Glycomimetics and Glycoconjugates in Drug Discovery
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Martínez, J.D.; Infantino, A.S.; Valverde, P.; Diercks, T.; Delgado, S.; Reichardt, N.-C.; Ardá, A.; Cañada, F.J.; Oscarson, S.; Jiménez-Barbero, J. The Interaction of Fluorinated Glycomimetics with DC-SIGN: Multiple Binding Modes Disentangled by the Combination of NMR Methods and MD Simulations. Pharmaceuticals 2020, 13, 179. https://doi.org/10.3390/ph13080179.
- Schneider, J.P.; Tommasone, S.; Della Sala, P.; Gaeta, C.; Talotta, C.; Tarnus, C.; Neri, P.; Bodlenner, A.; Compain, P. Synthesis and Glycosidase Inhibition Properties of Calix [8]arene-Based Iminosugar Click Clusters. Pharmaceuticals 2020, 13, 366. https://doi.org/10.3390/ph13110366.
- Brzuska, G.; Pastuch-Gawolek, G.; Krawczyk, M.; Szewczyk, B.; Krol, E. Anti-Tick-Borne Encephalitis Virus Activity of Novel Uridine Glycoconjugates Containing Amide or/and 1,2,3-Triazole Moiety in the Linker Structure. Pharmaceuticals 2020, 13, 460. https://doi.org/10.3390/ph13120460.
- Woźniak, M.; Pastuch-Gawołek, G.; Makuch, S.; Wiśniewski, J.; Ziółkowski, P.; Szeja, W.; Krawczyk, M.; Agrawal, S. Overcoming Hypoxia-Induced Chemoresistance in Cancer Using a Novel Glycoconjugate of Methotrexate. Pharmaceuticals 2021, 14, 13. https://doi.org/10.3390/ph14010013.
- Sipos, Á.; Szennyes, E.; Hajnal, N.É.; Kun, S.; Szabó, K.E.; Uray, K.; Somsák, L.; Docsa, T.; Bokor, É. Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals 2021, 14, 364. https://doi.org/10.3390/ph14040364.
- Zeerleder, S.; Engel, R.; Zhang, T.; Roem, D.; van Mierlo, G.; Wagenaar-Bos, I.; van Ham, S.M.; Wuhrer, M.; Wouters, D.; Jongerius, I. Sugar Matters: Improving In Vivo Clearance Rate of Highly Glycosylated Recombinant Plasma Proteins for Therapeutic Use. Pharmaceuticals 2021, 14, 54. https://doi.org/10.3390/ph14010054.
- Queda, F.; Covas, G.; Filipe, S.R.; Marques, M.M.B. Assembly of Peptidoglycan Fragments—A Synthetic Challenge. Pharmaceuticals 2020, 13, 392. https://doi.org/10.3390/ph13110392.
References
- Bucior, I.; Burger, M.M. Carbohydrate-carbohydrate Interactions in Cell Recognition. Curr. Opin. Struct. Biol. 2004, 14, 631–637. [Google Scholar] [CrossRef]
- Lu, W.; Pieters, R.J. Carbohydrate-Protein Interactions and Multivalency: Implications for the Inhibition of Influenza A Virus Infections. Expert Opin. Drug Discov. 2019, 14, 387–395. [Google Scholar] [CrossRef]
- Karlsson, K.A. Pathogen-host protein-carbohydrate interactions as the basis of important infections. Adv. Exp. Med. Biol. 2001, 491, 431–433. [Google Scholar] [CrossRef]
- Nardy, A.F.; Freire-de-Lima, L.; Freire-de-Lima, C.G.; Morrot, A. The Sweet Side of Immune Evasion: Role of Glycans in the Mechanisms of Cancer Progression. Front. Oncol. 2016, 9, 54. [Google Scholar] [CrossRef]
- Handa, K.; Hakomori, S.I. Carbohydrate to Carbohydrate Interaction in Development Process and Cancer Progression. Glycoconj. J. 2012, 29, 627–637. [Google Scholar] [CrossRef]
- Hevey, R. The Role of Fluorine in Glycomimetic Drug Design. Chem. Eur. J. 2021, 27, 2240–2253. [Google Scholar] [CrossRef]
- Wei, X.; Wang, P.; Liu, F.; Ye, X.; Xiong, D. Drug Discovery Based on Fluorine-Containing Glycomimetics. Molecules 2023, 28, 6641. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, N.G. Iminosugars. In Carbohydrates in Drug Discovery and Development; Tiwari, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 331–381. [Google Scholar] [CrossRef]
