
- Jiang, C.; Zhou, S.; Liu, L.; Toshmatov, Z.; Huang, L.; Shi, K.; Shao, H. Evaluation of the phytotoxic effect of the essential oil from Artemisia absinthium. Ecotoxicol. Environ. Saf. 2021, 226, 112856. [Google Scholar] [CrossRef] [PubMed]
- Chaqroune, A.; Sakar, E.H.; Mahjoubi, F.; Chaouch, M.; Chaqroune, A.; Taleb, M. Effects of Extraction Technique and Solvent on Phytochemicals, Antioxidant, and Antimicrobial Activities of Cultivated and Wild Rosemary (Rosmarinus officinalis L.) from Taounate Region (Northern Morocco). Biointerface Res. App. Chem. 2022, 12, 8441–8452. [Google Scholar] [CrossRef]
- Kulisic, T.; Radonic, A.; Katalinic, V.; Milos, M. Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem. 2004, 85, 633–640. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Subhan, F.; Khan, M.A.; Ahmad, W.; Ali, G.; Imran, M.; Ahmad, S. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L. show high anti-angiogenic, anti-tumor, brine shrimp, and fibroblast NIH/3T3 cell line cytotoxicity. Front. Pharmacol. 2016, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, J.D.; Jeong, M.R.; Jeong, S.I.; Moon, S.E.; Kim, J.Y.; Kil, B.S.; Song, Y.H. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med. 2005, 71, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Dulger, B.; Ceylan, M.; Alitsaous, M.; Uğurlu, E. Artemisia absinthium L. (Pelin)’un antimikrobiayal aktivitesi. Turk. J. Biol. 1999, 23, 377–384. [Google Scholar]
- Liu, C.Z.; Murch, S.J.; El-Demerdash, M.; Saxena, P.K. Artemisia judaica L. Micropropagation and antioxidant activity. J. Biotechnol. 2004, 110, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Misire, C. Bioactivity of Crude Essential Oils and Blends of Artemisia afra, Ocimum Kilimandscharicum AND Tagetes Minuta against Anopheles Gambiae SS. Ph.D. Thesis, University of Eldoret, Eldoret, Kenya, 2021. [Google Scholar] [CrossRef]
- Muyima, N.Y.O.; Zulu, G.; Bhengu, T.; Popplewell, D. The potential application of some novel essential oils as natural cosmetic preservatives in an aqueous cream formulation. Flavour Fragr. J. 2002, 17, 258–266. [Google Scholar] [CrossRef]
- Khezri, S.; Khezerlou, A.; Dehghan, P. Antibacterial activity of Artemisia persica Boiss essential oil against Escherichia coli O157: H7 and Listeria monocytogenes in probiotic Doogh. J. Food Process. Preserv. 2021, 45, e15446. [Google Scholar] [CrossRef]
- Kalemba, D.; Kusewicz, D.; Świa̧der, K. Antimicrobial properties of the essential oil of Artemisia asiatica Nakai. Phyther. Res. 2002, 16, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Catalkaya, G.; Capanoglu, E.; Karbancioglu-Guler, F. Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Front. 2021, 2, 508–518. [Google Scholar] [CrossRef]
- Wannissorn, B.; Jarikasem, S.; Siriwangchai, T.; Thubthimthed, S. Antibacterial properties of essential oils from Thai medicinal plants. Fitoterapia 2005, 76, 233–236. [Google Scholar] [CrossRef]
- Reichling, J.; Fitzi, J.; Hellmann, K.; Wegener, T.; Bucher, S.; Saller, R. Topical tea tree oil effective in canine localised pruritic dermatitis--a multi-centre randomised double-blind controlled clinical trial in the veterinary practice. Dtsch. Tierarztl. Wochenschr. 2004, 111, 408–414. [Google Scholar] [PubMed]
