2020 FDA TIDES (Peptides and Oligonucleotides) Harvest
Abstract
:1. Introduction
2. Oligonucleotides
2.1. Viltolarsen (ViltepsoTM)
2.2. Lumasiran (OxlumoTM)
3. Peptides
3.1. Setmelanotide (ImcivreeTM)
3.2. 64Cu -DOTATATE (DetectnetTM)
3.3. 68Ga-PSMA-11
3.4. Belantamab Mafodotin-Blmf (BlenrepTM)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mullard, A. 2020 FDA drug approvals. Nat. Rev. Drug Discov. 2021. [Google Scholar] [CrossRef]
- De la Torre, B.G.; Albericio, F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules 2021, 26, 627. [Google Scholar] [CrossRef]
- Defitelio Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208114lbl.pdf (accessed on 28 January 2021).
- Dzierlega, K.; Yokota, T. Optimization of antisense-mediated exon skipping for duchenne muscular dystrophy. Gene Ther. 2020, 27, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Viltolarsen: First approval. Drugs 2020, 80, 1027–1031. [Google Scholar] [CrossRef]
- Iftikhar, M.; Frey, J.; Shohan, M.J.; Malek, S.; Mousa, S.A. Current and emerging therapies for duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol. Ther. 2020, 107719. [Google Scholar] [CrossRef]
- Komaki, H.; Takeshima, Y.; Matsumura, T.; Ozasa, S.; Funato, M.; Takeshita, E.; Iwata, Y.; Yajima, H.; Egawa, Y.; Toramoto, T.; et al. Viltolarsen in japanese duchenne muscular dystrophy patients: A phase 1/2 study. Ann. Clin. Transl. Neurol. 2020. [Google Scholar] [CrossRef]
- Al Shaer, D.; Al Musaimi, O.; Albericio, F.; de la Torre, B.G. 2019 FDA tides (peptides and oligonucleotides) harvest. Pharmaceuticals 2020, 13, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viltepso Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212154Orig1s000lbl.pdf (accessed on 16 January 2021).
- Viltepso Approval Letter. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2020/212154Orig1s000ltr.pdf (accessed on 16 January 2021).
- Oxlumo Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214103lbl.pdf (accessed on 16 January 2021).
- Scott, L.J. Givosiran: First approval. Drugs 2020, 80, 335–339. [Google Scholar] [CrossRef]
- Debacker, A.J.; Voutila, J.; Catley, M.; Blakey, D.; Habib, N. Delivery of oligonucleotides to the liver with galnac: From research to registered therapeutic drug. Mol. Ther. 2020, 28, 1759–1771. [Google Scholar] [CrossRef]
- Cochat, P.; Rumsby, G. Primary hyperoxaluria. N. Engl. J. Med. 2013, 369, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Dindo, M.; Conter, C.; Oppici, E.; Ceccarelli, V.; Marinucci, L.; Cellini, B. Molecular basis of primary hyperoxaluria: Clues to innovative treatments. Urolithiasis 2019, 47, 67–78. [Google Scholar] [CrossRef]
- Liebow, A.; Li, X.; Racie, T.; Hettinger, J.; Bettencourt, B.R.; Najafian, N.; Haslett, P.; Fitzgerald, K.; Holmes, R.P.; Erbe, D.; et al. An investigational rnai therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J. Am. Soc. Nephrol. 2017, 28, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Scott, L.J.; Keam, S.J. Lumasiran: First approval. Drugs 2021. [Google Scholar] [CrossRef] [PubMed]
- Oxlumo Approval Letter. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2020/214103Orig1s000ltr.pdf (accessed on 16 January 2021).
