Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma
Abstract
:1. Drug Repurposing: An Attractive and Challenging Approach
Drug | Original Indication | New Clinical Indication in Cancer Treatment | Date of Approval | Mechanism of Action | References |
---|---|---|---|---|---|
Retinoic acid/Tretinoin | Acne | Acute promyelocytic leukemia | 1996 | Binds to retinoic acid receptors and degrades the fusion protein PML-RARa | [12] |
Interferon α2b | Hepatitis B and C | Melanoma, Multiple myeloma, Hairy cell leukemia, Carcinoid tumor, Follicular lymphoma | 2000 | Immunomodulatory activity | [13] |
Thalidomide | Sedative/anti-emetic | Multiple myeloma | 2006 | Immunomodulatory, anti-inflammatory and potential anti-neoplastic activities due to inhibition of tumor necrosis factor-alpha (TNF-α) production | [14] |
Raloxifene | Osteoporosis | Breast cancer | 2007 | Selective estrogen receptor modulator (SERM) that acts like an antagonist in uterine and breast tissues | [15] |
Gemcitabine | Antiviral | Bladder cancer; Pancreatic ductal adenocarcinoma; Non-small cell lung cancer; Ovarian cancer; Breast cancer | 2009 | Pyrimidine antimetabolite inhibits DNA synthesis, leading to apoptosis and arresting tumor growth | [16] |
Pomalidomide | Thalidomide derivative | Multiple myeloma | 2013 | Cytotoxic and immunomodulatory effects. Suppresses angiogenesis by blocking the migration and adhesion of endothelial cells | [17] |
Itraconazole | Antifungal | Nevoid basal-cell carcinoma (Gorlin syndrome) | 2017 | Binds to Smoothened (SMO) protein, blocking the Hedgehog signaling pathway and limiting the growth and spread of tumoral cells | [18] |
Lenalidomide | Thalidomide derivative | Multiple myeloma | 2018 | Cytotoxic and immunomodulatory effects due to the degradation of lymphoid transcriptional factors | [19] |
Arsenic | Tuberculosis and syphilis | Acute promyelocytic leukemia | 2020 | Causes fragmentation of DNA and degrades the fusion protein PML-RARa | [20] |
2. Pancreatic Cancer: The Current Picture
3. Drug Repurposing Candidates for Pancreatic Cancer Treatment
3.1. Preclinical Studies
3.1.1. Carglumic Acid
3.1.2. Warfarin
3.1.3. Metformin
3.1.4. Monensin
3.1.5. Nelfinavir and Nitroxoline
3.1.6. Azithromycin, Doxycycline, Tigecycline and Pyrvinium
3.1.7. Ritonavir
3.1.8. Itraconazole
3.1.9. Parbendazole
3.1.10. Verteporfin and Protoporphyrin IX
3.1.11. Olanzapine, Penfluridol, Pimozide and Trifluoperazine
3.1.12. Disulfiram
3.1.13. Bazedoxifene
3.1.14. Ibrutinib
3.1.15. Losartan
3.1.16. Pentoxifylline and Pirfenidone
4. Repurposed Drugs for Pancreatic Cancer in Clinical Trials
4.1. Antidiabetics
4.2. Vitamins
4.3. Hydroxychloroquine and Chloroquine
4.4. Tyrosine Kinase Inhibitors (TKIs)
4.5. Poly (ADP) Ribose Polymerase (PARP) Inhibitors
4.6. Monoclonal Antibodies (mAb)
4.7. Other Relevant Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Pantziarka, P.; Verbaanderd, C.; Huys, I.; Bouche, G.; Meheus, L. Repurposing drugs in oncology: From candidate selection to clinical adoption. Semin. Cancer Biol. 2020. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal. Transduct. Target. Ther. 2020, 5, 113. [Google Scholar] [CrossRef]
- Dinic, J.; Efferth, T.; Garcia-Sosa, A.T.; Grahovac, J.; Padron, J.M.; Pajeva, I.; Rizzolio, F.; Saponara, S.; Spengler, G.; Tsakovska, I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist. Updat. 2020, 52, 100713. [Google Scholar] [CrossRef]
- Nosengo, N. Can you teach old drugs new tricks? Nature 2016, 534, 314–316. [Google Scholar] [CrossRef]
- Sleire, L.; Forde, H.E.; Netland, I.A.; Leiss, L.; Skeie, B.S.; Enger, P.O. Drug repurposing in cancer. Pharmacol. Res. 2017, 124, 74–91. [Google Scholar] [CrossRef]
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the Human Development Index (2008–2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef]
- Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200. [Google Scholar] [CrossRef]
- Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014, 32, 40–51. [Google Scholar] [CrossRef]
- Hertel, L.W.; Kroin, J.S.; Grossman, C.S.; Grindey, G.B.; Dorr, A.F.; Storniolo, A.M.V.; Plunkett, W.; Gandhi, V.; Huang, P. Synthesis and Biological Activity of 2′,2′-Difluorodeoxycytidine (Gemcitabine). In Biomedical Frontiers of Fluorine Chemistry; American Chemical Society: Washington, DC, USA, 1996; Volume 639, pp. 265–278. [Google Scholar]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goere, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. 5), v56–v68. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration: Vesanoid. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2004/20438s004lbl.pdf (accessed on 29 August 2020).
- European Medicines Agency: IntronA—EMEA/H/C/000281. Available online: https://www.ema.europa.eu/en/documents/product-information/introna-epar-product-information_en.pdf (accessed on 29 August 2020).
- Viktorsson, K.; Lewensohn, R.; Zhivotovsky, B. Apoptotic pathways and therapy resistance in human malignancies. Adv. Cancer Res. 2005, 94, 143–196. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration: Evista. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022042s000_Lbl.pdf (accessed on 29 August 2020).
- European Medicines Agency: Abraxane—EMEA/H/C/000778. Available online: https://www.ema.europa.eu/en/documents/product-information/abraxane-epar-product-information_en.pdf (accessed on 30 August 2020).
- European Medicines Agency: Imnovid—EMEA/H/C/002682. Available online: https://www.ema.europa.eu/en/documents/product-information/imnovid-epar-product-information_en.pdf (accessed on 30 August 2020).
- European Medicines Agency: EMA/475685/2017—Public Summary of Opinion on Orphan Designation. Available online: https://www.ema.europa.eu/en/documents/orphan-designation/eu/3/17/1901-public-summary-opinion-orphan-designation-itraconazole-treatment-naevoid-basal-cell-carcinoma_en.pdf (accessed on 17 February 2021).
- European Medicines Agency: Lenalidomide Accord—EMEA/H/C/004857. Available online: https://www.ema.europa.eu/en/documents/product-information/lenalidomide-accord-epar-product-information_en.pdf (accessed on 30 August 2020).
- European Medicines Agency: Arsenic trioxide Accord—EMEA/H/C/005175. Available online: https://www.ema.europa.eu/en/documents/product-information/arsenic-trioxide-accord-epar-product-information_en.pdf (accessed on 31 August 2020).
- WHO—Global Cancer Observatory. Cancer Today: Pancreas. Available online: http://gco.iarc.fr/today/ (accessed on 13 April 2020).