- Conforti, I.; Marra, A. Iminosugars as Glycosyltransferase Inhibitors. Org. Biomol. Chem. 2021, 19, 5439–5475. [Google Scholar] [CrossRef] [PubMed]
- Nash, R.J.; Kato, A.; Yu, C.Y.; Fleet, G.W. Iminosugars as Therapeutic Agents: Recent Advances and Promising Trends. Future Med. Chem. 2011, 3, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Mulder, S.E.; Singh, P.K. Hypoxia-Mediated In Vivo Tumor Glucose Uptake Measurement and Analysis. Methods Mol. Biol. 2018, 1742, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Calvaresi, E.C.; Hergenrother, P.J. Glucose Conjugation for the Specific Targeting and Treatment of Cancer. Chem. Sci. 2013, 4, 2319–2333. [Google Scholar] [CrossRef]
- Minassian, L.M.; Cotechini, T.; Huitema, E.; Graham, C.H. Hypoxia-Induced Resistance to Chemotherapy in Cancer. Adv. Exp. Med. Biol. 2019, 1136, 123–139. [Google Scholar] [CrossRef]
- Liu, C.-F. Recent Advances on Natural Aryl-C-glycoside Scaffolds: Structure, Bioactivities, and Synthesis—A Comprehensive Review. Molecules 2022, 27, 7439. [Google Scholar] [CrossRef]
- Mannem, R.R.; Thoti, N.; Aidhen, I.S. Bioactive C-Glycosides Inspired from Natural Products Towards Therapeutics. In Carbohydrates in Drug Discovery and Development; Tiwari, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 97–153. [Google Scholar] [CrossRef]
- Nicotra, F. Synthesis of C-Glycosides of Biological Interest. Top. Curr. Chem. 1997, 187, 55–83. [Google Scholar] [CrossRef]
- Faillie, J.-L. Pharmacological Aspects of the Safety of Gliflozins. Pharmacol. Res. 2017, 118, 71–81. [Google Scholar] [CrossRef]
- Delobel, A. Glycosylation of Therapeutic Proteins: A Critical Quality Attribute. Methods Mol. Biol. 2021, 2271, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cai, Y.; Liu, Y.; An, H.; Deng, K.; Ashraf, M.A.; Zou, L.; Wang, J. Breaking Down the Cell Wall: Still an Attractive Antibacterial Strategy. Front. Microbiol. 2022, 13, 952633. [Google Scholar] [CrossRef]
- Gautam, A.; Vyas, R.; Tewari, R. Peptidoglycan Biosynthesis Machinery: A Rich Source of Drug Targets. Crit. Rev. Biotechnol. 2011, 31, 295–336. [Google Scholar] [CrossRef] [PubMed]
- Lovering, A.L.; Safadi, S.S.; Strynadka, N.C.J. Structural Perspective of Peptidoglycan Biosynthesis and Assembly. Annu. Rev. Biochem. 2012, 81, 451–478. [Google Scholar] [CrossRef] [PubMed]
- Girardin, S.E.; Philpott, D.J. The Role of Peptidoglycan Recognition in Innate Immunity. Eur. J. Immunol. 2004, 34, 1777–1782. [Google Scholar] [CrossRef]
- Gust, A.A.; Biswas, R.; Lenz, H.D.; Rauhut, T.; Ranf, S.; Kemmerling, B.; Götz, F.; Glawischnig, E.; Lee, J.; Felix, G.; et al. Bacteria-derived Peptidoglycans Constitute Pathogen-associated Molecular Patterns Triggering Innate Immunity in Arabidopsis. J. Biol. Chem. 2007, 282, 32338–32348. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xavier, N.M.; Andreana, P.R. Glycomimetics and Glycoconjugates in Drug Discovery. Pharmaceuticals 2024, 17, 323. https://doi.org/10.3390/ph17030323
Xavier NM, Andreana PR. Glycomimetics and Glycoconjugates in Drug Discovery. Pharmaceuticals. 2024; 17(3):323. https://doi.org/10.3390/ph17030323
Chicago/Turabian StyleXavier, Nuno M., and Peter R. Andreana. 2024. "Glycomimetics and Glycoconjugates in Drug Discovery" Pharmaceuticals 17, no. 3: 323. https://doi.org/10.3390/ph17030323
APA StyleXavier, N. M., & Andreana, P. R. (2024). Glycomimetics and Glycoconjugates in Drug Discovery. Pharmaceuticals, 17(3), 323. https://doi.org/10.3390/ph17030323