Drug-Loaded, Polyurethane Coated Nitinol Stents for the Controlled Release of Docetaxel for the Treatment of Oesophageal Cancer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Dip-Coated DTX-Loaded Stents
2.2. Characterisation of DTX-Loaded Stents
2.3. In Vitro Release of DTX from Drug-Loaded Stents
2.4. DTX-Loaded Stent Stability Studies
2.4.1. Accelerated Stability Studies
2.4.2. Stability of DTX in Stents to Gamma and Ultraviolet (UVC) Irradiation
2.5. In Vitro Assessment of DTX-Loaded Stents
2.5.1. MTT Assay
2.5.2. Hoechst Assay
2.5.3. Apoptosis Assay
2.5.4. Western Blotting Assay
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Docetaxel-Loaded Nitinol Stents
3.3. Scanning Electron Microscopy (SEM)
3.4. Mechanical Properties
3.5. Drug Extraction and HPLC Determination of DTX
3.6. In Vitro Drug Release
3.7. Stability Studies
3.7.1. Accelerated Stability Studies
3.7.2. Stability of DTX in Drug-Loaded Stents to Gamma and Ultraviolet (UVC) Irradiation
3.8. Cell Culture Maintenance
3.8.1. Cell Proliferation Assay
3.8.2. Hoechst Assay
3.8.3. Apoptosis Assay
3.8.4. Western Blotting Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oesophageal Cancer Statistics. Available online: https://www.wcrf.org/dietandcancer/cancer-trends/oesophageal-cancer-statistics (accessed on 28 March 2021).
- Global Burden of Disease Cancer Collaboration; Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Dicker, D.J.; Chimed-Orchir, O.; Dandona, R.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2017, 3, 524–548. [Google Scholar] [CrossRef] [PubMed]
- Pakzad, R.; Mohammadian-Hafshejani, A.; Khosravi, B.; Soltani, S.; Pakzad, I.; Mohammadian, M.; Salehiniya, H.; Momenimovahed, Z. The incidence and mortality of esophageal cancer and their relationship to development in Asia. Ann. Transl. Med. 2016, 4, 29. [Google Scholar] [PubMed]
- Arnold, M.; Soerjomataram, I.; Ferlay, J.; Forman, D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 2015, 64, 381–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wang, Z.; Wu, K.; Li, J.; Chen, W.; Shen, Y.; Guo, S. Paclitaxel or 5-fluorouracil/esophageal stent combinations as a novel approach for the treatment of esophageal cancer. Biomaterials 2015, 53, 592–599. [Google Scholar] [CrossRef]
- Guo, Q.; Guo, S.; Wang, Z. A type of esophageal stent coating composed of one 5-fluorouracil-containing EVA layer and one drug-free protective layer: In vitro release, permeation and mechanical properties. J. Control. Release 2007, 118, 318–324. [Google Scholar] [CrossRef]
- Müller, J.M.; Erasmi, H.; Stelzner, M.; Zieren, U.; Pichlmaier, H. Surgical therapy of oesophageal carcinoma. BJS 1990, 77, 845–857. [Google Scholar] [CrossRef]
- Nash, C.L.; Gerdes, H. Methods of palliation of esophageal and gastric cancer. Surg. Oncol. Clin. N. Am. 2002, 11, 459–483. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, L.; Huang, J.; Shuang, J.; Chen, J.; Fan, Z. The effect of paclitaxel-eluting covered metal stents versus covered metal stents in a rabbit esophageal squamous carcinoma model. PLoS ONE 2017, 12, e0173262. [Google Scholar] [CrossRef]
- Rozanes, İ.; Poyanlı, A.; Acunaş, B. Palliative treatment of inoperable malignant esophageal strictures with metal stents: One center’s experience with four different stents. Eur. J. Radiol. 2002, 43, 196–203. [Google Scholar] [CrossRef]
- Saxon, R.R.; Morrison, K.E.; Lakin, P.C.; Petersen, B.D.; Barton, R.E.; Katon, R.M.; Keller, F.S. Malignant esophageal obstruction and esophagorespiratory fistula: Palliation with a polyethylene-covered Z-stent. Radiology 1997, 202, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.F.; Ellul, J.; Entwisle, K.; Mason, R.C.; Adam, A. Esophageal carcinoma: Initial results of palliative treatment with covered self-expanding endoprostheses. Radiology 1995, 195, 821–827. [Google Scholar] [CrossRef]
