Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses
2.2. Biological Studies
3. Materials and Methods
3.1. Syntheses
3.1.1. General Methods
3.1.2. General Procedure 1 for the Synthesis of O-acyl-C-(2,3,4,6-Tetra-O-Benzoyl-β-D-Glucopyranosyl)Formamidoximes 8
3.1.3. General Procedure 2 for the Synthesis of 5-(4-Substituted-Benzyl)-3-(2,3,4,6-Tetra-O-Benzoyl-β-D-Glucopyranosyl)-1,2,4-Oxadiazoles 9
3.1.4. General Procedure 3 for the Synthesis of 5-(4-Substituted-Benzyl)-2-(2,3,4,6-Tetra-O-Benzoyl-β-D-Glucopyranosyl)-1,3,4-Oxadiazoles 12
3.1.5. General Procedure 4 for Cleavage of the O-Benzoyl Protecting Groups by the Zemplén Method to Get Test Compounds 10 and 13
3.1.6. General Procedure 5 for the Synthesis of 4-Substituted-2-(2,3,4,6-Tetra-O-Benzyl-β-D-Glucopyranosyl)Pyrimidines 15
3.1.7. General Procedure 6 for Removal of O-Benzyl Protecting Groups by Using BCl3 to Get Test Compounds 16 and 18
3.1.8. Synthesis and Characterization of the Compounds
3.2. Biochemical Materials and Methods
3.2.1. Reagents
3.2.2. Cell Culture
3.2.3. Lentiviral Transfection
3.2.4. Western Blot
3.2.5. Cytotoxicity Assay
3.2.6. 2-NBDG Uptake Measurement
3.2.7. Calculation of IC50 for SGLT1 and 2
3.2.8. Determination of Inhibitory Constants (Ki) for Glycogen Phosphorylase
3.2.9. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDF. Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019; Available online: http://www.diabetesatlas.org (accessed on 19 February 2021).
- Ross, S.A.; Gulve, A.E.A.; Wang, M. Chemistry and Biochemistry of Type 2 Diabetes. Chem. Rev. 2004, 104, 1255–1282. [Google Scholar] [CrossRef]
- Nagy, L.; Docsa, T.; Szántó, M.; Brunyánszki, A.; Hegedűs, C.; Márton, J.; Kónya, B.; Virág, L.; Somsák, L.; Gergely, P.; et al. Glycogen Phosphorylase Inhibitor N-(3,5-Dimethyl-Benzoyl)-N’-(β-D-Glucopyranosyl)Urea Improves Glucose Tolerance under Normoglycemic and Diabetic Conditions and Rearranges Hepatic Metabolism. PLoS ONE 2013, 8, e69420. [Google Scholar] [CrossRef] [Green Version]
- Busch, M.; Nadal, J.; Schmid, M.; Paul, K.; Titze, S.; Hübner, S.; Köttgen, A.; Schultheiss, U.T.; Baid-Agrawal, S.; Lorenzen, J.; et al. Glycaemic control and antidiabetic therapy in patients with diabetes mellitus and chronic kidney disease—Cross-sectional data from the German Chronic Kidney Disease (GCKD) cohort. BMC Nephrol. 2016, 17, 59. [Google Scholar] [CrossRef] [Green Version]
- Israili, Z.H. Advances in the Treatment of Type 2 Diabetes Mellitus. Am. J. Ther. 2011, 18, 117–152. [Google Scholar] [CrossRef]
- Inzucchi, S.E.; Bergenstal, R.M.; Buse, J.B.; Diamant, M.; Ferrannini, E.; Nauck, M.; Peters, A.L.; Tsapas, A.; Wender, R.; Matthews, D.R. Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach: Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012, 35, 1364–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med. 2018, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem. 2018, 143, 1277–1300. [Google Scholar] [CrossRef] [PubMed]