- Falls, B.A.; Zhang, Y. Insights into the allosteric mechanism of setmelanotide (rm-493) as a potent and first-in-class melanocortin-4 receptor (mc4r) agonist to treat rare genetic disorders of obesity through an in silico approach. ACS Chem. Neurosci. 2019, 10, 1055–1065. [Google Scholar] [CrossRef]
- Al Musaimi, O.; Al Shaer, D.; de la Torre, B.G.; Albericio, F. 2017 FDA peptide harvest. Pharmaceuticals 2018, 11, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brayden, D.J.; Hill, T.A.; Fairlie, D.P.; Maher, S.; Mrsny, R.J. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv. Drug. Deliv. Rev. 2020, 157, 2–36. [Google Scholar] [CrossRef] [PubMed]
- Clément, K.; Biebermann, H.; Farooqi, I.S.; Van der Ploeg, L.; Wolters, B.; Poitou, C.; Puder, L.; Fiedorek, F.; Gottesdiener, K.; Kleinau, G.; et al. Mc4r agonism promotes durable weight loss in patients with leptin receptor deficiency. Nat. Med. 2018, 24, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Imcivree Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213793s000lbl.pdf (accessed on 16 January 2021).
- Ayers, K.L.; Glicksberg, B.S.; Garfield, A.S.; Longerich, S.; White, J.A.; Yang, P.; Du, L.; Chittenden, T.W.; Gulcher, J.R.; Roy, S.; et al. Melanocortin 4 receptor pathway dysfunction in obesity: Patient stratification aimed at mc4r agonist treatment. J. Clin. Endocrinol. Metab. 2018, 103, 2601–2612. [Google Scholar] [CrossRef]
- Clément, K.; Vaisse, C.; Lahlou, N.; Cabrol, S.; Pelloux, V.; Cassuto, D.; Gourmelen, M.; Dina, C.; Chambaz, J.; Lacorte, J.M.; et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998, 392, 398–401. [Google Scholar] [CrossRef]
- Collet, T.H.; Dubern, B.; Mokrosinski, J.; Connors, H.; Keogh, J.M.; Mendes de Oliveira, E.; Henning, E.; Poitou-Bernert, C.; Oppert, J.M.; Tounian, P.; et al. Evaluation of a melanocortin-4 receptor (mc4r) agonist (setmelanotide) in mc4r deficiency. Mol. Metab. 2017, 6, 1321–1329. [Google Scholar] [CrossRef]
- Haws, R.; Brady, S.; Davis, E.; Fletty, K.; Yuan, G.; Gordon, G.; Stewart, M.; Yanovski, J. Effect of setmelanotide, a melanocortin-4 receptor agonist, on obesity in bardet-biedl syndrome. Diabetes Obes. Metab. 2020, 22, 2133–2140. [Google Scholar] [CrossRef]
- Kühnen, P.; Clément, K.; Wiegand, S.; Blankenstein, O.; Gottesdiener, K.; Martini, L.L.; Mai, K.; Blume-Peytavi, U.; Grüters, A.; Krude, H. Proopiomelanocortin deficiency treated with a melanocortin-4 receptor agonist. N. Eng. J. Med. 2016, 375, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Kievit, P.; Halem, H.; Marks, D.L.; Dong, J.Z.; Glavas, M.M.; Sinnayah, P.; Pranger, L.; Cowley, M.A.; Grove, K.L.; Culler, M.D. Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques. Diabetes 2013, 62, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Imcivree Approval Letter. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2020/213793Orig1s000ltr.pdf (accessed on 16 January 2021).
- Gutfilen, B.; Souza, S.A.; Valentini, G. Copper-64: A real theranostic agent. Drug Des. Devel. Ther. 2018, 12, 3235–3245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, I.; Nanni, C.; Cicoria, G.; Blasi, C.; Bunkheila, F.; Lopci, E.; Colletti, P.M.; Rubello, D.; Fanti, S. Usefulness of 64cu-atsm in head and neck cancer: A preliminary prospective study. Clin. Nucl. Med. 2014, 39, e59–e63. [Google Scholar] [CrossRef]
- Handley, M.G.; Medina, R.A.; Mariotti, E.; Kenny, G.D.; Shaw, K.P.; Yan, R.; Eykyn, T.R.; Blower, P.J.; Southworth, R. Cardiac hypoxia imaging: Second-generation analogues of 64cu-atsm. J. Nucl. Med. 2014, 55, 488–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalilian, A.R.; Osso, J., Jr. The current status and future of theranostic copper-64 radiopharmaceuticals. Iran. J. Nucl. Med. 2017, 25, 1–10. Available online: https://irjnm.tums.ac.ir/article_23081.html (accessed on 1 February 2021).
