HPLC/ESI-MS and NMR Analysis of Chemical Constitutes in Bioactive Extract from the Root Nodule of Vaccinium emarginatum
Abstract
:1. Introduction
2. Results
2.1. Biological Activity of V. emarginatum Extract
2.1.1. Anti-Proliferation Activity of the V. emarginatum Extract on HepG2 Cell Line
2.1.2. Anti-Bacterial Activity of the V. emarginatum Extract by the Disc Diffusion Method
2.2. LC-ESI-MS/MS Analysis of EA Fraction of V. emarginatum Extract
2.3. Isolation and Identification of Chemical Components from EA Fraction of V. emarginatum Extraction
2.4. Anti-Proliferative Activity of Isolated Compounds
2.5. Anti-Bacterial Activity of Isolated Compounds
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Plant Materials
4.3. Liquid Chromatography-Electrospray Ionization/Tandem Mass Spectrometry (LC-ESI-MS/MS)
4.4. Isolation and Identification of Chemical Constitutes from V. emarginatum Extract
4.5. Anti-Bacterial Assay
4.6. Anti-Proliferative Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Debnath, S.C.; Goyali, J.C. In Vitro Propagation and Variation of Antioxidant Properties in Micropropagated Vaccinium Berry Plants-A Review. Molecules 2020, 25, 788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deziel, B.A.; Patel, K.; Neto, C.; Gottschall-Pass, K.; Hurta, R.A. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways. J. Cell Biochem. 2010, 111, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Alvarado, D.; Munoz-Arrieta, R.; Alfaro-Viquez, E.; Madrigal-Carballo, S.; Krueger, C.G.; Reed, J.D. Composition of Anthocyanins and Proanthocyanidins in Three Tropical Vaccinium Species from Costa Rica. J. Agric. Food. Chem. 2020, 68, 2872–2879. [Google Scholar] [CrossRef] [PubMed]
- Kylli, P.; Nohynek, L.; Puupponen-Pimia, R.; Westerlund-Wikstrom, B.; Leppanen, T.; Welling, J.; Moilanen, E.; Heinonen, M. Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. J. Agric. Food Chem. 2011, 59, 3373–3384. [Google Scholar] [CrossRef] [PubMed]
- Tu, P.C.; Liang, Y.C.; Huang, G.J.; Huang, H.C.; Kao, M.C.; Lu, T.L.; Kuo, Y.H. New flavonoids, emarginin A-C from Vaccinium emarginatum Hayata. Fitoterapia 2020, 141, 104446. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Na, H.; Kasai, H.; Kawai, K.; Li, Y.S.; Yang, M. Comparison of Blueberry (Vaccinium spp.) and Vitamin C via Antioxidative and Epigenetic Effects in Human. J. Cancer Prev. 2017, 22, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Viskelis, P.; Rubinskiene, M.; Jasutiene, I.; Sarkinas, A.; Daubaras, R.; Cesoniene, L. Anthocyanins, antioxidative, and antimicrobial properties of American cranberry (Vaccinium macrocarpon Ait.) and their press cakes. J. Food Sci. 2009, 74, C157–C161. [Google Scholar] [CrossRef]
- Kim, H.N.; Baek, J.K.; Park, S.B.; Kim, J.D.; Son, H.J.; Park, G.H.; Eo, H.J.; Park, J.H.; Jung, H.S.; Jeong, J.B. Anti-inflammatory effect of Vaccinium oldhamii stems through inhibition of NF-kappaB and MAPK/ATF2 signaling activation in LPS-stimulated RAW264.7 cells. BMC Complement. Altern. Med. 2019, 19, 291. [Google Scholar] [CrossRef]