- Duell, E.J. Epidemiology and potential mechanisms of tobacco smoking and heavy alcohol consumption in pancreatic cancer. Mol. Carcinog. 2012, 51, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types Of Gastrointestinal Cancer. Gastroenterology 2020. [Google Scholar] [CrossRef]
- Yachida, S.; Jones, S.; Bozic, I.; Antal, T.; Leary, R.; Fu, B.; Kamiyama, M.; Hruban, R.H.; Eshleman, J.R.; Nowak, M.A.; et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010, 467, 1114–1117. [Google Scholar] [CrossRef] [Green Version]
- Arnold, M.; Rutherford, M.J.; Bardot, A.; Ferlay, J.; Andersson, T.M.; Myklebust, T.A.; Tervonen, H.; Thursfield, V.; Ransom, D.; Shack, L.; et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): A population-based study. Lancet Oncol. 2019, 20, 1493–1505. [Google Scholar] [CrossRef] [Green Version]
- Niederhuber, J.; Armitage, J.; Doroshow, J.; Kastan, M.; Tepper, J. Abeloff’s Clinical Oncology, 6th ed.; Elsevier Health Sciences: Amsterdam, The Netherland, 2019. [Google Scholar]
- Bosman, F.T.; Carneiro, F.; Hruban, R.H.; Theise, N.D. WHO Classification of Tumours of the Digestive System; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Klimstra, D.S.; Pitman, M.B.; Hruban, R.H. An algorithmic approach to the diagnosis of pancreatic neoplasms. Arch. Pathol. Lab. Med. 2009, 133, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Amanam, I.; Chung, V. Current and future therapies for advanced pancreatic cancer. J. Surg. Oncol. 2017, 116, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Esposito, I.; Konukiewitz, B.; Schlitter, A.M.; Kloppel, G. Pathology of pancreatic ductal adenocarcinoma: Facts, challenges and future developments. World J. Gastroenterol. 2014, 20, 13833–13841. [Google Scholar] [CrossRef] [PubMed]
- Hruban, R.H.; Maitra, A.; Kern, S.E.; Goggins, M. Precursors to pancreatic cancer. Gastroenterol. Clin. N. Am. 2007, 36, 831–849. [Google Scholar] [CrossRef] [Green Version]
- Scarlett, C.J.; Salisbury, E.L.; Biankin, A.V.; Kench, J. Precursor lesions in pancreatic cancer: Morphological and molecular pathology. Pathology 2011, 43, 183–200. [Google Scholar] [CrossRef]
- Morris, J.P.t.; Wang, S.C.; Hebrok, M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 2010, 10, 683–695. [Google Scholar] [CrossRef]
- Wilentz, R.E.; Iacobuzio-Donahue, C.A.; Argani, P.; McCarthy, D.M.; Parsons, J.L.; Yeo, C.J.; Kern, S.E.; Hruban, R.H. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: Evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000, 60, 2002–2006. [Google Scholar]
- Maitra, A.; Adsay, N.V.; Argani, P.; Iacobuzio-Donahue, C.; De Marzo, A.; Cameron, J.L.; Yeo, C.J.; Hruban, R.H. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod. Pathol. 2003, 16, 902–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notta, F.; Chan-Seng-Yue, M.; Lemire, M.; Li, Y.; Wilson, G.W.; Connor, A.A.; Denroche, R.E.; Liang, S.B.; Brown, A.M.; Kim, J.C.; et al. A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns. Nature 2016, 538, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Yabar, C.S.; Winter, J.M. Pancreatic Cancer: A Review. Gastroenterol. Clin. N. Am. 2016, 45, 429–445. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Jansen, L.; Balavarca, Y.; Babaei, M.; van der Geest, L.; Lemmens, V.; Van Eycken, L.; De Schutter, H.; Johannesen, T.B.; Primic-Zakelj, M.; et al. Stratified survival of resected and overall pancreatic cancer patients in Europe and the USA in the early twenty-first century: A large, international population-based study. BMC Med. 2018, 16, 125. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.H.; Fleming, J.B.; Bhosale, P.; Varadhachary, G.; Lee, J.E.; Wolff, R.; Wang, H.; Abbruzzese, J.; Pisters, P.W.; Vauthey, J.N. Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 2012, 118, 5749–5756. [Google Scholar] [CrossRef]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Asbun, H.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Cha, C.; Chiorean, E.G.; Chung, V.; et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Pancreatic Adenocarcinoma, V 1.2020. J. Natl. Compr. Canc. Netw. 2017, 15, 1028–1061. [Google Scholar] [CrossRef] [PubMed]
- Christenson, E.S.; Jaffee, E.; Azad, N.S. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: A bright future. Lancet Oncol. 2020, 21, e135–e145. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang-Gillam, A.; Li, C.P.; Bodoky, G.; Dean, A.; Shan, Y.S.; Jameson, G.; Macarulla, T.; Lee, K.H.; Cunningham, D.; Blanc, J.F.; et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. Lancet 2016, 387, 545–557. [Google Scholar] [CrossRef]
- Kipps, E.; Young, K.; Starling, N. Liposomal irinotecan in gemcitabine-refractory metastatic pancreatic cancer: Efficacy, safety and place in therapy. Ther. Adv. Med. Oncol. 2017, 9, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Uzunparmak, B.; Sahin, I.H. Pancreatic cancer microenvironment: A current dilemma. Clin. Transl. Med. 2019, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.J.; Jaffee, E.M.; Zheng, L. The tumour microenvironment in pancreatic cancer—Clinical challenges and opportunities. Nat. Rev. Clin. Oncol. 2020, 17, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Whatcott, C.J.; Diep, C.H.; Jiang, P.; Watanabe, A.; LoBello, J.; Sima, C.; Hostetter, G.; Shepard, H.M.; Von Hoff, D.D.; Han, H. Desmoplasia in Primary Tumors and Metastatic Lesions of Pancreatic Cancer. Clin. Cancer Res. 2015, 21, 3561–3568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apte, M.V.; Haber, P.S.; Darby, S.J.; Rodgers, S.C.; McCaughan, G.W.; Korsten, M.A.; Pirola, R.C.; Wilson, J.S. Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis. Gut 1999, 44, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Vonlaufen, A.; Joshi, S.; Qu, C.; Phillips, P.A.; Xu, Z.; Parker, N.R.; Toi, C.S.; Pirola, R.C.; Wilson, J.S.; Goldstein, D.; et al. Pancreatic stellate cells: Partners in crime with pancreatic cancer cells. Cancer Res. 2008, 68, 2085–2093. [Google Scholar] [CrossRef] [Green Version]
- Neesse, A.; Michl, P.; Frese, K.K.; Feig, C.; Cook, N.; Jacobetz, M.A.; Lolkema, M.P.; Buchholz, M.; Olive, K.P.; Gress, T.M.; et al. Stromal biology and therapy in pancreatic cancer. Gut 2011, 60, 861–868. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhou, D.; Rucki, A.A.; Williams, J.; Zhou, J.; Mo, G.; Murphy, A.; Fujiwara, K.; Kleponis, J.; Salman, B.; et al. Cancer-Associated Fibroblasts in Pancreatic Cancer Are Reprogrammed by Tumor-Induced Alterations in Genomic DNA Methylation. Cancer Res. 2016, 76, 5395–5404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Useros, J.; Martin-Galan, M.; Garcia-Foncillas, J. The Match between Molecular Subtypes, Histology and Microenvironment of Pancreatic Cancer and Its Relevance for Chemoresistance. Cancers 2021, 13, 322. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, P.P.; Cuevas, C.; Chang, A.E.; Goel, V.K.; Von Hoff, D.D.; Hingorani, S.R. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012, 21, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Ohlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.; Hearn, S.A.; Lee, E.J.; et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 2017, 214, 579–596. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.T.; Chen, Y.C.; Yamaguchi, H.; Hung, M.C. Carglumic acid promotes apoptosis and suppresses cancer cell proliferation in vitro and in vivo. Am. J. Cancer Res. 2015, 5, 3560–3569. [Google Scholar] [PubMed]
- Kirane, A.; Ludwig, K.F.; Sorrelle, N.; Haaland, G.; Sandal, T.; Ranaweera, R.; Toombs, J.E.; Wang, M.; Dineen, S.P.; Micklem, D.; et al. Warfarin Blocks Gas6-Mediated Axl Activation Required for Pancreatic Cancer Epithelial Plasticity and Metastasis. Cancer Res. 2015, 75, 3699–3705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocal, O.; Pashkov, V.; Kollipara, R.K.; Zolghadri, Y.; Cruz, V.H.; Hale, M.A.; Heath, B.R.; Artyukhin, A.B.; Christie, A.L.; Tsoulfas, P.; et al. A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics. Dis Model. Mech. 2015, 8, 1201–1211. [Google Scholar] [CrossRef] [Green Version]
- Tormoen, G.W.; Blair, T.C.; Bambina, S.; Kramer, G.; Baird, J.; Rahmani, R.; Holland, J.M.; McCarty, O.J.T.; Baine, M.J.; Verma, V.; et al. Targeting MerTK Enhances Adaptive Immune Responses After Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Nakchbandi, W.; Muller, H.; Singer, M.V.; Lohr, M.; Nakchbandi, I.A. Effects of low-dose warfarin and regional chemotherapy on survival in patients with pancreatic carcinoma. Scand. J. Gastroenterol. 2006, 41, 1095–1104. [Google Scholar] [CrossRef]
- Candido, S.; Abrams, S.L.; Steelman, L.; Lertpiriyapong, K.; Martelli, A.M.; Cocco, L.; Ratti, S.; Follo, M.Y.; Murata, R.M.; Rosalen, P.L.; et al. Metformin influences drug sensitivity in pancreatic cancer cells. Adv. Biol. Regul. 2018, 68, 13–30. [Google Scholar] [CrossRef]