- Johnbeck, C.B.; Knigge, U.; Loft, A.; Berthelsen, A.K.; Mortensen, J.; Oturai, P.; Langer, S.W.; Elema, D.R.; Kjaer, A. Head-to-head comparison of (64)cu-dotatate and (68)ga-dotatoc pet/ct: A prospective study of 59 patients with neuroendocrine tumors. J. Nucl. Med. 2017, 58, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, A.; Knigge, U.; Mortensen, J.; Oturai, P.; Berthelsen, A.K.; Loft, A.; Binderup, T.; Rasmussen, P.; Elema, D.; Klausen, T.L.; et al. Clinical pet of neuroendocrine tumors using 64cu-dotatate: First-in-humans study. J. Nucl. Med. 2012, 53, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
- Detectnet Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213227s000lbl.pdf (accessed on 16 January 2021).
- Detectnet Aprroval Letter. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2020/213227Orig1s000ltr.pdf (accessed on 16 January 2021).
- Minamimoto, R.; Hancock, S.; Schneider, B.; Chin, F.T.; Jamali, M.; Loening, A.; Vasanawala, S.; Gambhir, S.S.; Iagaru, A. Pilot comparison of (6)(8)ga-rm2 pet and (6)(8)ga-psma-11 pet in patients with biochemically recurrent prostate cancer. J. Nucl Med. 2016, 57, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Eder, M.; Schafer, M.; Bauder-Wust, U.; Hull, W.E.; Wangler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68ga-complex lipophilicity and the targeting property of a urea-based psma inhibitor for pet imaging. Bioconjug. Chem. 2012, 23, 688–697. [Google Scholar] [CrossRef]
- Gallium 68 psma-11 Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212642s000lbl.pdf (accessed on 16 January 2021).
- Afshar-Oromieh, A.; Malcher, A.; Eder, M.; Eisenhut, M.; Linhart, H.G.; Hadaschik, B.A.; Holland-Letz, T.; Giesel, F.L.; Kratochwil, C.; Haufe, S.; et al. Pet imaging with a [68ga]gallium-labelled psma ligand for the diagnosis of prostate cancer: Biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 486–495. [Google Scholar] [CrossRef]
- Gallium 68 psma-11 Approval Letter. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2020/212642Orig1s000ltr.pdf (accessed on 16 January 2021).
- Bouchard, H.; Viskov, C.; Garcia-Echeverria, C. Antibody-drug conjugates-a new wave of cancer drugs. Bioorg. Med. Chem. Lett. 2014, 24, 5357–5363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blenrep Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761158s000lbl.pdf (accessed on 16 January 2021).
- Matsuda, Y.; Mendelsohn, B.A. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert. Opin. Biol. Ther. 2020. [Google Scholar] [CrossRef] [PubMed]
- Han, T.H.; Zhao, B. Absorption, distribution, metabolism, and excretion considerations for the development of antibody-drug conjugates. Drug Metab. Dispos. 2014, 42, 1914–1920. [Google Scholar] [CrossRef]
- Park, M.H.; Lee, B.I.; Byeon, J.J.; Shin, S.H.; Choi, J.; Park, Y.; Shin, Y.G. Pharmacokinetic and metabolism studies of monomethyl auristatin f via liquid chromatography-quadrupole-time-of-flight mass spectrometry. Molecules 2019, 24, 2754. [Google Scholar] [CrossRef] [Green Version]
- Moquist, P.N.; Bovee, T.D.; Waight, A.B.; Mitchell, J.A.; Miyamoto, J.B.; Mason, M.L.; Emmerton, K.K.; Stevens, N.; Balasubramanian, C.; Simmons, J.K.; et al. Novel auristatins with high bystander and cytotoxic activities in drug-efflux positive tumor models. Mol. Cancer Ther. 2020. [Google Scholar] [CrossRef]
- Joubert, N.; Beck, A.; Dumontet, C.; Denevault-Sabourin, C. Antibody-drug conjugates: The last decade. Pharmaceuticals 2020, 13, 245. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Smith, S.W.; Ghone, S.; Tomczuk, B. Current adc linker chemistry. Pharm. Res. 2015, 32, 3526–3540. [Google Scholar] [CrossRef] [Green Version]
- Tzogani, K.; Penttilä, K.; Lähteenvuo, J.; Lapveteläinen, T.; Lopez Anglada, L.; Prieto, C.; Garcia-Ochoa, B.; Enzmann, H.; Gisselbrecht, C.; Delgado, J.; et al. Ema review of belantamab mafodotin (blenrep) for the treatment of adult patients with relapsed/refractory multiple myeloma. Oncologist 2020. [Google Scholar] [CrossRef]
- Blenrep Approval Letter. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2020/761158Orig1s000ltr.pdf (accessed on 16 January 2021).