- Van Der Schyf, C.J. The use of multi-target drugs in the treatment of neurodegenerative diseases. Expert Rev. Clin. Pharmacol. 2011, 4, 293–298. [Google Scholar] [CrossRef]
- Artasensi, A.; Pedretti, A.; Vistoli, G.; Fumagalli, L. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs. Molecules 2020, 25, 1987. [Google Scholar] [CrossRef]
- Dowarah, J.; Singh, V.P. Anti-diabetic drugs recent approaches and advancements. Bioorganic Med. Chem. 2020, 28, 115263. [Google Scholar] [CrossRef]
- Kousaxidis, A.; Petrou, A.; Lavrentaki, V.; Fesatidou, M.; Nicolaou, I.; Geronikaki, A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur. J. Med. Chem. 2020, 207, 112742. [Google Scholar] [CrossRef]
- Maccari, R.; Del Corso, A.; Paoli, P.; Adornato, I.; Lori, G.; Balestri, F.; Cappiello, M.; Naß, A.; Wolber, G.; Ottanà, R. An investigation on 4-thiazolidinone derivatives as dual inhibitors of aldose reductase and protein tyrosine phosphatase 1B, in the search for potential agents for the treatment of type 2 diabetes mellitus and its complications. Bioorganic Med. Chem. Lett. 2018, 28, 3712–3720. [Google Scholar] [CrossRef]
- Ottanà, R.; Paoli, P.; Cappiello, M.; Nguyen, T.N.; Adornato, I.; Del Corso, A.; Genovese, M.; Nesi, I.; Moschini, R.; Naß, A.; et al. In Search for Multi-Target Ligands as Potential Agents for Diabetes Mellitus and Its Complications—A Structure-Activity Relationship Study on Inhibitors of Aldose Reductase and Protein Tyrosine Phosphatase 1B. Molecules 2021, 26, 330. [Google Scholar] [CrossRef]
- Szabó, K.; Maccari, R.; Ottanà, R.; Gyémánt, G. Extending the investigation of 4-thiazolidinone derivatives as potential multi-target ligands of enzymes involved in diabetes mellitus and its long-term complications: A study with pancreatic α-amylase. Carbohydr. Res. 2021, 499, 108220. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Mendoza, E.; Galván-Ciprés, Y.; Martínez-Miranda, J.; Miranda-González, C.; Colín-Lozano, B.; Hernández-Núñez, E.; Hernández-Bolio, G.; Palomino-Hernández, O.; Navarrete-Vazquez, G. Design, Synthesis, and In Silico Multitarget Pharmacological Simulations of Acid Bioisosteres with a Validated In Vivo Antihyperglycemic Effect. Molecules 2021, 26, 799. [Google Scholar] [CrossRef]
- Opie, L.H. Sodium Glucose Co-transporter 2 (SGLT2) Inhibitors: New among Antidiabetic Drugs. Cardiovasc. Drugs Ther. 2014, 28, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Mudaliar, S.; Polidori, D.; Zambrowicz, B.; Henry, R.R. Sodium–Glucose Cotransporter Inhibitors: Effects on Renal and Intestinal Glucose Transport. Diabetes Care 2015, 38, 2344–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washburn, W.N. SGLT2 Inhibitors in Development. In New Therapeutic Strategies for Type 2 Diabetes: Small Molecule Approaches; Jones, R.M., Ed.; Royal Society of Chemistry (RSC): London, UK, 2012; pp. 29–87. [Google Scholar]
- Zhang, Y.; Liu, Z.-P. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors. Curr. Med. Chem. 2016, 23, 1. [Google Scholar] [CrossRef]