- Chen, K.; Qian, W.; Jiang, Z.; Cheng, L.; Li, J.; Sun, L.; Zhou, C.; Gao, L.; Lei, M.; Yan, B.; et al. Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer. Mol. Cancer 2017, 16, 131. [Google Scholar] [CrossRef]
- Duan, W.; Qian, W.; Zhou, C.; Cao, J.; Qin, T.; Xiao, Y.; Cheng, L.; Li, J.; Chen, K.; Li, X.; et al. Metformin suppresses the invasive ability of pancreatic cancer cells by blocking autocrine TGFbeta1 signaling. Oncol. Rep. 2018, 40, 1495–1502. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Zhang, Z.; Ma, C.; Wu, T.; Tang, S.; Zeng, Z.; Huang, S.; Gong, C.; Yuan, C.; et al. Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway. Sci. Rep. 2018, 8, 17914. [Google Scholar] [CrossRef]
- Veschi, S.; De Lellis, L.; Florio, R.; Lanuti, P.; Massucci, A.; Tinari, N.; De Tursi, M.; di Sebastiano, P.; Marchisio, M.; Natoli, C.; et al. Effects of repurposed drug candidates nitroxoline and nelfinavir as single agents or in combination with erlotinib in pancreatic cancer cells. J. Exp. Clin. Cancer Res. 2018, 37, 236. [Google Scholar] [CrossRef] [PubMed]
- Veschi, S.; Ronci, M.; Lanuti, P.; De Lellis, L.; Florio, R.; Bologna, G.; Scotti, L.; Carletti, E.; Brugnoli, F.; Di Bella, M.C.; et al. Integrative proteomic and functional analyses provide novel insights into the action of the repurposed drug candidate nitroxoline in AsPC-1 cells. Sci. Rep. 2020, 10, 2574. [Google Scholar] [CrossRef]
- Son, K.; Fujioka, S.; Iida, T.; Furukawa, K.; Fujita, T.; Yamada, H.; Chiao, P.J.; Yanaga, K. Doxycycline induces apoptosis in PANC-1 pancreatic cancer cells. Anticancer Res. 2009, 29, 3995–4003. [Google Scholar] [PubMed]
- Lamb, R.; Ozsvari, B.; Lisanti, C.L.; Tanowitz, H.B.; Howell, A.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget 2015, 6, 4569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batchu, R.B.; Gruzdyn, O.V.; Bryant, C.S.; Qazi, A.M.; Kumar, S.; Chamala, S.; Kung, S.T.; Sanka, R.S.; Puttagunta, U.S.; Weaver, D.W.; et al. Ritonavir-Mediated Induction of Apoptosis in Pancreatic Cancer Occurs via the RB/E2F-1 and AKT Pathways. Pharmaceuticals 2014, 7, 46–57. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, A.J.; Ivry, S.L.; Chaudhury, C.; Hostetter, D.R.; Hanahan, D.; Craik, C.S. Procathepsin E is highly abundant but minimally active in pancreatic ductal adenocarcinoma tumors. Biol. Chem. 2016, 397, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Cheng, L.; Qian, W.; Jiang, Z.; Sun, L.; Zhao, Y.; Zhou, Y.; Zhao, L.; Wang, P.; Duan, W.; et al. Itraconazole inhibits invasion and migration of pancreatic cancer cells by suppressing TGF-beta/SMAD2/3 signaling. Oncol. Rep. 2018, 39, 1573–1582. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Xing, H.S.; Chen, W.Y.; Du, J.; Ruan, Y.L.; Lin, A.Y.; Zhou, C.Z. Itraconazole inhibits proliferation of pancreatic cancer cells through activation of Bak-1. J. Cell Biochem. 2019, 120, 4333–4341. [Google Scholar] [CrossRef] [PubMed]
- Florio, R.; Veschi, S.; di Giacomo, V.; Pagotto, S.; Carradori, S.; Verginelli, F.; Cirilli, R.; Casulli, A.; Grassadonia, A.; Tinari, N.; et al. The Benzimidazole-Based Anthelmintic Parbendazole: A Repurposed Drug Candidate That Synergizes with Gemcitabine in Pancreatic Cancer. Cancers 2019, 11, 2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acedo, P.; Fernandes, A.; Zawacka-Pankau, J. Activation of TAp73 and inhibition of TrxR by Verteporfin for improved cancer therapy in TP53 mutant pancreatic tumors. Future Sci. OA 2019, 5, FSO366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Guo, T.; Liu, H.; Jiang, H.; Wang, Y. Plateletderived growth factorBB mediates pancreatic cancer malignancy via regulation of the Hippo/Yesassociated protein signaling pathway. Oncol. Rep. 2021, 45, 83–94. [Google Scholar] [CrossRef]
- Chien, W.; Sun, Q.Y.; Lee, K.L.; Ding, L.W.; Wuensche, P.; Torres-Fernandez, L.A.; Tan, S.Z.; Tokatly, I.; Zaiden, N.; Poellinger, L.; et al. Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Mol. Oncol. 2015, 9, 889–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjan, A.; Srivastava, S.K. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci. Rep. 2016, 6, 26165. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, A.; German, N.; Mikelis, C.; Srivenugopal, K.; Srivastava, S.K. Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer. Tumour Biol. 2017, 39, 1010428317705517. [Google Scholar] [CrossRef] [Green Version]
- Jandaghi, P.; Najafabadi, H.S.; Bauer, A.S.; Papadakis, A.I.; Fassan, M.; Hall, A.; Monast, A.; von Knebel Doeberitz, M.; Neoptolemos, J.P.; Costello, E.; et al. Expression of DRD2 Is Increased in Human Pancreatic Ductal Adenocarcinoma and Inhibitors Slow Tumor Growth in Mice. Gastroenterology 2016, 151, 1218–1231. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Lan, W.; Fraunhoffer, N.; Meilerman, A.; Iovanna, J.; Santofimia-Castano, P. Dissecting the Anticancer Mechanism of Trifluoperazine on Pancreatic Ductal Adenocarcinoma. Cancers 2019, 11, 1869. [Google Scholar] [CrossRef] [Green Version]
- Sanomachi, T.; Suzuki, S.; Kuramoto, K.; Takeda, H.; Sakaki, H.; Togashi, K.; Seino, S.; Yoshioka, T.; Okada, M.; Kitanaka, C. Olanzapine, an Atypical Antipsychotic, Inhibits Survivin Expression and Sensitizes Cancer Cells to Chemotherapeutic Agents. Anticancer Res. 2017, 37, 6177–6188. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, P.; Ding, S.Y.; Sun, T.; Liu, L.; Han, S.; DeLeo, A.B.; Sadagopan, A.; Guo, W.; Wang, X. Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: An uncovered anti-cancer mechanism by anti-alcoholism drug disulfiram. Am. J. Cancer Res. 2019, 9, 1266–1281. [Google Scholar] [PubMed]
- Cong, J.; Wang, Y.; Zhang, X.; Zhang, N.; Liu, L.; Soukup, K.; Michelakos, T.; Hong, T.; DeLeo, A.; Cai, L.; et al. A novel chemoradiation targeting stem and nonstem pancreatic cancer cells by repurposing disulfiram. Cancer Lett. 2017, 409, 9–19. [Google Scholar] [CrossRef]
- Wu, X.; Cao, Y.; Xiao, H.; Li, C.; Lin, J. Bazedoxifene as a Novel GP130 Inhibitor for Pancreatic Cancer Therapy. Mol. Cancer Ther. 2016, 15, 2609–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masso-Valles, D.; Jauset, T.; Serrano, E.; Sodir, N.M.; Pedersen, K.; Affara, N.I.; Whitfield, J.R.; Beaulieu, M.E.; Evan, G.I.; Elias, L.; et al. Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. Cancer Res. 2015, 75, 1675–1681. [Google Scholar] [CrossRef] [Green Version]
- Overman, M.; Javle, M.; Davis, R.E.; Vats, P.; Kumar-Sinha, C.; Xiao, L.; Mettu, N.B.; Parra, E.R.; Benson, A.B.; Lopez, C.D.; et al. Randomized phase II study of the Bruton tyrosine kinase inhibitor acalabrutinib, alone or with pembrolizumab in patients with advanced pancreatic cancer. J. Immunother. Cancer 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Gunderson, A.J.; Kaneda, M.M.; Tsujikawa, T.; Nguyen, A.V.; Affara, N.I.; Ruffell, B.; Gorjestani, S.; Liudahl, S.M.; Truitt, M.; Olson, P.; et al. Bruton Tyrosine Kinase-Dependent Immune Cell Cross-talk Drives Pancreas Cancer. Cancer Discov. 2016, 6, 270–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diop-Frimpong, B.; Chauhan, V.P.; Krane, S.; Boucher, Y.; Jain, R.K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA 2011, 108, 2909–2914. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Shin, B.C.; Park, W.S.; Lee, J.; Kuh, H.J. Antifibrotic effects of pentoxifylline improve the efficacy of gemcitabine in human pancreatic tumor xenografts. Cancer Sci. 2017, 108, 2470–2477. [Google Scholar] [CrossRef]
- Xavier, C.P.R.; Castro, I.; Caires, H.R.; Ferreira, D.; Cavadas, B.; Pereira, L.; Santos, L.L.; Oliveira, M.J.; Vasconcelos, M.H. Chitinase 3-like-1 and fibronectin in the cargo of extracellular vesicles shed by human macrophages influence pancreatic cancer cellular response to gemcitabine. Cancer Lett. 2021, 501, 210–223. [Google Scholar] [CrossRef]
- Kozono, S.; Ohuchida, K.; Eguchi, D.; Ikenaga, N.; Fujiwara, K.; Cui, L.; Mizumoto, K.; Tanaka, M. Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 2013, 73, 2345–2356. [Google Scholar] [CrossRef] [Green Version]
- Usugi, E.; Ishii, K.; Hirokawa, Y.; Kanayama, K.; Matsuda, C.; Uchida, K.; Shiraishi, T.; Watanabe, M. Antifibrotic Agent Pirfenidone Suppresses Proliferation of Human Pancreatic Cancer Cells by Inducing G0/G1 Cell Cycle Arrest. Pharmacology 2019, 103, 250–256. [Google Scholar] [CrossRef]
- Food and Drug Administration (FDA). GLUCOPHAGE®(metformin hydrochloride) Tablets. GLUCOPHAGE® XR (metformin hydrochloride) Extended-Release Tablets. Label. 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020357s037s039,021202s021s023lbl.pdf (accessed on 12 January 2021).