- El Bairi, K.; Trapani, D.; Petrillo, A.; Le Page, C.; Zbakh, H.; Daniele, B.; Belbaraka, R.; Curigliano, G.; Afqir, S. Repurposing anticancer drugs for the management of covid-19. Eur. J. Cancer 2020, 141, 40–61. [Google Scholar] [CrossRef] [PubMed]
- White, K.M.; Rosales, R.; Yildiz, S.; Kehrer, T.; Miorin, L.; Moreno, E.; Jangra, S.; Uccellini, M.B.; Rathnasinghe, R.; Coughlan, L.; et al. Plitidepsin has potent preclinical efficacy against sars-cov-2 by targeting the host protein eef1a. Science 2021. [Google Scholar] [CrossRef]
- Lupkynis Approval Letter. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2021/213716Orig1s000ltr.pdf (accessed on 1 February 2021).
- Novartis Successfully Completes Acquisition of the Medicines Company, Adding a Potentially First-in-Class, Investigational Cholesterol-Lowering Therapy Inclisiran. Available online: https://www.novartis.com/news/media-releases/novartis-successfully-completes-acquisition-medicines-company-adding-potentially-first-class-investigational-cholesterol-lowering-therapy-inclisiran (accessed on 16 January 2021).
- New Novartis Data for Inclisiran Shows Effective and Sustained ldl-c Reduction at 17 Regardless of Age or Gender. Available online: https://www.dicardiology.com/content/new-novartis-data-inclisiran-shows-effective-and-sustained-ldl-c-reduction-17-regardless-age (accessed on 16 January 2021).
# | Active Ingredient (Trade Name) | Type | Indication | Target | Route |
---|---|---|---|---|---|
1 | Viltolarsen (ViltepsoTM) | Antisense oligonucleotide | Duchenne’s muscular dystrophy (DMD) | DMD Exon 53 | Intravenous |
2 | Lumasiran (OxlumoTM) | Antisense oligonucleotide | Primary hyperoxaluria type 1 (PH1) | Hydroxyacid oxidase (glycolate oxidase) 1 (HOA1) mRNA | Subcutaneous |
3 | Setmelanotide (ImcivreeTM) | Peptide | Chronic weight management (obesity) | Melanocortin-4 receptor (MC4R) | Subcutaneous |
4 | 64Cu-DOTATATE (DetectnetTM) | Peptide | Scintigraphic imaging | Somatostatin receptor | Intravenous |
5 | 68Ga-PSMA-11 | Peptide | Diagnosis of recurrent prostate carcinoma | Prostate-specific membrane antigen (PSMA) | Intravenous |
6 | Belantamab mafodotin-blmf (BlenrepTM) | ADC a with peptide payload | Relapsed or refractory multiple myeloma | B-cell maturation antigen (BCMA) | Intravenous |
# | Active Ingredient (Trade Name) | Company | Structure | Indication | Target | FDA Approval |
---|---|---|---|---|---|---|
1 | Fomivirsen (VitraveneTM) | Ionis Pharma (Carlsbad, CA, USA) Novartis (Basel, Switzerland) | Antisense PS-ON a | Cytomegalovirus retinitis | CMV UL123 | August 1998 |
2 | Pegaptanib (MacugenTM) | NeXstar Pharma (Boulder, CO, USA) Eyetech Pharma (Knolls, NJ, USA) | Polynucleotide aptamer | Neovascular age-related macular degeneration | VEGF-165 | December 2004 |