- Bokor, É.; Kun, S.; Goyard, D.; Tóth, M.; Praly, J.-P.; Vidal, S.; Somsák, L. C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. Chem. Rev. 2017, 117, 1687–1764. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, J.R.L.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A review. Diabetes Metab. Res. Rev. 2005, 21, 31–38. [Google Scholar] [CrossRef]
- Aguillón, A.R.; Mascarello, A.; Segretti, N.D.; De Azevedo, H.F.Z.; Guimaraes, C.R.W.; Miranda, L.S.M.; De Souza, R.O.M.A. Synthetic Strategies toward SGLT2 Inhibitors. Org. Process. Res. Dev. 2018, 22, 467–488. [Google Scholar] [CrossRef]
- Scheen, A.J. Pharmacokinetic Characteristics and Clinical Efficacy of an SGLT2 Inhibitor Plus DPP-4 Inhibitor Combination Therapy in Type 2 Diabetes. Clin. Pharmacokinet. 2017, 56, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Van Baar, M.J.; Van Ruiten, C.C.; Muskiet, M.H.; Van Bloemendaal, L.; Ijzerman, R.G.; Van Raalte, D.H. SGLT2 Inhibitors in Combination Therapy: From Mechanisms to Clinical Considerations in Type 2 Diabetes Management. Diabetes Care 2018, 41, 1543–1556, Erratum in Diabetes Care 2019, 42, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, S. Dapagliflozin: A Review in Type 2 Diabetes. Drugs 2019, 79, 1135–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S111–S124. [Google Scholar] [CrossRef] [PubMed]
- De Matos, A.M.; Calado, P.; Washburn, W.; Rauter, A.P. Recent Advances on SGLT 2 Inhibitors: Synthetic Approaches, Therapeutic Benefits, and Adverse Events. In Successful Drug Discovery; Fischer, J., Klein, C., Childers, W., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 111–157. [Google Scholar] [CrossRef]
- Neuen, B.L.; Young, T.; Heerspink, H.J.L.; Neal, B.; Perkovic, V.; Billot, L.; Mahaffey, K.W.; Charytan, D.M.; Wheeler, D.C.; Arnott, C.; et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019, 7, 845–854. [Google Scholar] [CrossRef]
- Shaou, S.-C.; Chang, K.-C.; Chien, R.; Lin, S.; Hung, M.; Chan, Y.-Y.; Yang, Y.K.; Lai, E.C. Effects of sodium-glucose co-transporter-2 inhibitors on serum alanine aminotransferase levels in people with type 2 diabetes: A multi-institutional cohort study. Diabetes Obes. Metab. 2020, 22, 128–134. [Google Scholar] [CrossRef]
- Xin, Y.; Guo, Y.; Li, Y.; Ma, Y.; Li, L.; Jiang, H. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: A systematic review with an indirect comparison meta-analysis. Saudi J. Biol. Sci. 2019, 26, 421–426. [Google Scholar] [CrossRef]
- Ueda, P.; Svanström, H.; Melbye, M.; Eliasson, B.; Svensson, A.-M.; Franzén, S.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Pasternak, B. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: Nationwide register based cohort study. BMJ 2018, 363, k4365. [Google Scholar] [CrossRef] [Green Version]