- Tu, P.C.; Liang, Y.C.; Huang, G.J.; Lin, M.K.; Kao, M.C.; Lu, T.L.; Sung, P.J.; Kuo, Y.H. Cytotoxic and Anti-inflammatory Terpenoids from the Whole Plant of Vaccinium emarginatum. Planta Med. 2020, 86, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Martineau, L.C.; Couture, A.; Spoor, D.; Benhaddou-Andaloussi, A.; Harris, C.; Meddah, B.; Leduc, C.; Burt, A.; Vuong, T.; Mai Le, P.; et al. Anti-diabetic properties of the Canadian lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine 2006, 13, 612–623. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Xu, M.; Wang, Y.; Cheng, S.; Liebrecht, A.; Qian, H.; Zhang, H.; Qi, X. Anti-diabetic activity of Vaccinium bracteatum Thunb. leaves’ polysaccharide in STZ-induced diabetic mice. Int. J. Biol. Macromol. 2013, 61, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Del Bubba, M.; Di Serio, C.; Renai, L.; Scordo, C.V.A.; Checchini, L.; Ungar, A.; Tarantini, F.; Bartoletti, R. Vaccinium myrtillus L. extract and its native polyphenol-recombined mixture have anti-proliferative and pro-apoptotic effects on human prostate cancer cell lines. Phytother. Res. 2021, 35, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Landa, P.; Skalova, L.; Bousova, I.; Kutil, Z.; Langhansova, L.; Lou, J.D.; Vanek, T. In vitro anti-proliferative and anti-inflammatory activity of leaf and fruit extracts from Vaccinium bracteatum Thunb. Pak. J. Pharm. Sci. 2014, 27, 103–106. [Google Scholar] [PubMed]
- Lee, J. Anthocyanin analyses of Vaccinium fruit dietary supplements. Food Sci. Nutr. 2016, 4, 742–752. [Google Scholar] [CrossRef]
- Mannino, G.; Di Stefano, V.; Lauria, A.; Pitonzo, R.; Gentile, C. Vaccinium macrocarpon (Cranberry)-Based Dietary Supplements: Variation in Mass Uniformity, Proanthocyanidin Dosage and Anthocyanin Profile Demonstrates Quality Control Standard Needed. Nutrients 2020, 12, 992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.L.; Lu, S.Y.; Yang, Y.P.; Tseng, Y.H. Ericaceae. In Flora of Taiwan, 2nd ed.; Huang, T.C., Ed.; Editorial Committee, Department of Botany, National Taiwan University: Taipei, Taiwan, 1998; pp. 17–39. [Google Scholar]
- Sanchez-Rabaneda, F.; Jauregui, O.; Casals, I.; Andres-Lacueva, C.; Izquierdo-Pulido, M.; Lamuela-Raventos, R.M. Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom. 2003, 38, 35–42. [Google Scholar] [CrossRef] [PubMed]
- De Souza, L.M.; Cipriani, T.R.; Iacomini, M.; Gorin, P.A.; Sassaki, G.L. HPLC/ESI-MS and NMR analysis of flavonoids and tannins in bioactive extract from leaves of Maytenus ilicifolia. J. Pharm. Biomed. Anal. 2008, 47, 59–67. [Google Scholar] [CrossRef]
- Lv, Q.; Luo, F.; Zhao, X.; Liu, Y.; Hu, G.; Sun, C.; Li, X.; Chen, K. Identification of proanthocyanidins from litchi (Litchi chinensis Sonn.) pulp by LC-ESI-Q-TOF-MS and their antioxidant activity. PLoS ONE 2015, 10, e0120480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 512. [Google Scholar] [CrossRef]