- Shaikh, M.; Kichenadasse, G.; Choudhury, N.R.; Butler, R.; Garg, S. Non-vascular drug eluting stents as localized controlled drug delivery platform: Preclinical and clinical experience. J. Control. Release 2013, 172, 105–117. [Google Scholar] [CrossRef]
- Arafat, M.; Fouladian, P.; Blencowe, A.; Albrecht, H.; Song, Y.; Garg, S. Drug-eluting non-vascular stents for localised drug targeting in obstructive gastrointestinal cancers. J. Control. Release 2019, 308, 209–231. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Liu, X.; Guo, S.; Tang, M.; Cheng, L.; Tian, L. 5-Fluorouracil-loaded multilayered films for drug controlled releasing stent application: Drug release, microstructure, and ex vivo permeation behaviors. J. Control. Release 2010, 146, 45–53. [Google Scholar] [CrossRef]
- Ako, J.; Bonneau, H.N.; Honda, Y.; Fitzgerald, P.J. Design Criteria for the Ideal Drug-Eluting Stent. Am. J. Cardiol. 2007, 100, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.; Choudhury, N.R.; Knott, R.; Garg, S. Engineering Stent Based Delivery System for Esophageal Cancer Using Docetaxel. Mol. Pharm. 2015, 12, 2305–2317. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.; Zhang, H.; Wang, H.; Guo, X.; Song, Y.; Kanwar, J.R.; Garg, S. In Vitro and In Vivo Assessment of Docetaxel Formulation Developed for Esophageal Stents. AAPS PharmSciTech 2017, 18, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Liu, J.; Wu, K.; Shen, Y.; Mao, A.; Li, J.; Chen, Z.; Guo, S. Nitinol stents loaded with a high dose of antitumor 5-fluorouracil or paclitaxel: Esophageal tissue responses in a porcine model. Gastrointest. Endosc. 2015, 82, 153–160.e1. [Google Scholar] [CrossRef]
- Fouladian, P.; Kohlhagen, J.; Arafat, M.; Afinjuomo, F.; Workman, N.; Abuhelwa, A.Y.; Song, Y.; Garg, S.; Blencowe, A. Three-dimensional printed 5-fluorouracil eluting polyurethane stents for the treatment of oesophageal cancers. Biomater. Sci. 2020, 8, 6625–6636. [Google Scholar] [CrossRef]
- Park, C.-H.; Kim, C.-H.; Tijing, L.D.; Lee, D.-H.; Yu, M.-H.; Pant, H.R.; Kim, Y.; Kim, C.S. Preparation and characterization of (polyurethane/nylon-6) nanofiber/ (silicone) film composites via electrospinning and dip-coating. Fibers Polym. 2012, 13, 339–345. [Google Scholar] [CrossRef]
- Verweire, I.; Schacht, E.; Qiang, B.P.; Wang, K.; De Scheerder, I. Evaluation of fluorinated polymers as coronary stent coating. J. Mater. Sci. Mater. Electron. 2000, 11, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Nishi, S.; Ishibashi-Ueda, H. Fabrication of drug-eluting covered stents with micropores and differential coating of heparin and FK506. Cardiovasc. Radiat. Med. 2003, 4, 77–82. [Google Scholar] [CrossRef]
- Huang, Y.; Salu, K.; Wang, L.; Liu, X.; Li, S.; Lorenz, G.; Wnendt, S.; Verbeken, E.; Bosmans, J.; Van De Werf, F.; et al. Use of a tacrolimus-eluting stent to inhibit neointimal hyperplasia in a porcine coronary model. J. Invasive Cardiol. 2005, 17, 142–148. [Google Scholar]
- Heldman, A.W.; Cheng, L.; Jenkins, G.M.; Heller, P.F.; Kim, D.-W.; Ware, M.; Nater, C.; Hruban, R.H.; Rezai, B.; Abella, B.S.; et al. Paclitaxel Stent Coating Inhibits Neointimal Hyperplasia at 4 Weeks in a Porcine Model of Coronary Restenosis. Circulation 2001, 103, 2289–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, G.; Lee, C.H.; Lee, Y. Optimization of Cardiovascular Stent against Restenosis: Factorial Design-Based Statistical Analysis of Polymer Coating Conditions. PLoS ONE 2012, 7, e43100. [Google Scholar] [CrossRef]
- Arafat, M.; Fouladian, P.; Wignall, A.; Song, Y.; Parikh, A.; Albrecht, H.; Prestidge, C.A.; Garg, S.; Blencowe, A. Development and In Vitro Evaluation of 5-Fluorouracil-Eluting Stents for the Treatment of Colorectal Cancer and Cancer-Related Obstruction. Pharmaceutics 2021, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.A. Mechanism of Action of Antitumor Drugs that Interact with Microtubules and Tubulin. Curr. Med. Chem. Agents 2012, 2, 1–17. [Google Scholar] [CrossRef]