- Moser, O.; Tschakert, G.; Mueller, A.; Groeschl, W.; Pieber, T.R.; Koehler, G.; Eckstein, M.L.; Bracken, R.M.; Hofmann, P. Atypical blood glucose response to continuous and interval exercise in a person with type 1 diabetes: A case report. J. Med. Case Rep. 2017, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Markham, A.; Keam, S.J. Sotagliflozin: First Global Approval. Drugs 2019, 79, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Ellsworth, B.A.; Nirschl, A.A.; McCann, P.J.; Patel, M.; Girotra, R.N.; Wu, G.; Sher, P.M.; Morrison, E.P.; Biller, S.A.; et al. Discovery of Dapagliflozin: A Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 2008, 51, 1145–1149. [Google Scholar] [CrossRef]
- Grempler, R.; Thomas, L.; Eckhardt, M.; Himmelsbach, F.; Sauer, A.; Sharp, D.E.; Bakker, R.A.; Mark, M.; Klein, T.; Eickelmann, P. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: Characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes. Metab. 2011, 14, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Koga, Y.; Sakamoto, T.; Yamamoto, Y.; Ueta, K.; Kimata, H.; Nakayama, K.; et al. Discovery of Canagliflozin, a Novel C-Glucoside with Thiophene Ring, as Sodium-Dependent Glucose Cotransporter 2 Inhibitor for the Treatment of Type 2 Diabetes Mellitus. J. Med. Chem. 2010, 53, 6355–6360. [Google Scholar] [CrossRef] [PubMed]
- Imamura, M.; Nakanishi, K.; Suzuki, T.; Ikegai, K.; Shiraki, R.; Ogiyama, T.; Murakami, T.; Kurosaki, E.; Noda, A.; Kobayashi, Y.; et al. Discovery of Ipragliflozin (ASP1941): A novel C-glucoside with benzothiophene structure as a potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes mellitus. Bioorganic Med. Chem. 2012, 20, 3263–3279. [Google Scholar] [CrossRef]
- Handlon, A.L. Sodium glucose co-transporter 2 (SGLT2) inhibitors as potential antidiabetic agents. Expert Opin. Ther. Pat. 2005, 15, 1531–1540. [Google Scholar] [CrossRef]
- Isaji, M. Sodium-glucose cotransporter inhibitors for diabetes. Curr. Opin. Invest. Drugs 2007, 8, 285–292. [Google Scholar]
- Nomura, S. Renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for new anti-diabetic agent. Curr. Top. Med. Chem. 2010, 10, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Somsák, L.; Bokor, É.; Czifrák, K.; Juhász, L.; Tóth, M. Carbohydrate Derivatives and Glycomimetic Compounds in Established and Investigational Therapies of Type 2 Diabetes Mellitus. In Topics in the Prevention, Treatment and Complications of Type 2 Diabetes; Zimering, M.B., Ed.; IntechOpen: London, UK, 2011; pp. 103–126. [Google Scholar] [CrossRef] [Green Version]
- Ellsworth, B.A.; Meng, W.; Patel, M.; Girotra, R.N.; Wu, G.; Sher, P.M.; Hagan, D.L.; Obermeier, M.T.; Humphreys, W.G.; Robertson, J.G.; et al. Aglycone exploration of C-arylglucoside inhibitors of renal sodium-dependent glucose transporter SGLT2. Bioorganic Med. Chem. Lett. 2008, 18, 4770–4773. [Google Scholar] [CrossRef] [PubMed]
- Haider, K.; Pathak, A.; Rohilla, A.; Haider, R.; Ahmad, K.; Yar, M.S. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. Eur. J. Med. Chem. 2019, 184, 111773. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Rathore, A.; Parwani, D.; Mallick, C.; Asati, V.; Agarwal, S.; Rajoriya, V.; Das, R.; Kashaw, S.K. An exhaustive perspective on structural insights of SGLT2 inhibitors: A novel class of antidiabetic agent. Eur. J. Med. Chem. 2020, 204, 112523. [Google Scholar] [CrossRef]