- Rhourri-Frih, B.; Chaimbault, P.; Claude, B.; Lamy, C.; Andre, P.; Lafosse, M. Analysis of pentacyclic triterpenes by LC-MS. A comparative study between APCI and APPI. J. Mass Spectrom. 2009, 44, 71–80. [Google Scholar] [CrossRef]
- Silveira, R.D.S.; Leal, G.C.; Molin, T.R.D.; Faccin, H.; Gobo, L.A.; Silveira, G.D.D.; Souza, M.T.D.S.; Lameira, O.A.; Carvalho, L.M.D.; Viana, C. Determination of phenolic and triterpenic compounds in Jatropha gossypiifolia L by Ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS). Braz. J. Pharm. Sci. 2020, 56, 262. [Google Scholar] [CrossRef]
- Allen, F.; Greiner, R.; Wishart, D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 2015, 11, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Shoji, T.; Mutsuga, M.; Nakamura, T.; Kanda, T.; Akiyama, H.; Goda, Y. Isolation and structural elucidation of some procyanidins from apple by low-temperature nuclear magnetic resonance. J. Agric. Food Chem. 2003, 51, 3806–3813. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.M.; Li, T.C.; Jhan, Y.L.; Weng, J.H.; Chou, C.H. The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum. PLoS ONE 2013, 8, e85162. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.M.; Hsu, Y.M.; Jhan, Y.L.; Tsai, S.J.; Lin, S.X.; Su, C.H.; Chou, C.H. Structure Elucidation of Procyanidins Isolated from Rhododendron formosanum and Their Anti-Oxidative and Anti-Bacterial Activities. Molecules 2015, 20, 12787–12803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.R.; Ramsay, A.; Hansen, T.V.; Ropiak, H.M.; Mejer, H.; Nejsum, P.; Mueller-Harvey, I.; Thamsborg, S.M. Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum). Sci. Rep. 2015, 5, 14791. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Xie, Q.; Ito, Y. Preparative Separation of Axifolin-3-Glucoside, Hyperoside and Amygdalin from Plant Extracts by High-Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ahmad, N.; Naqvi, A.A.; Exarchou, V.; Upadhyay, A.; Tuenter, E.; Foubert, K.; Apers, S.; Hermans, N.; Pieters, L. Antioxidant and Antiglycating Constituents from Leaves of Ziziphus oxyphylla and Cedrela serrata. Antioxidants 2016, 5, 9. [Google Scholar] [CrossRef]
- Huang, S.P.; Ho, T.M.; Yang, C.W.; Chang, Y.J.; Chen, J.F.; Shaw, N.S.; Horng, J.C.; Hsu, S.L.; Liao, M.Y.; Wu, L.C.; et al. Chemopreventive Potential of Ethanolic Extracts of Luobuma Leaves (Apocynum venetum L.) in Androgen Insensitive Prostate Cancer. Nutrients 2017, 9, 948. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.M.; Yeh, K.L.; Tsai, S.J.; Jhan, Y.L.; Chou, C.H. Anti-Proliferative Activity of Triterpenoids and Sterols Isolated from Alstonia scholaris against Non-Small-Cell Lung Carcinoma Cells. Molecules 2017, 22, 119. [Google Scholar] [CrossRef] [Green Version]