- Li, X.; Li, T.; Liu, Z.; Gou, S.; Wang, C. The effect of metformin on survival of patients with pancreatic cancer: A meta-analysis. Sci. Rep. 2017, 7, 5825. [Google Scholar] [CrossRef]
- Mao, Y.; Tao, M.; Jia, X.; Xu, H.; Chen, K.; Tang, H.; Li, D. Effect of Diabetes Mellitus on Survival in Patients with Pancreatic Cancer: A Systematic Review and Meta-analysis. Sci. Rep. 2015, 5, 17102. [Google Scholar] [CrossRef] [PubMed]
- Bowker, S.L.; Majumdar, S.R.; Veugelers, P.; Johnson, J.A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006, 29, 254–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, A.; Khawaja, K.I.; Masud, F.; Saif, M.W. Metformin and pancreatic cancer: Is there a role? Cancer Chemother. Pharmacol. 2016, 77, 235–242. [Google Scholar] [CrossRef]
- Sacco, F.; Calderone, A.; Castagnoli, L.; Cesareni, G. The cell-autonomous mechanisms underlying the activity of metformin as an anticancer drug. Br. J. Cancer 2016, 115, 1451–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wynn, A.; Vacheron, A.; Zuber, J.; Solomon, S.S. Metformin Associated with Increased Survival in Type 2 Diabetes Patients with Pancreatic Cancer and Lymphoma. Am. J. Med. Sci. 2019, 358, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Kordes, S.; Pollak, M.N.; Zwinderman, A.H.; Mathot, R.A.; Weterman, M.J.; Beeker, A.; Punt, C.J.; Richel, D.J.; Wilmink, J.W. Metformin in patients with advanced pancreatic cancer: A double-blind, randomised, placebo-controlled phase 2 trial. Lancet Oncol. 2015, 16, 839–847. [Google Scholar] [CrossRef]
- Dong, Y.W.; Shi, Y.Q.; He, L.W.; Cui, X.Y.; Su, P.Z. Effects of metformin on survival outcomes of pancreatic cancer: A meta-analysis. Oncotarget 2017, 8, 55478–55488. [Google Scholar] [CrossRef] [Green Version]
- Kesh, K.; Mendez, R.; Abdelrahman, L.; Banerjee, S.; Banerjee, S. Type 2 diabetes induced microbiome dysbiosis is associated with therapy resistance in pancreatic adenocarcinoma. Microb. Cell Fact. 2020, 19, 75. [Google Scholar] [CrossRef] [Green Version]
- Shrader, H.R.; Miller, A.M.; Tomanek-Chalkley, A.; McCarthy, A.; Coleman, K.L.; Ear, P.H.; Mangalam, A.K.; Salem, A.K.; Chan, C.H.F. Effect of bacterial contamination in bile on pancreatic cancer cell survival. Surgery 2021, 169, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.; Miller, G.; et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut 2018, 67, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al. The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. Cancer Discov. 2018, 8, 403–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.M.; Gharaibeh, R.Z.; Gauthier, J.; Beveridge, M.; Pope, J.L.; Guijarro, M.V.; Yu, Q.; He, Z.; Ohland, C.; Newsome, R.; et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 2018, 39, 1068–1078. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; San Lucas, A.; et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 2019, 178, 795–806.e12. [Google Scholar] [CrossRef]
- Ciernikova, S.; Novisedlakova, M.; Cholujova, D.; Stevurkova, V.; Mego, M. The Emerging Role of Microbiota and Microbiome in Pancreatic Ductal Adenocarcinoma. Biomedicines 2020, 8, 565. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.R.; Lee, J.C.; Lee, H.Y.; Kim, M.S.; Whon, T.W.; Lee, M.S.; Bae, J.W. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014, 63, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Pedersen, H.K.; et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef]
- Napolitano, A.; Miller, S.; Nicholls, A.W.; Baker, D.; Van Horn, S.; Thomas, E.; Rajpal, D.; Spivak, A.; Brown, J.R.; Nunez, D.J. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE 2014, 9, e100778. [Google Scholar] [CrossRef]
- Dong, T.S.; Chang, H.H.; Hauer, M.; Lagishetty, V.; Katzka, W.; Rozengurt, E.; Jacobs, J.P.; Eibl, G. Metformin alters the duodenal microbiome and decreases the incidence of pancreatic ductal adenocarcinoma promoted by diet-induced obesity. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G763–G772. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency: Kexxtone—EMEA/V/C/002235. Available online: https://www.ema.europa.eu/en/documents/product-information/kexxtone-epar-product-information_en.pdf (accessed on 2 February 2021).
- Wilson, J.M.; Fokas, E.; Dutton, S.J.; Patel, N.; Hawkins, M.A.; Eccles, C.; Chu, K.Y.; Durrant, L.; Abraham, A.G.; Partridge, M.; et al. ARCII: A phase II trial of the HIV protease inhibitor Nelfinavir in combination with chemoradiation for locally advanced inoperable pancreatic cancer. Radiother. Oncol. 2016, 119, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Al-Assar, O.; Bittner, M.I.; Lunardi, S.; Stratford, M.R.; McKenna, W.G.; Brunner, T.B. The radiosensitizing effects of Nelfinavir on pancreatic cancer with and without pancreatic stellate cells. Radiother. Oncol. 2016, 119, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Brunner, T.B.; Geiger, M.; Grabenbauer, G.G.; Lang-Welzenbach, M.; Mantoni, T.S.; Cavallaro, A.; Sauer, R.; Hohenberger, W.; McKenna, W.G. Phase I trial of the human immunodeficiency virus protease inhibitor nelfinavir and chemoradiation for locally advanced pancreatic cancer. J. Clin. Oncol. 2008, 26, 2699–2706. [Google Scholar] [CrossRef]
- Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 2014, 10, 654–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimorski, V.; Ku, C.; Martin, W.F.; Gould, S.B. Endosymbiotic theory for organelle origins. Curr. Opin. Microbiol 2014, 22, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Aminzadeh-Gohari, S.; Weber, D.D.; Vidali, S.; Catalano, L.; Kofler, B.; Feichtinger, R.G. From old to new—Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin. Cell Dev. Biol. 2020, 98, 211–223. [Google Scholar] [CrossRef]
- Nunes, M.; Henriques Abreu, M.; Bartosch, C.; Ricardo, S. Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. Int. J. Mol. Sci. 2020, 21, 7768. [Google Scholar] [CrossRef]
- Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009, 324, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Thayer, S.P.; di Magliano, M.P.; Heiser, P.W.; Nielsen, C.M.; Roberts, D.J.; Lauwers, G.Y.; Qi, Y.P.; Gysin, S.; Fernandez-del Castillo, C.; Yajnik, V.; et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003, 425, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008, 321, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Tsubamoto, H.; Ueda, T.; Inoue, K.; Sakata, K.; Shibahara, H.; Sonoda, T. Repurposing itraconazole as an anticancer agent. Oncol. Lett. 2017, 14, 1240–1246. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.J.; Lew, K.; Casciano, C.N.; Clement, R.P.; Johnson, W.W. Interaction of common azole antifungals with P glycoprotein. Antimicrob. Agents Chemother. 2002, 46, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Tsubamoto, H.; Sonoda, T.; Ikuta, S.; Tani, S.; Inoue, K.; Yamanaka, N. Combination Chemotherapy with Itraconazole for Treating Metastatic Pancreatic Cancer in the Second-line or Additional Setting. Anticancer Res. 2015, 35, 4191–4196. [Google Scholar]
- Lockhart, N.R.; Waddell, J.A.; Schrock, N.E. Itraconazole therapy in a pancreatic adenocarcinoma patient: A case report. J. Oncol. Pharm. Pract. 2016, 22, 528–532. [Google Scholar] [CrossRef]
- Huggett, M.T.; Jermyn, M.; Gillams, A.; Illing, R.; Mosse, S.; Novelli, M.; Kent, E.; Bown, S.G.; Hasan, T.; Pogue, B.W.; et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer 2014, 110, 1698–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celli, J.P.; Solban, N.; Liang, A.; Pereira, S.P.; Hasan, T. Verteporfin-based photodynamic therapy overcomes gemcitabine insensitivity in a panel of pancreatic cancer cell lines. Lasers Surg. Med. 2011, 43, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Roy, B.; Anderson, M.; Leggett, C.L.; Levy, M.J.; Pogue, B.; Hasan, T.; Wang, K.K. Verteporfin- and sodium porfimer-mediated photodynamic therapy enhances pancreatic cancer cell death without activating stromal cells in the microenvironment. J. Biomed. Opt. 2019, 24, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Zawacka-Pankau, J.; Issaeva, N.; Hossain, S.; Pramanik, A.; Selivanova, G.; Podhajska, A.J. Protoporphyrin IX interacts with wild-type p53 protein in vitro and induces cell death of human colon cancer cells in a p53-dependent and -independent manner. J. Biol. Chem. 2007, 282, 2466–2472. [Google Scholar] [CrossRef] [Green Version]
- Sebio, A.; Lenz, H.J. Molecular Pathways: Hippo Signaling, a Critical Tumor Suppressor. Clin. Cancer Res. 2015, 21, 5002–5007. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yang, S.; Zhang, F.; Cheng, F.; Wang, X.; Rao, J. Influence of the Hippo-YAP signalling pathway on tumor associated macrophages (TAMs) and its implications on cancer immunosuppressive microenvironment. Ann. Transl. Med. 2020, 8, 399. [Google Scholar] [CrossRef] [PubMed]
- Rozengurt, E.; Sinnett-Smith, J.; Eibl, G. Yes-associated protein (YAP) in pancreatic cancer: At the epicenter of a targetable signaling network associated with patient survival. Signal. Transduct. Target. Ther. 2018, 3, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barak, Y.; Achiron, A.; Mandel, M.; Mirecki, I.; Aizenberg, D. Reduced cancer incidence among patients with schizophrenia. Cancer 2005, 104, 2817–2821. [Google Scholar] [CrossRef] [PubMed]
- Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol. 2021, 68, 75–83. [Google Scholar] [CrossRef]
- Weissenrieder, J.S.; Neighbors, J.D.; Mailman, R.B.; Hohl, R.J. Cancer and the Dopamine D2 Receptor: A Pharmacological Perspective. J. Pharmacol. Exp. Ther. 2019, 370, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Hannafon, B.N.; Ding, W.Q. Disulfiram’s Anticancer Activity: Evidence and Mechanisms. Anticancer Agents Med. Chem. 2016, 16, 1378–1384. [Google Scholar] [CrossRef]
- Chen, D.; Cui, Q.C.; Yang, H.; Dou, Q.P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 2006, 66, 10425–10433. [Google Scholar] [CrossRef] [Green Version]
- Wilmink, H. Metformin Combined with Chemotherapy for Pancreatic Cancer (GEM). Identifier: NCT01210911. Available online: https://clinicaltrials.gov/ct2/show/NCT01210911 (accessed on 3 February 2021).
- Krishnamurthi, S. Metformin Plus Modified FOLFOX 6 in Metastatic Pancreatic Cancer. Identifier: NCT01666730. Available online: https://clinicaltrials.gov/ct2/show/NCT01666730 (accessed on 3 February 2021).
- Reni, M. Combination Chemotherapy with or without Metformin Hydrochloride in Treating Patients with Metastatic Pancreatic Cancer (PACT-17). Identifier: NCT01167738. Available online: https://clinicaltrials.gov/ct2/show/NCT01167738 (accessed on 3 February 2021).
- Yu, X. Metformin Combined with Gemcitabine as Adjuvant Therapy for Pancreatic Cancer after Curative Resection. Identifier: NCT02005419. Available online: https://clinicaltrials.gov/ct2/show/NCT02005419 (accessed on 10 February 2021).