- Manoj, A.; Das, S.; Ramachandran, A.K.; Alex, A.T.; Joseph, A. SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: An extensive review. Future Med. Chem. 2020, 12, 1961–1990. [Google Scholar] [CrossRef]
- Lee, S.H.; Song, K.-S.; Kim, J.Y.; Kang, M.; Lee, J.S.; Cho, S.-H.; Park, H.-J.; Kim, J.; Lee, J. Novel thiophenyl C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents. Bioorganic Med. Chem. 2011, 19, 5813–5832. [Google Scholar] [CrossRef] [PubMed]
- Sakamaki, S.; Kawanishi, E.; Koga, Y.; Yamamoto, Y.; Kuriyama, C.; Matsushita, Y.; Ueta, K.; Nomura, S. Synthesis and Biological Evaluation of Thiophene-C-glucosides as Sodium-Dependent Glucose Cotransporter 2 Inhibitors. Chem. Pharm. Bull. 2013, 61, 1037–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.Y.; Song, K.-S.; Lee, J.; Lee, S.-H.; Lee, J. Synthesis of pyridazine and thiazole analogs as SGLT2 inhibitors. Bioorganic Med. Chem. 2010, 18, 6069–6079. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, B.; Zheng, H.; Liu, J.; Qian, L.; Wang, X.; Lou, H. Synthesis and biological evaluation of 6-hydroxyl C-aryl glucoside derivatives as novel sodium glucose co-transporter 2 (SGLT2) inhibitors. Bioorganic Med. Chem. Lett. 2018, 28, 2201–2205. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, M.J.; Lee, S.-H.; Kim, J.; Park, H.-J.; Lee, J. Thiazolylmethyl ortho-substituted phenyl glucoside library as novel C-aryl glucoside SGLT2 inhibitors. Eur. J. Med. Chem. 2011, 46, 2662–2675. [Google Scholar] [CrossRef]
- Ikegai, K.; Imamura, M.; Suzuki, T.; Nakanishi, K.; Murakami, T.; Kurosaki, E.; Noda, A.; Kobayashi, Y.; Yokota, M.; Koide, T.; et al. Synthesis and biological evaluation of C-glucosides with azulene rings as selective SGLT2 inhibitors for the treatment of type 2 diabetes mellitus: Discovery of YM543. Bioorganic Med. Chem. 2013, 21, 3934–3948. [Google Scholar] [CrossRef]
- Kakinuma, H.; Oi, T.; Hashimoto-Tsuchiya, Y.; Arai, M.; Kawakita, Y.; Fukasawa, Y.; Iida, I.; Hagima, N.; Takeuchi, H.; Chino, Y.; et al. (1S)-1,5-Anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol (TS-071) is a Potent, Selective Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for Type 2 Diabetes Treatment. J. Med. Chem. 2010, 53, 3247–3261. [Google Scholar] [CrossRef] [PubMed]
- Kuo, G.-H.; Gaul, M.D.; Liang, Y.; Xu, J.Z.; Du, F.; Hornby, P.; Xu, G.; Qi, J.; Wallace, N.; Lee, S.; et al. Synthesis and biological evaluation of benzocyclobutane-C-glycosides as potent and orally active SGLT1/SGLT2 dual inhibitors. Bioorganic Med. Chem. Lett. 2018, 28, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Somsák, L.; Bokor, É.; Juhász, L.; Kun, S.; Lázár, L.; Juhász-Tóth, É.; Tóth, M. New syntheses towards C-glycosyl type glycomimetics. Pure Appl. Chem. 2019, 91, 1159–1175. [Google Scholar] [CrossRef]
- Bokor, É. N- and C-Glycopyranosyl Heterocycles as Glycogen Phosphorylase Inhibitors. In Recent Trends in Carbohydrate Chemistry; Rauter, A.P., Christensen, B.E., Somsák, L., Kosma, P., Adamo, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 253–300. [Google Scholar] [CrossRef]