- Okoye, N.N.; Ajaghaku, D.L.; Okeke, H.N.; Ilodigwe, E.E.; Nworu, C.S.; Okoye, F.B. beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol. 2014, 52, 1478–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faccin, H.; Viana, C.; do Nascimento, P.C.; Bohrer, D.; de Carvalho, L.M. Study of ion suppression for phenolic compounds in medicinal plant extracts using liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2016, 1427, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Echard, J.P.; Benoit, C.; Peris-Vicente, J.; Malecki, V.; Gimeno-Adelantado, J.V.; Vaiedelich, S. Gas chromatography/mass spectrometry characterization of historical varnishes of ancient Italian lutes and violin. Anal. Chim. Acta 2007, 584, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.Q.; Wang, Y.; Franzblau, S.G.; Montenegro, G.; Timmermann, B.N. Dereplication of pentacyclic triterpenoids in plants by GC-EI/MS. Phytochem. Anal. 2006, 17, 102–106. [Google Scholar] [CrossRef]
- Saito, A.; Doi, Y.; Tanaka, A.; Matsuura, N.; Ubukata, M.; Nakajima, N. Systematic synthesis of four epicatechin series procyanidin trimers and their inhibitory activity on the Maillard reaction and antioxidant activity. Bioorg. Med. Chem. 2004, 12, 4783–4790. [Google Scholar] [CrossRef] [PubMed]
- Maatta-Riihinen, K.R.; Kahkonen, M.P.; Torronen, A.R.; Heinonen, I.M. Catechins and procyanidins in berries of vaccinium species and their antioxidant activity. J. Agric. Food Chem. 2005, 53, 8485–8491. [Google Scholar] [CrossRef]
- Jungfer, E.; Zimmermann, B.F.; Ruttkat, A.; Galensa, R. Comparing procyanidins in selected Vaccinium species by UHPLC-MS(2) with regard to authenticity and health effects. J. Agric. Food Chem. 2012, 60, 9688–9696. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef]
- De Bruyne, T.; Pieters, L.; Witvrouw, M.; De Clercq, E.; Vanden Berghe, D.; Vlietinck, A.J. Biological evaluation of proanthocyanidin dimers and related polyphenols. J. Nat. Prod. 1999, 62, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Ming, D.S.; Lopez, A.; Hillhouse, B.J.; French, C.J.; Hudson, J.B.; Towers, G.H. Bioactive constituents from Iryanthera megistophylla. J. Nat. Prod. 2002, 65, 1412–1416. [Google Scholar] [CrossRef]
- Way, T.D.; Tsai, S.J.; Wang, C.M.; Jhan, Y.L.; Ho, C.T.; Chou, C.H. Cinnamtannin D1 from Rhododendron formosanum Induces Autophagy via the Inhibition of Akt/mTOR and Activation of ERK1/2 in Non-Small-Cell Lung Carcinoma Cells. J. Agric. Food Chem. 2015, 63, 10407–10417. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, L.; Feng, S.; Liu, Y.; Zuo, G.; Lai, F.; He, G.; Chen, M.; Huang, D. Characterization of proanthocyanidins in stems of Polygonum multiflorum Thunb as strong starch hydrolase inhibitors. Molecules 2013, 18, 2255–2265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
Disc Inhibition Zone (mm) | |||||
---|---|---|---|---|---|
Pathogens | DCM * | EA | BuOH | H20 | EA-15 |
Staphylococcus aureus | 0 | 14.3 ± 0.6 | 12.3 ± 0.6 | 0 | 18.3 ± 0.6 |
Enterococcus faecalis | 0 | 7.0 ± 0.0 | 0 | 0 | 9.0 ± 0.0 |