- Jan, A.K.; Hazrat, A.; Ahmad, S.; Jan, T.; Jan, G. In vitro antifungal, antibacterial, phytotoxic, brine shrimp, insecticidal activities and composition of essential oil of Tagetes minuta from Dir-kohistan, Pakistan. Pak. J. Bot 2019, 51, 201–204. [Google Scholar] [CrossRef]
- Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr. J. 1999, 14, 322–332. [Google Scholar] [CrossRef]
- Zeroual, A.; Sakar, E.H.; Eloutassi, N.; Mahjoubi, F.; Chaouch, M.; Chaqroune, A. Wild chamomile [Cladanthus mixtus (L.) chevall.] collected from central-northern Morocco: Phytochemical profiling, antioxidant, and antimicrobial activities. Bioint. Res. App. Chem. 2021, 11, 11440–11457. [Google Scholar]
- Ramachandran, G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. Virulence 2014, 5, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Özek, G.; Özek, T.; Kirpotina, L.N.; Khlebnikov, A.I.; Klein, R.A.; Quinn, M.T. Neutrophil Immunomodulatory Activity of Farnesene, a Component of Artemisia dracunculus Essential Oils. Pharmaceuticals 2022, 15, 642. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.W.; Li, B.Y.; Lu, X.X.; Zheng, Y.; Wang, D.; Zhang, Z.; Du, S.S. Chemical Diversity and Anti-Insect Activity Evaluation of Essential Oils Extracted from Five Artemisia Species. Plants 2022, 11, 1627. [Google Scholar] [CrossRef]
- Stojanović, G.S.; Ickovski, J.D.; Đorđević, A.S.; Petrović, G.M.; Stepić, K.D.; Palić, I.R.; Stamenković, J.G. The First Report on Chemical Composition and Antimicrobial Activity of Artemisia scoparia Waldst. et Kit. Extracts. Nat. Prod. Commun. 2020, 15, 1934578X20915034. [Google Scholar] [CrossRef] [Green Version]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badea, M.L.; Delian, E.; Dobrescu, A.; Bădulescu, L.; Alexandru Mihai, C. Investigation the quantity and quality of essential oil of Artemisia vulgaris L. Sci. Pap.-Ser. B Hortic. 2020, 64, 628–632. [Google Scholar]
- Yahia, S.; Alsayed, A.A.; Mokhtar, G. Fungal profile of otomycosis in a sample of Egyptian patients in Zagazig university hospitals: A prospective study. Microbes Infect. Dis. 2021, 2, 143–151. [Google Scholar] [CrossRef]
- Sahal, G.; Woerdenbag, H.J.; Hinrichs, W.L.J.; Visser, A.; Tepper, P.G.; Quax, W.J.; van der Mei, H.C.; Bilkay, I.S. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J. Ethnopharmacol. 2020, 246, 112188. [Google Scholar] [CrossRef]
- Shahrivari, S.; Alizadeh, S.; Ghassemi-Golezani, K.; Aryakia, E. A comprehensive study on essential oil compositions, antioxidant, anticholinesterase and antityrosinase activities of three Iranian Artemisia species. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Promyo, K.; Cho, J.Y.; Park, K.H.; Jaiswal, L.; Park, S.Y.; Ham, K.S. Artemisia scoparia attenuates amyloid β accumulation and tau hyperphosphorylation in spontaneously hypertensive rats. Food Sci. Biotechnol. 2017, 26, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Youn, K.; Yun, E.Y.; Lee, J.; Kim, J.Y.; Hwang, J.S.; Jeong, W.S.; Jun, M. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: Molecular docking studies. J. Med. Food 2014, 17, 284–289. [Google Scholar] [CrossRef]