3 | Mipomersen (KynamroTM) | Ionis Pharma (Carlsbad, CA, USA) Genzyme (Cambridge, MA, USA) Kastle Tx (Housten, TX, USA) | Antisense PS-ON a | Homozygous familial hypercholesterolaemia | APOB | January 2013 |
4 | Defibrotide (DefitelioTM) | Jazz Pharma (Dublin, Ireland) | Mixed single strands of DNA | Hepatic veno-occlusive disease | NA b | March 2016 |
5 | Eteplirsen (Exondys 51TM) | Sarepta Tx (De Berry, TX, USA) | Antisense PS-ON a/(PMO c) | Duchenne muscular dystrophy | DMD exon 51 | September 2016 |
6 | Nusinersen (SpinrazaTM) | Ionis Pharma (Carlsbad, CA, USA) Biogen (Cambridge, MA, USA) | Antisense PS-ON a/(PMO c) | Spinal muscular atrophy | SMN2 exon 7 | December 2016 |
7 | Patisiran (OnpattroTM) | Alnylam Pharma (Cambridge, MA, USA) | siRNA d | Hereditary transthyretin amyloidosis polyneuropathy | TTR | August 2018 |
8 | Inotersen (TegsediTM) | Ionis Pharma (Carlsbad, CA, USA) Akcea Pharma (Boston, MA, USA) | Antisense PS-ON a | Hereditary transthyretin; Amyloidosis polyneuropathy | TTR | October 2018 |
9 | Givosiran (GivlaariTM) | Alnylam Pharma (Cambridge, MA, USA) | siRNA d | Acute hepatic porphyria | Aminolevulinate synthase 1 (ALAS1) mRNA e | November 2019 (Enhanced) |
10 | Golodirsen (Vyondys 53TM) | Sarepta Tx (De Berry, TX, USA) | Antisense PMO c | Duchenne muscular dystrophy | DMD exon 53 | December 2019 |
11 | Viltolarsen (ViltepsoTM) | Nippon Shinyaku (Kisshoin, Minami-ku Kyoto) with (NCNP) f (Kodaira, Tokyo) | Antisense PMO c | Duchenne muscular dystrophy | DMD exon 53 | August 2020 |
12 | Lumasiran (OxlumoTM) | Alnylam Pharma (Cambridge, MA, USA) | siRNA d | Primary hyperoxaluria type 1 (PH1) | HOA1 mRNA e | November 2020 |
# | Active Ingredient (Trade Name) | Company | Structure | Indication | Target | FDA Approval |
---|---|---|---|---|---|---|
Free Peptides | ||||||
1 | Lixisenatide (AdlyxinTM) | Sanofi-Aventis (Paris, France) | 44 AAs | Diabetes type (II) | Glucagon-like peptide 1 receptor | July 2016 |
2 | Plecanatide (TrulanceTM) | Synergy Pharmaceuticals (New York, NY, USA) | 16 AAs 2 disulfides | Chronic idiopathic constipation | Guanylate cyclase-C | January 2017 |
3 | Etelcalcetide (ParsabivTM) | KAI Pharmaceuticals (South of San Francisco, CA, USA) Amgen (Thousand Oaks, CA, USA) | 7 AAs (all D) 1 disulfide intermolecular L-Cys | Secondary hyperparathyroidism in adult chronic kidney disease | Calcium-sensing receptor | February 2017 |
4 | Abaloparatide (TymloTM) | Radius Health (Boston, MA, USA) | 34 AAs | Anabolic agent | Parathyroid hormone 1 receptor | April 2017 |
5 | Semaglutide (OzempicTM) | Novo Nordisk (Måløv, Denmark) | 31 AAs branched PEG-fatty acid | Diabetes type (II) | Glucagon-like peptide 1 receptor | December 2017 |
6 | Macimorelin (MacrilenTM) | Aeterna Zentaris (Frankfurt, Germany) | 3 residues pseudopeptide | Diagnosis of adult growth hormone deficiency | Growth hormone secretagogue receptor type 1 | December 2017 |