Listeria monocytogens | 0 | 9.0 ± 0.0 | 7.0 ± 0.0 | 0 | 12.3 ± 0.6 |
Bacillus cereus | 0 | 10.3 ± 0.6 | 9 ± 0 | 0 | 14.3 ± 0.6 |
Escherichia coli | 0 | 0 | 0 | 0 | 0 |
Salmonella enterica | 0 | 0 | 0 | 0 | 0 |
Pseudomonas aeruginosa | 0 | 0 | 0 | 0 | 0 |
No. | R.T. (min) | Assigned Identity | Mass | M.W. | Negative ESI-MSn m/z (% Base Peak) | Reference |
---|---|---|---|---|---|---|
1 | 7.2 | Protocatechuic acid | [M−H]−: 152.8 [M+H]+: 154.9 | 154 | 108.9(100) | [17] |
2 | 8.3 | Procyanidin B1 | [M−H]−: 577.1 [M+H]+: 579.2 | 578 | 407.0(100), 425.0(63), 288.9(26.5), 451(17.9), 559.1(9.1) | [24] |
3 | 9.5 | Catechin | [M−H]−: 289 [M+H]+: 291 | 290 | 270.8(6.3), 244.8(100), 230.7(8.2), 204.7(38.8), 202.7(22.0), 178.8(10.8), 160.7(8.4) | [17,24] |
4 | 10.8 | Procyanidin B2 | [M−H]−: 577.1 [M+H]+: 579.2 | 578 | 559.1(8.2), 450.9(15.7), 424.9(74.8), 407.0(100), 288.9(24.3) | [24] |
5 | 12.4 | Epicatechin | [M−H]−: 288.8 [M+H]+: 290.9 | 290 | 270.7(5.3), 244.7(100), 230.7(11.3), 204.7(47.8), 202.8(31.6), 178.7(13.6), 160.7(7.5) | [17,24] |
6 | 14.7 | A-type Procyanidin trimer | [M−H]−: 863.1 [M+H]+: 865.2 | 864 | 711.1(100), 411(61.8), 559.1(50.8), 693.1(43.3), 712(23.1), 451(22.9), 694.1(20.9) | [19] |
7 | 17.8 | Emarginin B | [M−H]−: 358.9 [M+Na]+: 383.0 | 360 | 196.7(100), 152.8(34.3), 134.8(20.3), 108.9(7.8) | [5] |
8 | 18.6 | Dihydroxyisophthalic acid | [M−H]−: 196.7 [M+H]+: 198.9 | 198 | 152.8(100), 134.8(3.4), 108.9(2.7) | [17] |
9 | 20.1 | Hyperin | [M−H]−: 462.9 [M+Na]+: 487.1 | 464 | 300.7(100), 178.7(4.7), 150.7(5.7) | [17,20] |
10 | 20.3 | Procyanidin B3 | [M−H]−: 577.1 [M+H]+: 579.1 | 578 | 559.0(4.8), 450.9(15.9), 425.0(100), 407.0(98.4), 288.9(22.8), 286.9(16.1) | [19] |
10 | 20.3 | Isoquercetin | [M−H]−: 462.9 [M+Na]+: 487.1 | 464 | 301(100), 178.7(4.9), 150.7(4.0) | [17,20] |
11 | 21.3 | A-type Procyanidin trimer | [M−H]−: 863.3 [M+H]+: 865.2 | 864 | 575.0(100), 711.1(53.4), 699.1(42.9), 693.1(36.7), 576.1(25.4), 713.1(24.4), 821.2(23.9), 803.2(20.1) | [19] |
12 | 23.1 | (Epi)afzelechin-(Epi)catechin | [M−H]−: 561.1 [M+H]+: 563.2 | 562 | 270.8(100), 451.0(70.4), 423.0(62.8), 435.0(61.2), 408.9(49.3), 298.8(38.7), 288.9(31.8), 324.9(22.7), 282.9(21), 258.8(19.5), | [18] |
13 | 23.3 | Procyanidin dimer A1 | [M−H]−: 575.1 [M+H]+: 577.1 | 576 | 423(100), 449(85.6), 539(42.4), 284.9(35.2), 407(29.1), 423.9(26.1), 288.9(25.1) | [19] |
14 | 25.6 | Emarginin C | [M−H]−: 373.1 [M+Na]+: 397.1 | 374 | 210.7(100), 373(8.6) | [5] |
15 | 28.0 | Quercetin with two glycosides | [M−H]−: 591.1 [M+H]+: 593.2 | 592 | 547.0(17.4), 438.9(100), 300.9(52.9), 288.9(64.6), 256.8(17.8), 214.7(29.9), 212.7(10.0) | [18,20] |
16 | 35.1 | Quercetin | [M−H]−: 300.9 [M+H]+: 302.9 | 302 | 178.7(100), 150.7(92.4), 254.9(38.4), 272.8(29), 256.7(10.7) | [17,20] |
17 | 38.4 | Lupeol | [M−H]−: 425.0 [M+H]+: 427.1 | 426 | 407(30.8), 363.3(100), 300.9(17.8), 288(66.6), 256.8(10.3), 244.8(17.5), 214.8(19.1) | [21,22]; this study |