- Çayan, F.; Tel, G.; Duru, M.E.; Öztürk, M.; Türkoğlu, A.; Harmandar, M. Application of GC, GC-MSD, ICP-MS and spectrophotometric methods for the determination of chemical composition and in vitro bioactivities of Chroogomphus rutilus: The edible mushroom species. Food Anal. Methods 2014, 7, 449–458. [Google Scholar] [CrossRef]
- da Silva, G.G.; Pimenta, L.P.S.; Melo, J.O.F.; Mendonça, H.D.O.P.; Augusti, R.; Takahashi, J.A. Phytochemicals of Avocado Residues as Potential Acetylcholinesterase Inhibitors, Antioxidants, and Neuroprotective Agents. Molecules 2022, 27, 1892. [Google Scholar] [CrossRef]
- Orhan, I.E.; Senol, F.S.; Ozturk, N.; Celik, S.A.; Pulur, A.; Kan, Y. Phytochemical contents and enzyme inhibitory and antioxidant properties of Anethum graveolens L.(dill) samples cultivated under organic and conventional agricultural conditions. Food Chem. Toxicol. 2013, 59, 96–103. [Google Scholar] [CrossRef]
- Jennan, S.; Fouad, R.; Nordine, A.; Farah, A.; Bennani, B.; Moja, S.; Greche, H.; Mahjoubi, F. Chemical Composition and Antibacterial Screening of Aerial Parts of Essential Oils of Three Satureja species (Satureja briquetti, Satureja atlantica and Satureja alpina) Growing Wild in the Middle Atlas Mountains of Morocco. J. Essent. Oil-Bear. Plants 2018, 21, 741–748. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Huang, B.; Ban, X.; He, J.; Tong, J.; Tian, J.; Wang, Y. Hepatoprotective and antioxidant activity of ethanolic extracts of edible lotus (Nelumbo nucifera Gaertn.) leaves. Food Chem. 2010, 120, 873–878. [Google Scholar] [CrossRef]
- Rahman, S.; Imra, M.; Muhammad, N.; Hassan, N.; Khan, S. Antibacetial screening of leaves and stem of Carica papaya. J. Med. Plants Res. 2011, 5, 5167–5171. [Google Scholar] [CrossRef]
- Szekely, A.; Johnson, E.M.; Warnock, D.W. Comparison of E-Test and broth microdilution methods for antifungal drug susceptibility testing of molds. J. Clin. Microbiol. 1999, 37, 1480–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
S. No. | Area Sum% | Compound Name | RT a | NIST # | DB ID * = Mainlib ** = Replib |
---|---|---|---|---|---|
1 | 2.66 | 2-Ethenyl-bicyclo[2.1.1]hexan-2-ol | 8.924 | 221,372 | 50,226 * |
2 | 17.05 | 7-Hydroxy-bicyclo[3.3.1]non-2-en-9-one | 8.930 | 193,435 | 41,812 * |
3 | 1.65 | Decane | 14.867 | 114,147 | 21,679 * |
4 | 1.37 | 2,6,11,15-tetramethyl-hexadecane, (Crocetane) | 23.559 | 114,255 | 22,806 * |
5 | 1.22 | 1-Isopropyl-4,7-dimethyl-1,3,4,5,6,8a-hexahydro-4a(2H)-naphthalenol (cubenol) | 27.628 | 140,968 | 80,121 * |
6 | 2.11 | 4,5,9,10-dehydro-isolongifolene | 28.380 | 151,550 | 105,281 * |
7 | 2.99 | 2,4-bis(1,1-dimethylethyl)-phenol | 29.031 | 228,966 | 140,190 * |
8 | 1.73 | β-Himachalenoxide | 30.996 | 140,216 | 74,268 * |
9 | 1.6 | Estra-1,3,5(10)-trien-17β-ol | 41.42 | 254,855 | 7219 * |
10 | 8.24 | 18,19-Secoyohimban-19-oic acid | 67.862 | 48,433 | 21,782 * |
11 | 13.65 | d-α-Tocopherol | 73.657 | 151,382 | 122,577 * |
12 | 5.15 | dl-α-Tocopherol | 81.652 | 230,590 | 123,023 |
13 | 12.54 | (+)-α-Tocopherol acetate | 84.43 | 154,596 | 28,227 ** |