- Fouladian, P.; Afinjuomo, F.; Arafat, M.; Bergamin, A.; Song, Y.; Blencowe, A.; Garg, S. Influence of Polymer Composition on the Controlled Release of Docetaxel: A Comparison of Non-Degradable Polymer Films for Oesophageal Drug-Eluting Stents. Pharmaceutics 2020, 12, 444. [Google Scholar] [CrossRef]
- Su, C.-Y.; Liu, J.-J.; Ho, Y.-S.; Huang, Y.-Y.; Chang, V.H.-S.; Liu, D.-Z.; Chen, L.-C.; Ho, H.-O.; Sheu, M.-T. Development and characterization of docetaxel-loaded lecithin-stabilized micellar drug delivery system (LsbMDDs) for improving the therapeutic efficacy and reducing systemic toxicity. Eur. J. Pharm. Biopharm. 2018, 123, 9–19. [Google Scholar] [CrossRef]
- Hernández-Guerrero, M.; Stenzel, M.H. Honeycomb structured polymer films via breath figures. Polym. Chem. 2012, 3, 563–577. [Google Scholar] [CrossRef]
- Zhang, Z.; Hughes, T.C.; Gurr, P.A.; Blencowe, A.; Hao, X.; Qiao, G.G. Influence of Polymer Elasticity on the Formation of Non-Cracking Honeycomb Films. Adv. Mater. 2012, 24, 4327–4330. [Google Scholar] [CrossRef]
- Zhang, Z.; Hughes, T.C.; Gurr, P.A.; Blencowe, A.; Uddin, H.; Hao, X.; Qiao, G.G. The behaviour of honeycomb film formation from star polymers with various fluorine content. Polymer 2013, 54, 4446–4454. [Google Scholar] [CrossRef]
- Hong, Z.; Xue, M.; Luo, Y.; Yin, Z.; Xie, C.; Ou, J.; Wang, F. Facile preparation and strong adhesive strength of honeycomb polyurethane films with small pore diameter. J. Appl. Polym. Sci. 2020, 138, 49657. [Google Scholar] [CrossRef]
- Fernández-Luna, V.G.; Mallinson, D.; Alexiou, P.; Khadra, I.; Mullen, A.B.; Pelecanou, M.; Sagnou, M.; Lamprou, D. Isatin thiosemicarbazones promote honeycomb structure formation in spin-coated polymer films: Concentration effect and release studies. RSC Adv. 2017, 7, 12945–12952. [Google Scholar] [CrossRef] [Green Version]
- Kauer, W.K.; Peters, J.H.; DeMeester, T.R.; Ireland, A.P.; Bremner, C.G.; Hagen, J.A. Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann. Surg. 1995, 222, 525–533. [Google Scholar] [CrossRef]
- Rao, B.M.; Chakraborty, A.; Srinivasu, M.; Devi, M.L.; Kumar, P.R.; Chandrasekhar, K.; Srinivasan, A.; Prasad, A.; Ramanatham, J. A stability-indicating HPLC assay method for docetaxel. J. Pharm. Biomed. Anal. 2006, 41, 676–681. [Google Scholar] [CrossRef]
- D’Arcy, M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef]
- Tao, J.; Diao, L.; Chen, F.; Shen, A.; Wang, S.; Jin, H.; Cai, D.; Hu, Y. pH-Sensitive Nanoparticles Codelivering Docetaxel and Dihydroartemisinin Effectively Treat Breast Cancer by Enhancing Reactive Oxidative Species-Mediated Mitochondrial Apoptosis. Mol. Pharm. 2021, 18, 74–86. [Google Scholar] [CrossRef]
- Abe, T.; Higaki, E.; Hosoi, T.; Nagao, T.; Bando, H.; Kadowaki, S.; Muro, K.; Tanaka, T.; Tajika, M.; Niwa, Y.; et al. Long-Term Outcome of Patients with Locally Advanced Clinically Unresectable Esophageal Cancer Undergoing Conversion Surgery after Induction Chemotherapy with Docetaxel Plus Cisplatin and 5-Fluorouracil. Ann. Surg. Oncol. 2021, 28, 712–721. [Google Scholar] [CrossRef]
- He, X.; Li, C.; Wu, X.; Yang, G. Docetaxel inhibits the proliferation of non-small-cell lung cancer cells via upregulation of microRNA-7 expression. Int. J. Clin. Exp. Pathol. 2015, 8, 9072–9080. [Google Scholar]
- Tabaczar, S.; Koceva-Chyła, A.; Matczak, K.; Gwoździński, K. Molecular Mechanisms of Antitumor Activity of Taxanes. I. Interaction of Docetaxel with Microtubules, Postepy Higieny i Medycyny Doswiadczalnej (Online). Available online: http://europepmc.org/abstract/MED/21109709 (accessed on 28 March 2021).