- Benltifa, M.; Vidal, S.; Fenet, B.; Msaddek, M.; Goekjian, P.G.; Praly, J.-P.; Brunyánszki, A.; Docsa, T.; Gergely, P. In Search of Glycogen Phosphorylase Inhibitors: 5-Substituted 3-C-Glucopyranosyl-1,2,4-oxadiazoles from β-D-Glucopyranosyl Cyanides upon Cyclization of O-Acylamidoxime Intermediates. Eur. J. Org. Chem. 2006, 2006, 4242–4256. [Google Scholar] [CrossRef]
- Cecioni, S.; Argintaru, O.-A.; Docsa, T.; Gergely, P.; Praly, J.-P.; Vidal, S. Probing multivalency for the inhibition of an enzyme: Glycogen phosphorylase as a case study. New J. Chem. 2008, 33, 148–156. [Google Scholar] [CrossRef]
- Hadady, Z.; Tóth, M.; Somsák, L. C-(β-D-Glucopyranosyl) heterocycles as potential glycogen phosphorylase inhibitors. Arkivoc 2004, 7, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Tóth, M.; Kun, S.; Bokor, É.; Benltifa, M.; Tallec, G.; Vidal, S.; Docsa, T.; Gergely, P.; Somsák, L.; Praly, J.-P. Synthesis and structure–activity relationships of C-glycosylated oxadiazoles as inhibitors of glycogen phosphorylase. Bioorganic Med. Chem. 2009, 17, 4773–4785. [Google Scholar] [CrossRef] [Green Version]
- Kun, S.; Nagy, G.Z.; Tóth, M.; Czecze, L.; Van Nhien, A.N.; Docsa, T.; Gergely, P.; Charavgi, M.-D.; Skourti, P.V.; Chrysina, E.D.; et al. Synthesis of variously coupled conjugates of D-glucose, 1,3,4-oxadiazole, and 1,2,3-triazole for inhibition of glycogen phosphorylase. Carbohydr. Res. 2011, 346, 1427–1438. [Google Scholar] [CrossRef] [Green Version]
- Szennyes, E.; Bokor, É.; Langer, P.; Gyémánt, G.; Docsa, T.; Sipos, Á.; Somsák, L. The first general synthesis of 2-C-(β-D-glycopyranosyl)pyrimidines and their evaluation as inhibitors of some glycoenzymes. New J. Chem. 2018, 42, 17439–17446. [Google Scholar] [CrossRef]
- Szennyes, E.; Gyémánt, G.; Somsák, L.; Bokor, É. Synthesis of New Series of 2-C-(β-D-glucopyranosyl)-Pyrimidines and Their Evaluation as Inhibitors of Some Glycoenzymes. Molecules 2020, 25, 701. [Google Scholar] [CrossRef] [Green Version]
- Szennyes, E.; Bokor, É.; Batta, G.; Docsa, T.; Gergely, P.; Somsák, L. Improved preparation of 4(5)-aryl-2-(β-D-glucopyranosyl)-imidazoles, the most efficient glucose analogue inhibitors of glycogen phosphorylase. RSC Adv. 2016, 6, 94787–94794. [Google Scholar] [CrossRef]
- Szennyes, E.; Bokor, É.; Kiss, A.; Somsák, L.; Pascal, Y. Preparation of 2,6-Anhydro-3,4,5,7-tetra-O-benzyl-D-glycero-D-gulo-Heptonimidamide. In Carbohydrate Chemistry: Proven Synthetic Methods; Vogel, C., Murphy, P.V., Eds.; CRC Press: Boca Raton, FL, USA, 2017; Volume 4, pp. 323–332. [Google Scholar]
- Barr, D.; Szennyes, E.; Bokor, E.; Al-Oanzi, Z.H.; Moffatt, C.; Kun, S.; Docsa, T.; Sipos, Á.; Davies, M.P.; Mathomes, R.T.; et al. Identification of C-β-D-Glucopyranosyl Azole-Type Inhibitors of Glycogen Phosphorylase That Reduce Glycogenolysis in Hepatocytes: In Silico Design, Synthesis, in Vitro Kinetics, and ex Vivo Studies. ACS Chem. Biol. 2019, 14, 1460–1470. [Google Scholar] [CrossRef]