14 | 16.21 | Tocopherol-β-D-mannoside | 86.48 | 156,682 | 123,458 * |
Total area = 91.83% |
S. No. | Area Sum% | Compound Name | RT a | NIST # | DB ID * = Mainlib ** = Replib |
---|---|---|---|---|---|
1 | 7.74 | 9,9-Dimethoxybicyclo[3.3.1]nona-2,4-dione | 14.122 | 106,223 | 7209 * |
2 | 2.85 | 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one | 20.391 | 281,424 | 9854 * |
3 | 5.55 | N-(1-Methoxycarbonyl-1-methylethyl)-4-methyl-2-aza-1,3-dioxane | 20.471 | 146,417 | 105,697 * |
4 | 14.24 | 5-(hydroxymethyl)-2-Furancarboxaldehyde | 23.227 | 231,276 | 60,271 * |
5 | 2.2 | Guanosine | 28.555 | 212,407 | 2164 ** |
6 | 2.69 | 3,4-diethyl-1,1′-Biphenyl | 32.375 | 62,426 | 150,478 * |
7 | 8.75 | Estra-1,3,5(10)-trien-17β-ol | 41.791 | 254,855 | 7219 * |
8 | 9.01 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester | 49.253 | 333,205 | 28,886 * |
9 | 41.45 | Oleic Acid | 54.227 | 228,066 | 4483 ** |
Total area = 94.48% |
Concentration | % Inhibition (500 µg/mL) | IC50 Value |
---|---|---|
DPPH | ||
EOAS | 85 ± 0.91 | 285 ± 0.82 µg/mL |
EOAA | 60 ± 0.31 | 416 ± 0.45 µg/mL |
Standard drug a | 100 | 55 ± 0.56 µg/mL |
ABTS | ||
EOAS | 83 ± 0.43 | 295 ± 0.32 µg/mL |
EOAA | 57 ± 0.47 | 433 ± 0.65 µg/mL |
Standard drug b | 100 | 1.0 ± 0.63 µg/mL |
Sample | AChE ± SEM a (IC50 in µg/mL) | BChE ± SEM (IC50 in µg/mL) |
---|---|---|
EOAS | 30 ± 0.04 | 34 ± 0.07 |
EOAA | 32 ± 0.05 | 36 ± 0.03 |
Allanzanthane b | 6.38 ± 0.04 | 24.32 ± 0.04 |
Galantamine b | 8.22 ± 0.03 | 17.03 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, F.A.; Khan, N.M.; Ahmad, S.; Nasruddin; Aziz, R.; Ullah, I.; Almehmadi, M.; Allahyani, M.; Alsaiari, A.A.; Aljuaid, A. Phytochemical Profiling, Antioxidant, Antimicrobial and Cholinesterase Inhibitory Effects of Essential Oils Isolated from the Leaves of Artemisia scoparia and Artemisia absinthium. Pharmaceuticals 2022, 15, 1221. https://doi.org/10.3390/ph15101221
Khan FA, Khan NM, Ahmad S, Nasruddin, Aziz R, Ullah I, Almehmadi M, Allahyani M, Alsaiari AA, Aljuaid A. Phytochemical Profiling, Antioxidant, Antimicrobial and Cholinesterase Inhibitory Effects of Essential Oils Isolated from the Leaves of Artemisia scoparia and Artemisia absinthium. Pharmaceuticals. 2022; 15(10):1221. https://doi.org/10.3390/ph15101221
Chicago/Turabian StyleKhan, Farman Ali, Nasir Mehmood Khan, Shujaat Ahmad, Nasruddin, Riffat Aziz, Ihsan Ullah, Mazen Almehmadi, Mamdouh Allahyani, Ahad Amer Alsaiari, and Abdulelah Aljuaid. 2022. "Phytochemical Profiling, Antioxidant, Antimicrobial and Cholinesterase Inhibitory Effects of Essential Oils Isolated from the Leaves of Artemisia scoparia and Artemisia absinthium" Pharmaceuticals 15, no. 10: 1221. https://doi.org/10.3390/ph15101221
APA StyleKhan, F. A., Khan, N. M., Ahmad, S., Nasruddin, Aziz, R., Ullah, I., Almehmadi, M., Allahyani, M., Alsaiari, A. A., & Aljuaid, A. (2022). Phytochemical Profiling, Antioxidant, Antimicrobial and Cholinesterase Inhibitory Effects of Essential Oils Isolated from the Leaves of Artemisia scoparia and Artemisia absinthium. Pharmaceuticals, 15(10), 1221. https://doi.org/10.3390/ph15101221