- Riechelmann, S.P.R. Treatment of Patients with Advanced Pancreatic Cancer after Gemcitabine Failure. Identifier: NCT01971034. Available online: https://clinicaltrials.gov/ct2/show/NCT01971034 (accessed on 7 February 2021).
- Braghiroli, M.I.; de Celis Ferrari, A.C.; Pfiffer, T.E.; Alex, A.K.; Nebuloni, D.; Carneiro, A.S.; Caparelli, F.; Senna, L.; Lobo, J.; Hoff, P.M.; et al. Phase II trial of metformin and paclitaxel for patients with gemcitabine-refractory advanced adenocarcinoma of the pancreas. Ecancermedicalscience 2015, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration (FDA). ACTOS (Pioglitazone Hydrochloride) Tablets for Oral Use. Label. 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021073s043s044lbl.pdf (accessed on 3 February 2021).
- Ninomiya, I.; Yamazaki, K.; Oyama, K.; Hayashi, H.; Tajima, H.; Kitagawa, H.; Fushida, S.; Fujimura, T.; Ohta, T. Pioglitazone inhibits the proliferation and metastasis of human pancreatic cancer cells. Oncol. Lett. 2014, 8, 2709–2714. [Google Scholar] [CrossRef] [Green Version]
- Beg, M. A Phase II Study of Pioglitazone for Patients with Cancer of the Pancreas. Identifier: NCT01838317. Available online: https://clinicaltrials.gov/ct2/show/NCT01838317 (accessed on 14 February 2021).
- Linnell, J.C. VITAMINS | Water-Soluble: Thin-Layer (Planar) Chromatography. In Encyclopedia of Separation Science; Wilson, I.D., Ed.; Academic Press: Oxford, UK, 2000; pp. 4454–4460. [Google Scholar]
- Naidu, K.A. Vitamin C in human health and disease is still a mystery? An overview. Nutr. J. 2003, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Polireddy, K.; Dong, R.; Reed, G.; Yu, J.; Chen, P.; Williamson, S.; Violet, P.C.; Pessetto, Z.; Godwin, A.K.; Fan, F.; et al. High Dose Parenteral Ascorbate Inhibited Pancreatic Cancer Growth and Metastasis: Mechanisms and a Phase I/IIa study. Sci. Rep. 2017, 7, 17188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschfeld, A. Ph 2 Trial of Vitamin C & G-FLIP (Low Doses Gemcitabine, 5FU, Leucovorin, Irinotecan, Oxaliplatin) for Pancreatic Cancer. Identifier: NCT01905150. Available online: https://clinicaltrials.gov/ct2/show/NCT01905150 (accessed on 20 February 2021).
- Hirschfeld, A.; Bruckner, H. An open-label phase II trial of G-FLIP (low doses of gemcitabine, 5-FU, leucovorin, irinotecan & oxaliplatin), followed by G-FLIP-DM (G-FLIP + low doses of docetaxel & mitomycin C), used concurrently with ascorbic acid (AA), in patients with advanced pancreatic cancer. J. Clin. Oncol. 2016, 34 (Suppl. 15), e15745. [Google Scholar]
- Jameson, G.S. Trial of Ascorbic Acid (AA) + Nanoparticle Paclitaxel Protein Bound + Cisplatin + Gemcitabine (AA NABPLAGEM). Identifier: NCT03410030. Available online: https://clinicaltrials.gov/ct2/show/NCT03410030 (accessed on 3 February 2021).
- Cullen, J.J. A Phase 2 Trial of High-dose Ascorbate for Pancreatic Cancer (PACMAN 2.1). Identifier: NCT02905578. Available online: https://clinicaltrials.gov/ct2/show/NCT02905578 (accessed on 17 February 2021).
- Zhou, F. High Dose Vitamin C Combined with Metformin in the Treatment of Malignant Tumors. Identifier: NCT04033107. Available online: https://clinicaltrials.gov/ct2/show/NCT04033107 (accessed on 17 February 2021).
- Cullen, J.J. A Clinical Trial Evaluating the Effect of Pharmacological Ascorbate on Radiation Therapy for Pancreatic Cancer Patients (XACT-PANC-2). Identifier: NCT03541486. Available online: https://clinicaltrials.gov/ct2/show/NCT03541486 (accessed on 17 February 2021).
- Shah, M. High Dose Vitamin C Intravenous Infusion in Patients with Resectable or Metastatic Solid Tumor Malignancies. Identifier: NCT03146962. Available online: https://clinicaltrials.gov/ct2/show/NCT03146962 (accessed on 17 February 2021).
- Food and Drug Administration (FDA). ZEMPLAR—Paricalcitol injection. Label. 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020819s025lbl.pdf (accessed on 17 February 2021).
- Chiang, K.C.; Chen, T.C. Vitamin D for the prevention and treatment of pancreatic cancer. World J. Gastroenterol. 2009, 15, 3349–3354. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, B. Paricalcitol Trial. Identifier: NCT04617067. Available online: https://clinicaltrials.gov/ct2/show/NCT04617067 (accessed on 18 February 2021).
- El-Rayes, B.F. Paricalcitol and Hydroxychloroquine in Combination with Gemcitabine and Nab-Paclitaxel for the Treatment of Advanced or Metastatic Pancreatic Cancer. Identifier: NCT04524702. Available online: https://clinicaltrials.gov/ct2/show/NCT04524702 (accessed on 17 February 2021).
- Perez, K. Paricalcitol Plus Gemcitabine and Nab-paclitaxel in Metastatic Pancreatic Cancer. Identifier: NCT03520790. Available online: https://clinicaltrials.gov/ct2/show/NCT03520790 (accessed on 18 February 2021).
- National Library of Medicine (U.S.). (29 November 2018). Paricalcitol Addition to Chemotherapy in Patients with Previously Untreated Metastatic Pancreatic Ductal Adenocarcinoma (PINBALL). Identifier: NCT04054362. Available online: https://clinicaltrials.gov/ct2/show/NCT04054362 (accessed on 18 February 2021).
- Borazanci, E. Pre-operative Treatment for Patients with Untreated Pancreatic Cancer. Identifier: NCT03138720. Available online: https://clinicaltrials.gov/ct2/show/NCT03138720 (accessed on 20 February 2021).
- Borazanci, E. Paclitaxel Protein Bound Plus Cisplatin Plus Gemcitabine and Paricalcitol for Pancreatic Adenocarcinoma (NABPLAGEMD). Identifier: NCT03415854. Available online: https://clinicaltrials.gov/ct2/show/NCT03415854 (accessed on 17 February 2021).
- Food and Drug Administration (FDA). Aralen®chloroquine Phosphate, Usp. Label. 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/006002s043lbl.pdf (accessed on 20 February 2021).
- Food and Drug Administration (FDA). Hydroxychloroquine Sulfate Tablets. Label. 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/040766Orig1s013lbl.pdf (accessed on 20 February 2021).
- Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res. 2011, 17, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, X.; Contino, G.; Liesa, M.; Sahin, E.; Ying, H.; Bause, A.; Li, Y.; Stommel, J.M.; Dell’antonio, G.; et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011, 25, 717–729. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.; Rajeshkumar, N.V.; Wang, X.; Yabuuchi, S.; Alexander, B.M.; Chu, G.C.; Von Hoff, D.D.; Maitra, A.; Kimmelman, A.C. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 2014, 4, 905–913. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.S. Short Course Radiation Therapy with Proton or Photon Beam Capecitabine and Hydroxychloroquine for Resectable Pancreatic Cancer. Identifier: NCT01494155. Available online: https://clinicaltrials.gov/ct2/show/NCT01494155 (accessed on 20 February 2021).
- O’Dwyer, P. A Phase I/II/Pharmacodynamic Study of Hydroxychloroquine in Combination with Gemcitabine/Abraxane to Inhibit Autophagy in Pancreatic Cancer. Identifier: NCT01506973. Available online: https://clinicaltrials.gov/ct2/show/NCT01506973 (accessed on 20 February 2021).
- Borazanci, E. Phase II Study of Paclitaxel Protein Bound + Gemcitabine + Cisplatin + Hydrochloroquine as Treatment in Untreated Pancreas Cancer. Identifier: NCT04669197. Available online: https://clinicaltrials.gov/ct2/show/NCT04669197 (accessed on 20 February 2021).
- Samaras, P. Adjuvant Effect of Chloroquine on Gemcitabine. Identifier: NCT01777477. Available online: https://clinicaltrials.gov/ct2/show/NCT01777477 (accessed on 20 February 2021).
- Samaras, P.; Tusup, M.; Nguyen-Kim, T.D.L.; Seifert, B.; Bachmann, H.; von Moos, R.; Knuth, A.; Pascolo, S. Phase I study of a chloroquine-gemcitabine combination in patients with metastatic or unresectable pancreatic cancer. Cancer Chemother. Pharmacol. 2017, 80, 1005–1012. [Google Scholar] [CrossRef]
- National Cancer Institute (NIH). Drugs Approved for Pancreatic Cancer. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/pancreatic (accessed on 12 February 2021).
- Food and Drug Administration (FDA). SUTENT (Sunitinib Malate) Label. 2014. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021938s027lbl.pdf (accessed on 22 February 2021).
- Food and Drug Administration (FDA). TARCEVA (Erlotinib) Label. 2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf (accessed on 22 February 2021).
- Food and Drug Administration (FDA). JAKAFI (Ruxolitinib) Label. 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202192lbl.pdf (accessed on 22 February 2021).
- Hurwitz, H.I.; Uppal, N.; Wagner, S.A.; Bendell, J.C.; Beck, J.T.; Wade, S.M., 3rd; Nemunaitis, J.J.; Stella, P.J.; Pipas, J.M.; Wainberg, Z.A.; et al. Randomized, Double-Blind, Phase II Study of Ruxolitinib or Placebo in Combination with Capecitabine in Patients with Metastatic Pancreatic Cancer for Whom Therapy with Gemcitabine Has Failed. J. Clin. Oncol. 2015, 33, 4039–4047. [Google Scholar] [CrossRef]
- Williams, W. Study of Ruxolitinib in Pancreatic Cancer Patients (RECAP). Identifier: NCT01423604. Available online: https://clinicaltrials.gov/ct2/show/NCT01423604 (accessed on 15 February 2021).