7 | Angiotensin II (GiaprezaTM) | La Jolla Pharmaceutical (San Diego, CA, USA) | 8 AAs | Septic shock, diabetes mellitus, and acute renal failure | Type-1 angiotensin II receptor | December 2017 |
8 | Afamelanotide (ScenesseTM) | University of Arizona (Tucson, Arizona, USA) Clinuvel Inc. (Menlo Park, CA, USA) | 13 AAs | Erythropoietic protoporphyria | Melanocortin 1 receptor | October 2019 |
9 | Bremelanotide (VyleesiTM) | Palatin Technology (East Windsor, NJ, USA) AMAG Pharmaceuticals (Waltham, MA, USA) | 7AAs cyclic sidechain to tail | Hypoactive sexual desire disorder | Melanocortin receptors | June 2019 |
10 | Setmelanotide (ImcivreeTM) | Rhythm Pharmaceuticals (Boston, MA, USA) | 8AAs Cyclic disulfide | Obesity | Melanocortin-4 receptor | November 2020 |
Peptide-Chelator-radionuclide conjugates | ||||||
11 | [177Lu]-DOTA-TATE (LutatheraTM) | Advanced Accelerator Applications (Millburn, NJ, USA) | 7AAs Cyclic disulfide | Gastroenteropancreatic neuroendocrine tumors | Somatostatin receptor | January 2018 |
12 | [68Ga]-DOTATOC | University of Iowa Health Care (Iowa City, IA, USA) | A 7AAs Cyclic disulfide | PET imaging | Somatostatin receptor | August 2019 |
13 | [64Cu]-DOTATATE (DetectnetTM) | Radiomedix Inc. (Housten, TX, USA) | A 7AAs Cyclic disulfide | PET imaging | Somatostatin receptor | September 2020 |
14 | [68Ga]-PSMA-11 | University of California (Oakland, CA, USA) | Peptidomemitic 2AAs urea linked | Diagnosis of recurrent prostate carcinoma by PET | Prostate-specific membrane antigen | December 2020 |
Peptides in ADC’s | ||||||
15 | Enfortumab vedotin-ejfv (PadcevTM) | Astellas Pharma (Northbrook, IL, USA) | 5 residues with γ-AA | Urothelial cancers | Nectin-4 receptor | December 2019 |
16 | Polatuzumab vedotin-piiq (PolivyTM) | Roche (South of San Francisco, CA, USA) | 5 residues with γ-AA | Refractory diffuse large B-cell lymphoma | CD79b receptor expressed in mature Bcells | June 2019 |
17 | Belantamab mafodotin-blmf (BlenrepTM) | GlaxoSmithKline (Brentford, UK) | 5 residues with γ-AA | Relapsed or refractory multiple myeloma | B-cell maturation antigen | August 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Musaimi, O.; Al Shaer, D.; Albericio, F.; de la Torre, B.G. 2020 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals 2021, 14, 145. https://doi.org/10.3390/ph14020145
Al Musaimi O, Al Shaer D, Albericio F, de la Torre BG. 2020 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals. 2021; 14(2):145. https://doi.org/10.3390/ph14020145
Chicago/Turabian StyleAl Musaimi, Othman, Danah Al Shaer, Fernando Albericio, and Beatriz G. de la Torre. 2021. "2020 FDA TIDES (Peptides and Oligonucleotides) Harvest" Pharmaceuticals 14, no. 2: 145. https://doi.org/10.3390/ph14020145
APA StyleAl Musaimi, O., Al Shaer, D., Albericio, F., & de la Torre, B. G. (2021). 2020 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals, 14(2), 145. https://doi.org/10.3390/ph14020145