- Zong, W.X.; Thompson, C.B. Necrotic death as a cell fate. Genes Dev. 2006, 20, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Weinlich, R.; Oberst, A.; Beere, H.M.; Green, D.R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 2017, 18, 127–136. [Google Scholar] [CrossRef]
- Deng, L.; Wu, X.; Zhu, X.; Yu, Z.; Liu, Z.; Wang, J.; Zheng, Y. Combination effect of curcumin with docetaxel on the PI3K/AKT/mTOR pathway to induce autophagy and apoptosis in esophageal squamous cell carcinoma. Am. J. Transl. Res. 2021, 13, 57–72. [Google Scholar]
- Vo, P.H.T.; Nguyen, T.D.T.; Tran, H.T.; Nguyen, Y.N.; Doan, M.T.; Nguyen, P.H.; Lien, G.T.K.; To, D.C.; Tran, M.H. Cytotoxic components from the leaves of Erythrophleum fordii induce human acute leukemia cell apoptosis through caspase 3 activation and PARP cleavage. Bioorg. Med. Chem. Lett. 2021, 31, 127673. [Google Scholar] [CrossRef]
- Gan, L.; Wang, J.L.; Xu, H.B.; Yang, X.L. Resistance to Docetaxel-Induced Apoptosis in Prostate Cancer Cells by p38/p53/p21 Signaling. Prostate 2011, 71, 1158–1166. [Google Scholar] [CrossRef]
Sample | Ultimate Tensile Strength (KPa) | Elongation at 8 mm Diameter (%) | Toughness (J m−3) | Young’s Modulus (kPa) |
---|---|---|---|---|
1.92% w/w DTX Loaded stent | 728 ± 87.0 | 167 ± 1.53 | 34.2 ± 1.38 | 2.41 ± 0.16 |
2.79% w/w DTX Loaded stent | 543 ± 69.6 | 154 ± 11.0 | 27.0 ± 5.68 | 2.05 ± 0.34 |
Commercial stent | 2135 ± 281 | 143 ± 5.05 | 62.6 ± 6.89 | 4.35 ± 0.17 |
DTX Remaining (%) after Certain Storage Times and Conditions | ||||
---|---|---|---|---|
DTX-Loaded Stent | Storage Condition | 1 month | 2 months | 3 months |
1.92% w/w | 25 °C | 95.0 ± 1.40 | 96.7 ± 10.6 | 90.0 ± 1.08 |
25 °C/60% RH | 95.8 ± 3.27 | 97.9 ± 6.49 | 94.6 ± 5.72 | |
40 °C/75%RH | 96.7 ± 2.43 | 78.7 ± 23.1 | 73.2 ± 17.0 | |
2.79% w/w | 25 °C | 96.8 ± 5.01 | 91.64 ± 5.42 | 90.0 ± 3.07 |
25 °C/60% RH | 97.3 ± 3.26 | 97.6 ± 5.42 | 93.5 ± 8.21 | |
40 °C/75%RH | 95.2 ± 2.92 | 83.8 ± 10.0 | 81.7 ± 6.57 |
Sample | Weight of Sample (mg) | Drug Content (µg) | % DTX Remaining |
---|---|---|---|
Before UV/γ irradiation | 15.3 ± 0.14 | 158.3 ± 6.13 | 100 |
After UV irradiation | 15.2 ± 0.24 | 101.1 ± 0.50 | 63.9 |
After γ irradiation | 15.6 ± 0.11 | 145.5 ± 2.52 | 92.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouladian, P.; Jin, Q.; Arafat, M.; Song, Y.; Guo, X.; Blencowe, A.; Garg, S. Drug-Loaded, Polyurethane Coated Nitinol Stents for the Controlled Release of Docetaxel for the Treatment of Oesophageal Cancer. Pharmaceuticals 2021, 14, 311. https://doi.org/10.3390/ph14040311
Fouladian P, Jin Q, Arafat M, Song Y, Guo X, Blencowe A, Garg S. Drug-Loaded, Polyurethane Coated Nitinol Stents for the Controlled Release of Docetaxel for the Treatment of Oesophageal Cancer. Pharmaceuticals. 2021; 14(4):311. https://doi.org/10.3390/ph14040311
Chicago/Turabian StyleFouladian, Paris, Qiuyang Jin, Mohammad Arafat, Yunmei Song, Xiuli Guo, Anton Blencowe, and Sanjay Garg. 2021. "Drug-Loaded, Polyurethane Coated Nitinol Stents for the Controlled Release of Docetaxel for the Treatment of Oesophageal Cancer" Pharmaceuticals 14, no. 4: 311. https://doi.org/10.3390/ph14040311
APA StyleFouladian, P., Jin, Q., Arafat, M., Song, Y., Guo, X., Blencowe, A., & Garg, S. (2021). Drug-Loaded, Polyurethane Coated Nitinol Stents for the Controlled Release of Docetaxel for the Treatment of Oesophageal Cancer. Pharmaceuticals, 14(4), 311. https://doi.org/10.3390/ph14040311