- Dawkins, F. A Study of Ruxolitinib in Pancreatic Cancer Patients. Identifier: NCT02119663. Available online: https://clinicaltrials.gov/ct2/show/NCT02119663 (accessed on 15 February 2021).
- Dawkins, F. Study of Ruxolitinib in Pancreatic Cancer Patients (Janus 1). Identifier: NCT02117479. Available online: https://clinicaltrials.gov/ct2/show/NCT02117479 (accessed on 15 February 2021).
- Hurwitz, H.; Van Cutsem, E.; Bendell, J.; Hidalgo, M.; Li, C.P.; Salvo, M.G.; Macarulla, T.; Sahai, V.; Sama, A.; Greeno, E.; et al. Ruxolitinib + capecitabine in advanced/metastatic pancreatic cancer after disease progression/intolerance to first-line therapy: JANUS 1 and 2 randomized phase III studies. Investig. New Drugs 2018, 36, 683–695. [Google Scholar] [CrossRef]
- European Medicines Agency Veterinary Medicines. European Public Assessment Report (Epar). Masivet. Epar Summary for the Public. 2009. Available online: https://www.ema.europa.eu/en/documents/overview/masivet-epar-summary-public_en.pdf (accessed on 23 February 2021).
- Deplanque, G. Masitinib in Combination with Gemcitabine for Treatment of Patients with Advanced/Metastatic Pancreatic Cancer. Identifier: NCT00789633. Available online: https://clinicaltrials.gov/ct2/show/NCT00789633 (accessed on 23 February 2021).
- Deplanque, G.; Demarchi, M.; Hebbar, M.; Flynn, P.; Melichar, B.; Atkins, J.; Nowara, E.; Moye, L.; Piquemal, D.; Ritter, D.; et al. A randomized, placebo-controlled phase III trial of masitinib plus gemcitabine in the treatment of advanced pancreatic cancer. Ann. Oncol. 2015, 26, 1194–1200. [Google Scholar] [CrossRef]
- Global News Wire. AB Science Announces that Confirmatory Phase 3 Study AB12005 with Masitinib in First Line Pancreatic Cancer with Pain Was Successful and Reached Its Primary Objective to Show Statistically Significant Increase in Survival. Available online: https://ml-eu.globenewswire.com/Resource/Download/81844e46-c8a2-4124-9d98-8e8a5877e71f (accessed on 21 February 2021).
- Ezenfis, J. Masitinib Plus Gemcitabine in Pancreatic Cancer. Identifier: NCT03766295. Available online: https://clinicaltrials.gov/ct2/show/NCT03766295 (accessed on 21 February 2021).
- Food and Drug Administration (FDA). NEXAVAR (Sorafenib) Label. 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021923s020lbl.pdf (accessed on 20 February 2021).
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [Green Version]
- Viret, F. Gemcitabine with or without Sorafenib in Treating Patients with Locally Advanced or Metastatic Pancreatic Cancer. Identifier: NCT00541021. Available online: https://clinicaltrials.gov/ct2/show/NCT00541021 (accessed on 24 February 2021).
- Goncalves, A.; Gilabert, M.; Francois, E.; Dahan, L.; Perrier, H.; Lamy, R.; Re, D.; Largillier, R.; Gasmi, M.; Tchiknavorian, X.; et al. BAYPAN study: A double-blind phase III randomized trial comparing gemcitabine plus sorafenib and gemcitabine plus placebo in patients with advanced pancreatic cancer. Ann. Oncol. 2012, 23, 2799–2805. [Google Scholar] [CrossRef]
- Chen, A. PARP inhibitors: Its role in treatment of cancer. Chin. J. Cancer 2011, 30, 463–471. [Google Scholar] [CrossRef]
- Ame, J.C.; Spenlehauer, C.; de Murcia, G. The PARP Superfamily. Bioessays 2004, 26, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Kwok, K.K.; Vincent, E.C.; Gibson, J.N. 36—Antineoplastic Drugs. In Pharmacology and Therapeutics for Dentistry, 7th ed.; Dowd, F.J., Johnson, B.S., Mariotti, A.J., Eds.; Mosby: Maryland Heights, MI, USA, 2017; pp. 530–562. [Google Scholar]
- Food and Drug Administration (FDA). LYNPARZA (Olaparib) Label. 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/208558s001lbl.pdf (accessed on 24 February 2021).
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.O.; Hochhauser, D.; Arnold, D.; Oh, D.Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef]
- CancerNetwork. FDA Approves First PARP Inhibitor as Frontline Maintenance in Pancreatic Cancer. 2019. Available online: https://www.cancernetwork.com/view/fda-approves-first-parp-inhibitor-frontline-maintenance-pancreatic-cancer (accessed on 17 February 2021).
- Food and Drug Administration (FDA). ZEJULA (Niraparib) Label. 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208447s015s017lbledt.pdf (accessed on 24 February 2021).
- Kasi, A. Niraparib in Metastatic Pancreatic Cancer After Previous Chemotherapy (NIRA-PANC): A Phase 2 Trial (NIRA-PANC). Identifier: NCT03553004. Available online: https://clinicaltrials.gov/ct2/show/NCT03553004 (accessed on 24 February 2021).
- Niraparib in Patients with Pancreatic Cancer. Identifier: NCT03601923. Available online: https://clinicaltrials.gov/ct2/show/NCT03601923 (accessed on 24 February 2021).
- Food and Drug Administration (FDA). RUBRACA® (Rucaparib) Label. 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209115s004lbl.pdf (accessed on 24 February 2021).
- Shroff, R.T.; Hendifar, A.; McWilliams, R.R.; Geva, R.; Epelbaum, R.; Rolfe, L.; Goble, S.; Lin, K.K.; Biankin, A.V.; Giordano, H.; et al. Rucaparib Monotherapy in Patients with Pancreatic Cancer and a Known Deleterious BRCA Mutation. JCO Precis. Oncol. 2018, 2018. [Google Scholar] [CrossRef]
- Giordano, H. A Study of Rucaparib in Patients with Pancreatic Cancer and a Known Deleterious BRCA Mutation. Identifier: NCT02042378. Available online: https://clinicaltrials.gov/ct2/show/NCT02042378 (accessed on 24 February 2021).
- Binder, K.R. Maintenance Rucaparib in BRCA1, BRCA2 or PALB2 Mutated Pancreatic Cancer That Has Not Progressed on Platinum-Based Therapy. Identifier: NCT03140670. Available online: https://clinicaltrials.gov/ct2/show/NCT03140670 (accessed on 24 February 2021).
- Food and Drug Administration (FDA). AVASTIN (Bevacizumab) Label. 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125085s301lbl.pdf (accessed on 24 February 2021).
- National Library of Medicine (U.S.). A Study of Avastin (Bevacizumab) Added to a Chemotherapeutic Regimen in Patients with Metastatic Pancreatic Cancer. Identifier: NCT01214720. Available online: https://clinicaltrials.gov/ct2/show/NCT01214720 (accessed on 23 February 2021).
- Van Cutsem, E.; Vervenne, W.L.; Bennouna, J.; Humblet, Y.; Gill, S.; Van Laethem, J.L.; Verslype, C.; Scheithauer, W.; Shang, A.; Cosaert, J.; et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 2009, 27, 2231–2237. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H. Gemcitabine with or without Bevacizumab in Treating Patients with Locally Advanced or Metastatic Pancreatic Cancer. Identifier: NCT00088894. Available online: https://clinicaltrials.gov/ct2/show/NCT00088894 (accessed on 24 February 2021).
- Kindler, H.L.; Niedzwiecki, D.; Hollis, D.; Sutherland, S.; Schrag, D.; Hurwitz, H.; Innocenti, F.; Mulcahy, M.F.; O’Reilly, E.; Wozniak, T.F.; et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: Phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 2010, 28, 3617–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Library of Medicine (U.S.). A Study of Multiple Immunotherapy-Based Treatment Combinations in Participants with Metastatic Pancreatic Ductal Adenocarcinoma (Morpheus-Pancreatic Cancer). Identifier: NCT03193190. Available online: https://clinicaltrials.gov/ct2/show/NCT03193190 (accessed on 25 February 2021).
- National Library of Medicine (U.S.). Two Chemotherapy Regimens Plus or Minus Bevacizumab (BETTER 2). Identifier: NCT03351296. Available online: https://clinicaltrials.gov/ct2/show/NCT03351296 (accessed on 25 February 2021).
- Food and Drug Administration (FDA). ERBITUX (Cetuximab) Label. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125084s273lbl.pdf (accessed on 26 February 2021).
- Philip, A.; O’Reilly, E.; Wong, R. S0205 Gemcitabine w/ or w/o Cetuximab as First-Line Therapy in Locally Advanced Pancreas Cancer. Identifier: NCT00075686. Available online: https://clinicaltrials.gov/ct2/show/NCT00075686 (accessed on 27 February 2021).
- Philip, P.A.; Benedetti, J.; Corless, C.L.; Wong, R.; O’Reilly, E.M.; Flynn, P.J.; Rowland, K.M.; Atkins, J.N.; Mirtsching, B.C.; Rivkin, S.E.; et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J. Clin. Oncol. 2010, 28, 3605–3610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration (FDA). EYLEA® (Aflibercept) Label. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125387s061lbl.pdf (accessed on 22 February 2021).
- National Library of Medicine (U.S.). (December 2007–November 2010). Aflibercept Compared to Placebo in Term of Efficacy in Patients Treated with Gemcitabine for Metastatic Pancreatic Cancer (VANILLA). Identifier: NCT00574275. Available online: https://clinicaltrials.gov/ct2/show/NCT00574275 (accessed on 22 February 2021).