- Szabó, K.E.; Páhi, A.; Somsák, L. C -Glycosyl 1,2,4-triazoles: Synthesis of the 3-β-D-glucopyranosyl-1,5-disubstituted and 5-β-D-glucopyranosyl-1,3-disubstituted variants. Tetrahedron 2017, 73, 3810–3822. [Google Scholar] [CrossRef] [Green Version]
- Bokor, É.; Docsa, T.; Gergely, P.; Somsák, L. Synthesis of 1-(D-glucopyranosyl)-1,2,3-triazoles and their evaluation as glycogen phosphorylase inhibitors. Bioorganic Med. Chem. 2010, 18, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- Chrysina, E.D.; Bokor, É.; Alexacou, K.-M.; Charavgi, M.-D.; Oikonomakos, G.N.; Zographos, S.E.; Leonidas, D.D.; Oikonomakos, N.G.; Somsák, L. Amide-1,2,3-triazole bioisosterism: The glycogen phosphorylase case. Tetrahedron Asymmetry 2009, 20, 733–740. [Google Scholar] [CrossRef]
- Kun, S.; Bokor, E.; Sipos, Á.; Docsa, T.; Somsák, L. Synthesis of New C- and N-β-D-Glucopyranosyl Derivatives of Imidazole, 1,2,3-Triazole and Tetrazole, and Their Evaluation as Inhibitors of Glycogen Phosphorylase. Molecules 2018, 23, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bokor, É.; Kun, S.; Docsa, T.; Gergely, P.; Somsák, L. 4(5)-Aryl-2-C-glucopyranosyl-imidazoles as New Nanomolar Glucose Analogue Inhibitors of Glycogen Phosphorylase. ACS Med. Chem. Lett. 2015, 6, 1215–1219. [Google Scholar] [CrossRef] [Green Version]
- Bokor, É.; Docsa, T.; Gergely, P.; Somsák, L. C-Glucopyranosyl-1,2,4-triazoles As New Potent Inhibitors of Glycogen Phosphorylase. ACS Med. Chem. Lett. 2013, 4, 612–615. [Google Scholar] [CrossRef] [Green Version]
- Kun, S.; Bokor, É.; Varga, G.; Szőcs, B.; Páhi, A.; Czifrák, K.; Tóth, M.; Juhász, L.; Docsa, T.; Gergely, P.; et al. New synthesis of 3-(β-D-glucopyranosyl)-5-substituted-1,2,4-triazoles, nanomolar inhibitors of glycogen phosphorylase. Eur. J. Med. Chem. 2014, 76, 567–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López, F.; Castedo, A.L.; Mascareñas, J.L. Practical Asymmetric Approach to Medium-Sized Carbocycles Based on the Combination of Two Ru-Catalyzed Transformations and a Lewis Acid-Induced Cyclization. Org. Lett. 2005, 7, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Denton, J.R.; Davies, H.M.L. Enantioselective Reactions of Donor/Acceptor Carbenoids Derived from α-Aryl-α-Diazoketones. Org. Lett. 2009, 11, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Boyle, F.T.; Hares, O.; Matusiak, Z.S.; Li, W.; Whiting, D.A. Applications of the spiroannulation of tetralins with alkynes; towards new anti-estrogenic compounds. J. Chem. Soc. Perkin Trans. 1 1997, 1, 2707–2712. [Google Scholar] [CrossRef]
- Wang, H.; Denton, J.R.; Davies, H.M.L. Sequential Rhodium-, Silver-, and Gold-Catalyzed Synthesis of Fused Dihydrofurans. Org. Lett. 2011, 13, 4316–4319. [Google Scholar] [CrossRef] [PubMed]
- Ősz, E.; Somsák, L.; Szilágyi, L.; Kovács, L.; Docsa, T.; Tóth, B.; Gergely, P. Efficient inhibition of muscle and liver glycogen phosphorylases by a new glucopyranosylidene-spiro-thiohydantoin. Bioorganic Med. Chem. Lett. 1999, 9, 1385–1390. [Google Scholar] [CrossRef]