- Rougier, P.; Riess, H.; Manges, R.; Karasek, P.; Humblet, Y.; Barone, C.; Santoro, A.; Assadourian, S.; Hatteville, L.; Philip, P.A. Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. Eur J. Cancer 2013, 49, 2633–2642. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). CELEBREX ® (celecoxib) Label. 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020998s050lbl.pdf (accessed on 22 February 2021).
- Tucker, O.N.; Dannenberg, A.J.; Yang, E.K.; Zhang, F.; Teng, L.; Daly, J.M.; Soslow, R.A.; Masferrer, J.L.; Woerner, B.M.; Koki, A.T.; et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res. 1999, 59, 987–990. [Google Scholar]
- Xiong, H.Q. Gemcitabine and Celecoxib in Treating Patients with Metastatic Pancreatic Cancer. Identifier: NCT00068432. Available online: https://clinicaltrials.gov/ct2/show/NCT00068432 (accessed on 22 February 2021).
- Zalupski, M. Gemcitabine, Cisplatin, and Celecoxib Treatment of Metastatic Pancreatic Cancer. Identifier: NCT00176813. Available online: https://clinicaltrials.gov/ct2/show/NCT00176813 (accessed on 22 February 2021).
- Kobrossy, B.; El-Rayes, B.F.; Shields, A.F.; Vaishampayan, U.; Heilbrun, L.; Zalupski, M.M.; Philip, P.A. A phase II study of gemcitabine by fixed-dose rate infusion, cisplatin, and celecoxib in metastatic pancreatic cancer. J. Clin. Oncol. 2004, 22 (Suppl. 14), 4120. [Google Scholar] [CrossRef]
- Dragovich, T.; Burris, H., 3rd; Loehrer, P.; Von Hoff, D.D.; Chow, S.; Stratton, S.; Green, S.; Obregon, Y.; Alvarez, I.; Gordon, M. Gemcitabine plus celecoxib in patients with advanced or metastatic pancreatic adenocarcinoma: Results of a phase II trial. Am. J. Clin. Oncol. 2008, 31, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Nadir, A. Phase III Trial of Gemcitabine, Curcumin and Celebrex in Patients with Advance or Inoperable Pancreatic Cancer. Identifier: NCT00486460. Available online: https://www.clinicaltrials.gov/ct2/show/NCT00486460term=celecoxib&cond=Pancreatic+Cancer&phase=123&draw=2&rank=5 (accessed on 25 February 2021).
- Ho-Seong, H. Cyclooxygenase-2 Inhibitor for Adjuvant Anticancer Effect in Patients with Biliary-pancreas Cancer. Identifier: NCT01111591. Available online: https://www.clinicaltrials.gov/ct2/show/NCT01111591?term=celecoxib&cond=Pancreatic+Cancer&phase=123&draw=2&rank=4 (accessed on 25 February 2021).
- National Library of Medicine (U.S.). Gemcitabine and Celecoxib Combination Therapy in Treating Patients with R0 Resection Pancreatic Cancer (GCRP). Identifier: NCT03498326. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03498326?term=celecoxib&cond=Pancreatic+Cancer&phase=123&draw=2&rank=2 (accessed on 25 February 2021).
- Kayaleh, O. Tolfenamic Acid, Gemcitabine and Radiation for Locally Advanced or Metastatic Pancreatic Cancer Requiring Radiation. Identifier: NCT02159248. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02159248?term=tolfenamic+acid&cond=pancreatic+cancer&draw=2&rank=1 (accessed on 25 February 2021).
- Food and Drug Administration (FDA). COZAAR® (losartan potassium) Label. 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020386s062lbl.pdf (accessed on 28 February 2021).
- Hong, T. Proton w/FOLFIRINOX-Losartan for Pancreatic Cancer. Identifier: NCT01821729. Available online: https://clinicaltrials.gov/ct2/show/NCT01821729 (accessed on 28 February 2021).
- Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Clark, J.W.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Ly, L.; Baglini, C.V.; Blaszkowsky, L.S.; et al. Total Neoadjuvant Therapy with FOLFIRINOX in Combination with Losartan Followed by Chemoradiotherapy for Locally Advanced Pancreatic Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S. Losartan and Hypofractionated Rx After Chemo for Tx of Borderline Resectable or Locally Advanced Unresectable Pancreatic Cancer (SHAPER). Identifier: NCT04106856. Available online: https://clinicaltrials.gov/ct2/show/NCT04106856 (accessed on 28 February 2021).
- Hong, T.S. Losartan and Nivolumab in Combination with FOLFIRINOX and SBRT in Localized Pancreatic Cancer. Identifier: NCT03563248. Available online: https://clinicaltrials.gov/ct2/show/NCT03563248 (accessed on 28 February 2021).
- Lopez Charles, D. NeoOPTIMIZE: Early Switching of mFOLFIRINOX or Gemcitabine/Nab-Paclitaxel Before Surgery for the Treatment of Resectable or Borderline Resectable Pancreatic Cancer. Identifier: NCT04539808. Available online: https://clinicaltrials.gov/ct2/show/NCT04539808 (accessed on 28 February 2021).
Drug | Pharmacological Class | Original Indication | Evidence | Biological Models | Tested Concentrations | Described Mechanisms | References | ||
---|---|---|---|---|---|---|---|---|---|
In Vitro | In Vivo | Clinical | |||||||
Carglumic acid | Amino acids and derivatives | Hyperammonemia | + | + |
|
|
| [57] | |
Warfarin | Anticoagulant | Prophylaxis and treatment of venous thrombosis and thromboembolic complication | + | + | + |
| [58,59,60,61] | ||
Metformin | Antidiabetic (Biguanide) | Type 2 diabetes mellitus | + | + | + |
| [62,63,64] | ||
Monensin | Antibiotic (veterinary use) | Ketosis in peri-parturient dairy cow/heifer | + | + |
|
|
| [65] | |
Nelfinavir and nitroxoline | Antiviral (Nelfinavir), Antibiotic (Nitroxoline) | Nelfinavir: HIV-1 infection Nitroxoline: Urinary tract infection | + |
|
| [66,67] | |||
Azithromycin, doxycycline, tigecycline and pyrvinium | Antibiotic (Doxycycline, Azithromycin, Tigecycline), Anthelmintic (Pyrvinium) | Doxycycline, Azithromycin, Tigecycline: bacterial infections Pyrvinium: gastrointestinal parasitic infections | + | + | [68,69] | ||||
Ritonavir | Antiviral | HIV-1 infection | + | + |
| [70,71] | |||
Itraconazole | Antifungal | Fungal infections | + | + | + |
| [72,73] | ||
Parbendazole | Anthelmintic (veterinary use) | Parasitic infections by nematodes | + |
|
|
| [74] | ||
Verteporfin, protoporphyrin IX | Antineovascularization agent (Verteporfin), Sensitizers in photodynamic therapy (protoporphyrin IX) | Verteporfin: aged-related macular degeneration Protoporphyrin IX: visualization of malignant tissue for malignant glioma | + |
| [75,76] | ||||
Penfluridol | Antipsychotic | Psychological disorders | + | + |
|
| [77,78,79] | ||
Pimozide | Antipsychotic | Psychological disorders | + |
|
| [80] | |||
Trifluoperazine | Antipsychotic | Psychological disorders | + | + |
|
|
| [81] | |
Olanzapine | Antipsychotic | Psychological disorders | + |
|
|
| [82] | ||
Disulfiram | Drugs used in addictive disorders | Treatment of alcohol dependence | + | + |
| [83,84] | |||
Bazedoxifene | Selective estrogen receptor modulator | Postmenopausal osteoporosis in women at increased risk of fracture | + | + |
|
|
| [85] | |
Ibrutinib | Antineoplastic agents (protein kinase inhibitors) | Treatment of adult patients with relapsed or refractory mantle cell lymphoma (MCL) | + |
|
|
| [86,87,88] | ||
Losartan | Angiotensin II receptor antagonist | Hypertension | + |
|
|
| [89] | ||
Pentoxifylline | Vasodilator | Patients with chronic occlusive peripheral vascular disorders of the extremities | + | + |
| [90,91] | |||
Pirfenidone | Antifibrotic | Idiopathic pulmonary fibrosis | + | + |
|
| [91,92,93] |
Class | Drug | Approved Indications | Trial Identifier | Phase | Title | Results |
---|---|---|---|---|---|---|
Antidiabetics | Metformin | Type 2 diabetes mellitus | NCT01210911 | II | Metformin Combined With Chemotherapy for Pancreatic Cancer (GEM) | No patient outcome improvement |
NCT01666730 | II | Metformin Plus Modified FOLFOX 6 in Metastatic Pancreatic Cancer | Data not available | |||
NCT01167738 | II | Combination Chemotherapy With or Without Metformin Hydrochloride in Treating Patients With Metastatic Pancreatic Cancer (PACT-17) | Data not available. Study closed | |||
NCT02005419 | II | Metformin Combined With Gemcitabine as Adjuvant Therapy for Pancreatic Cancer After Curative Resection | Data not available | |||
NCT01971034 | II | Treatment of Patients With Advanced Pancreatic Cancer After Gemcitabine Failure | No patient outcome improvement | |||
Pioglitazone | NCT01838317 | II | A Phase II Study of Pioglitazone for Patients With Cancer of the Pancreas | Data not available | ||
Vitamins | Ascorbic Acid | Scurvy | NCT01905150 | II | Ph 2 Trial of Vitamin C and G-FLIP (Low Doses Gemcitabine, 5FU, Leucovorin, Irinotecan, Oxaliplatin) for Pancreatic Cancer | Favorable toxicity profile |
NCT04033107 | II | High Dose Vitamin C Combined With Metformin in the Treatment of Malignant Tumors | Ongoing, recruiting | |||
NCT03146962 | II | High Dose Vitamin C Intravenous Infusion in Patients With Resectable or Metastatic Solid Tumor Malignancies | Ongoing, recruiting | |||
NCT03541486 | II | A Clinical Trial Evaluating the Effect of Pharmacological Ascorbate on Radiation Therapy for Pancreatic Cancer Patients (XACT-PANC-2) | Ongoing, not yet recruiting | |||
NCT02905578 | II | A Phase 2 Trial of High-dose Ascorbate for Pancreatic Cancer (PACMAN 2.1) | Ongoing, recruiting | |||
NCT03410030 | I/II | Trial of Ascorbic Acid (AA) + Nanoparticle Paclitaxel Protein Bound + Cisplatin + Gemcitabine (AA NABPLAGEM) (AA NABPLAGEM) | Ongoing, recruiting | |||
Paricalcitol | Hyperparathyroidism | NCT04617067 | II | Paricalcitol Trial | Ongoing, recruiting | |
NCT04524702 | II | Paricalcitol and Hydroxychloroquine in Combination With Gemcitabine and Nab-Paclitaxel for the Treatment of Advanced or Metastatic Pancreatic Cancer | Ongoing, recruiting | |||
NCT03520790 | I/II | Paricalcitol Plus Gemcitabine and Nab-paclitaxel in Metastatic Pancreatic Cancer | Ongoing | |||
NCT04054362 | II | Paricalcitol Addition to Chemotherapy in Patients With Previously Untreated Metastatic Pancreatic Ductal Adenocarcinoma (PINBALL) | Ongoing, recruiting | |||
NCT03138720 | II | Pre-operative Treatment for Patients With Untreated Pancreatic Cancer | Ongoing, recruiting | |||
NCT03415854 | II | Paclitaxel Protein Bound Plus Cisplatin Plus Gemcitabine and Paricalcitol for Pancreatic Adenocarcinoma (NABPLAGEMD) (NABPLAGEMD) | Ongoing | |||
Antimalarials | Hydroxychloroquine | Malaria Lupus erythematosus Rheumatoid arthritis | NCT04524702 | II | Paricalcitol and Hydroxychloroquine in Combination With Gemcitabine and Nab-Paclitaxel for the Treatment of Advanced or Metastatic Pancreatic Cancer | Ongoing, recruiting |
NCT04669197 | II | Phase II Study of Paclitaxel Protein Bound + Gemcitabine + Cisplatin + Hydrochloroquine as Treatment in Untreated Pancreas Cancer | Ongoing, recruiting | |||
NCT01506973 | I/II | A Phase I/II/Pharmacodynamic Study of Hydroxychloroquine in Combination With Gemcitabine/Abraxane to Inhibit Autophagy in Pancreatic Cancer | Ongoing | |||
NCT01494155 | II | Short Course Radiation Therapy With Proton or Photon Beam Capecitabine and Hydroxychloroquine for Resectable Pancreatic Cancer | Ongoing | |||
Chloroquine | Malaria Extraintestinal amebiasis | NCT01777477 | I | Adjuvant Effect of Chloroquine on Gemcitabine | Combination well tolerated | |
Tyrosine kinase inhibitors | Ruxolitinib | Myelofibrosis Polycythemia vera | NCT01423604 | II | Study of Ruxolitinib in Pancreatic Cancer Patients (RECAP) | Improvement in overall survival |
NCT02117479 | III | Study of Ruxolitinib in Pancreatic Cancer Patients (Janus 1) | Well tolerated. No survival improvement | |||
NCT02119663 | III | A Study of Ruxolitinib in Pancreatic Cancer Patients | Well tolerated. No survival improvement | |||
Masitinib | Mast-cell tumour in dogs | NCT00789633 | III | Masitinib in Combination With Gemcitabine for Treatment of Patients With Advanced/Metastatic Pancreatic Cancer | Improvement in overall survival | |
NCT03766295 | III | Masitinib Plus Gemcitabine in Pancreatic Cancer | Improvement in survival and pain reduction | |||
Sorafenib | Hepatocellular carcinoma Renal cell carcinoma Thyroid carcinoma | NCT00541021 | III | Gemcitabine With or Without Sorafenib in Treating Patients With Locally Advanced or Metastatic Pancreatic Cancer | No improvement in free survival | |
Poly (ADP-ribose) polymerase inhibitors | Niraparib | Fallopian tube cancerOvarian epithelial cancer Primary peritoneal cancer | NCT03601923 | II | Niraparib in Patients With Pancreatic Cancer | Ongoing, recruiting |
NCT03553004 | II | Niraparib in Metastatic Pancreatic Cancer After Previous Chemotherapy (NIRA-PANC): a Phase 2 Trial (NIRA-PANC) | Ongoing, recruiting | |||
Rucaparib | Ovarian cancer Prostate cancer | NCT02042378 | II | A Study of Rucaparib in Patients With Pancreatic Cancer and a Known Deleterious breast cancer gene (BRCA) Mutation | Safe and clinically relevant | |
NCT03140670 | II | Maintenance Rucaparib in BRCA1, BRCA2 or PALB2 Mutated Pancreatic Cancer That Has Not Progressed on Platinum-based Therapy | Ongoing | |||
Monoclonal Antibodies | Bevacizumab | Colorectal cancerNon-small cell lung cancer Glioblastoma Cervical cancer Renal cell carcinoma | NCT01214720 | III | A Study of Avastin (Bevacizumab) Added to a Chemotherapeutic Regimen in Patients With Metastatic Pancreatic Cancer | Improvement in progression-free survival No improvement in overall survival |
NCT00894 | III | Gemcitabine With or Without Bevacizumab in Treating Patients With Locally Advanced or Metastatic Pancreatic Cancer | No improvement in overall survival | |||
NCT03351296 | II | Two Chemotherapy Regimens Plus or Minus Bevacizumab (BETTER 2) | Ongoing, recruiting | |||
NCT03193190 | I/II | A Study of Multiple Immunotherapy-Based Treatment Combinations in Participants With Metastatic Pancreatic Ductal Adenocarcinoma (Morpheus-Pancreatic Cancer) | Ongoing, recruiting | |||
Cetuximab | Head and neck cancer Colorectal cancer | NCT00075686 | III | S0205 Gemcitabine w/or w/o Cetuximab as First-Line Therapy in Locally Advanced Pancreas Cancer | No improvement in median survival time or progression-free survival | |
Vascular Endothelial Growth Factor Inhibitors | Aflibercept | Macular degeneration Diabetic macular edema Diabetic retinopathy | NCT00574275 | III | Aflibercept Compared to Placebo in Term of Efficacy in Patients Treated With Gemcitabine for Metastatic Pancreatic Cancer (VANILLA) | No improvement in overall survival; high frequency of adverse effects |
Nonsteroidal Anti-Inflammatories | Celecoxib | Osteoarthritis Rheumatoid arthritis Ankylosing spondylitis Acute pain Dysmenorrhea | NCT00176813 | II | Gemcitabine, Cisplatin, and Celecoxib Treatment of Metastatic Pancreatic Cancer | Safe and well tolerated. No improvement in survival rate or overall survival |
NCT00068432 | II | Gemcitabine and Celecoxib in Treating Patients With Metastatic Pancreatic Cancer | Safe and well tolerated. Improvement in overall survival | |||
NCT00486460 | III | Phase III Trial of Gemcitabine, Curcumin and Celebrex in Patients With Advance or Inoperable Pancreatic Cancer | Ongoing | |||
NCT01111591 | IV | Cyclooxygenase-2 Inhibitor for Adjuvant Anticancer Effect in Patients With Biliary-pancreas Cancer | Ongoing | |||
NCT03498326 | II | Gemcitabine and Celecoxib Combination Therapy in Treating Patients With R0 Resection Pancreatic Cancer (GCRP) | Ongoing, recruiting | |||
Tolfenamic Acid | Migraine | NCT02159248 | I | Tolfenamic Acid, Gemcitabine and Radiation for Locally Advanced or Metastatic Pancreatic Cancer Requiring Radiation | Withdrawn | |
Angiotensin II receptor blockers | Losartan | Hypertension | NCT01821729 | II | Proton w/FOLFIRINOX-Losartan for Pancreatic Cancer | Reduction in the locally advanced pancreatic cancer |
NCT04539808 | II | NeoOPTIMIZE: Early Switching of mFOLFIRINOX or Gemcitabine/Nab-Paclitaxel Before Surgery for the Treatment of Resectable or Borderline Resectable Pancreatic Cancer | Ongoing. Not yet recruiting | |||
NCT03563248 | II | Losartan and Nivolumab in Combination With FOLFIRINOX and SBRT in Localized Pancreatic Cancer | Ongoing, recruiting | |||
NCT04106856 | I | Losartan and Hypofractionated Rx After Chemo for Tx of Borderline Resectable or Locally Advanced Unresectable Pancreatic Cancer (SHAPER) | Ongoing, recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebelo, R.; Polónia, B.; Santos, L.L.; Vasconcelos, M.H.; Xavier, C.P.R. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals 2021, 14, 280. https://doi.org/10.3390/ph14030280
Rebelo R, Polónia B, Santos LL, Vasconcelos MH, Xavier CPR. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals. 2021; 14(3):280. https://doi.org/10.3390/ph14030280
Chicago/Turabian StyleRebelo, Rita, Bárbara Polónia, Lúcio Lara Santos, M. Helena Vasconcelos, and Cristina P. R. Xavier. 2021. "Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma" Pharmaceuticals 14, no. 3: 280. https://doi.org/10.3390/ph14030280
APA StyleRebelo, R., Polónia, B., Santos, L. L., Vasconcelos, M. H., & Xavier, C. P. R. (2021). Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals, 14(3), 280. https://doi.org/10.3390/ph14030280