- Oikonomakos, N.G.; Kosmopoulou, M.; Zographos, S.E.; Leonidas, D.D.; Chrysina, E.D.; Somsák, L.; Nagy, V.; Praly, J.-P.; Docsa, T.; Tóth, B.; et al. Binding of N-acetyl-N′-β-D-glucopyranosyl urea and N-benzoyl-N′-β-D-glucopyranosyl urea to glycogen phosphorylase b Eur. J. Biochem. 2002, 269, 1684–1696. [Google Scholar] [CrossRef] [PubMed]
Compound | Inh. | Ref. | Compound | Inh. | Ref. |
---|---|---|---|---|---|
1 Phlorizin | 33 (7) | [19] | 2 Dapagliflozin (approved 2013: Forxiga®) | 1.1 (1200) | [35] |
3 Empagliflozin (approved 2014: Jardiance®) | 3.1 (2677) | [36] | 4 Canagliflozin (approved 2013: Invokana®) | 2.2 (414) | [37] |
5 Ipragliflozin (approved 2014: Suglat®) | 7.4 (254) | [38] | 6 Sotagliflozin (approved 2019: Zynquista®) | 1.8 (20) | [34] |
Compound | SGLT2 | SGLT1 | rmGPb | |
---|---|---|---|---|
1 | 6.40 ± 1.12 b | 131.17 ± 24.56 b | 450 mM (IC50) | |
2 | 0.00748 ± 0.00182 b | 0.83 ± 0.26 b | NI d | |
10a | 3.68 ± 0.59 | 20.72 ± 7.66 | NI d | |
10b | NI c | NIc | NI d | |
10c | NI c | NIc | NI d | |
13a | 2.21 ± 0.58 | 23.72 ± 6.14 | NI d | |
13b | NI c | NIc | NI d | |
13c | NI c | NI c | NI d | |
Compound | SGLT2 | SGLT1 | rmGPb | |
16a | 17.05 ± 3.16 | 17.98 ± 3.92 | NI d | |
16b | 11.59 ± 3.19 | NIc | NI d | |
16c | NI c | NI c | NI d | |
16d | NIc | NI c | NI d | |
18 | 3.57 ± 0.42 | 11.7 ± 2.48 | 12% at 625 µM | |
19ae [67] | 71.67 ± 10.64 | 19.59 ± 7.26 | NI d | |
19be [67] | NI c | NIc | NI d | |
19ce [67] | 2.44 ± 0.85 | 35.50 ± 9.56 | NI d | |
20e [68] | 23.21 ± 1.86 | 101.45 ± 23.46 | 600 µM (IC50) [68] |
Compound | SGLT2 | SGLT1 | rmGPbb(Ki [µM]) | |
---|---|---|---|---|
21a | 67.28 ± 10.90 | 167.07 ± 63.50 | 151 [69] 162 [68] | |
21b | 10.34 ± 2.18 | 126.90 ± 21.55 | 16 [69] 36 [68] | |
22a | 9.10 ± 2.94 | 242.13 ± 37.91 | NId [70] | |
22b | 111.31 ± 27.56 | 23.77 ± 5.72 | NId [70] | |
23a | NIc | NIc | 310 [71] | |
23b | NIc | NIc | 158 [71] | |
24a | 91.04 ± 0.56 | 244.60 ± 42.02 | 0.28 [71] | |
24b | 3.50 ± 0.88 | 11.89 ± 2.61 | 0.031 [71] | |
25a | 15.01 ± 2.74 | 124.56 ± 46.51 | 7 [72,73] | |
25b | 17.72 ± 2.32 | 12.98 ± 2.88 | 0.41 [72,73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sipos, Á.; Szennyes, E.; Hajnal, N.É.; Kun, S.; Szabó, K.E.; Uray, K.; Somsák, L.; Docsa, T.; Bokor, É. Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals 2021, 14, 364. https://doi.org/10.3390/ph14040364
Sipos Á, Szennyes E, Hajnal NÉ, Kun S, Szabó KE, Uray K, Somsák L, Docsa T, Bokor É. Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals. 2021; 14(4):364. https://doi.org/10.3390/ph14040364
Chicago/Turabian StyleSipos, Ádám, Eszter Szennyes, Nikolett Éva Hajnal, Sándor Kun, Katalin E. Szabó, Karen Uray, László Somsák, Tibor Docsa, and Éva Bokor. 2021. "Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors" Pharmaceuticals 14, no. 4: 364. https://doi.org/10.3390/ph14040364
APA StyleSipos, Á., Szennyes, E., Hajnal, N. É., Kun, S., Szabó, K. E., Uray, K., Somsák, L., Docsa, T., & Bokor, É. (2021). Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals, 14(4), 364. https://doi.org/10.3390/ph14040364