18 | 39.7 | β-Amyrin | [M−H]−: 425.0 [M+H]+: 427.1 | 426 | 407(19.3), 389(10.9), 363(80.5), 314.9(100), 288.8(9.1), 270.9(14.4), 240.7(15.0), 228.8(21.5), 204.7 (11.6), 176.7(10.0) | [21,22]; this study |
19 | 40.3 | α-Amyrin | [M−H]−: 425.1 [M+H]+: 427.1 | 426 | 407(50.5), 389(22.3), 381.0(14.2), 362.9(94.3), 314.9(100), 288.8(14.3), 270.9(14.3), 240.8(18.8), 228.8(28.2), 204.7 (13.0) | [21,22]; this study |
20 | 40.8 | Friedelin | [M−H]−: 425.1 [M+H]+: 427.1 | 426 | 407(20.5), 363.3(100), 300.9(19.9), 288(65.4), 256.8(15), 244.8(14.4), 214.8(21.5) | [21,22,23] |
21 | 42.9 | Unknown | [M−H]−: 675.4 [M+Na]+: 699.4 | 676 | 396.9 (100), 415.0 (50.4), 234.8 (10.5), 397.8 (9.2), 304.8 (5.8), 286.9 (5.6) | |
22 | 44.7 | Unknown | [M−H]−: 677.4 [M+Na]+: 701.4 | 678 | 397.0 (100), 415.0 (34.4), 234.7 (9.4), 304.9 (7.3), 286.8 (6.4) |
Anti-Proliferative Activity, IC50 (μM) | |||
---|---|---|---|
Compounds | HepG2 2.2.15 | A549 | AGS |
1 | >200 | >200 | >200 |
2 | >200 | >200 | >200 |
3 | >200 | >200 | >200 |
4 | 41.1 ± 1.3 | >200 | 79.4 ± 2.3 |
5 | 38.4 ± 1.4 | >200 | 83.8 ± 3.6 |
6 | >200 | >200 | >200 |
7 | 18.7 ± 0.9 | 24.6 ± 0.6 | 68.5 ± 4.5 |
8 | 64.0 ± 1.4 | >200 | 82.2 ± 4.6 |
9 | 81.7 ± 1.7 | 146.8 ± 5.8 | 72.9 ± 1.7 |
10 | >200 | 174.2 ± 6.1 | >200 |
11 | >200 | >200 | >200 |
EGCG | N.D. * | 91.9 ± 1.8 | N.D. |
5-fluorouracil | 62.0 ± 1.1 | N.D. | N.D. |
Doxorubicin | N.D. | N.D. | 11.0 ± 0.6 |
MIC (μg/mL) | |||||||
---|---|---|---|---|---|---|---|
Bacterial Pathogens | |||||||
Compounds | S. aureus | E. faecalis | L. monocytogenes | B. cereus | E. coli | S. enterica | P. aeruginosa |
Ap * | 8 | 2 | 1 | 64 | 4 | 2 | 256 |
Tet | 4 | 2 | 2 | 2 | 1 | 8 | 16 |
1 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
2 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
3 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
4 | 64 | >128 | >128 | >128 | >128 | >128 | >128 |
5 | 64 | > 128 | 64 | 64 | >128 | >128 | >128 |
6 | >128 | 128 | >128 | 128 | >128 | >128 | 128 |
7 | 64 | >128 | >128 | 128 | 128 | >128 | 128 |
8 | 128 | >128 | 128 | >128 | >128 | >128 | >128 |
9 | >128 | 64 | >128 | >128 | >128 | >128 | >128 |
10 | >128 | 128 | >128 | 128 | >128 | >128 | >128 |
11 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-M.; Ho, C.-Y.; Chang, G.-R.; Shia, W.-Y.; Lai, C.-H.; Chao, C.-H.; Wang, C.-M. HPLC/ESI-MS and NMR Analysis of Chemical Constitutes in Bioactive Extract from the Root Nodule of Vaccinium emarginatum. Pharmaceuticals 2021, 14, 1098. https://doi.org/10.3390/ph14111098
Huang H-M, Ho C-Y, Chang G-R, Shia W-Y, Lai C-H, Chao C-H, Wang C-M. HPLC/ESI-MS and NMR Analysis of Chemical Constitutes in Bioactive Extract from the Root Nodule of Vaccinium emarginatum. Pharmaceuticals. 2021; 14(11):1098. https://doi.org/10.3390/ph14111098
Chicago/Turabian StyleHuang, Hsiang-Ming, Chien-Yi Ho, Geng-Ruei Chang, Wei-Yau Shia, Cheng-Hung Lai, Chih-Hao Chao, and Chao-Min Wang. 2021. "HPLC/ESI-MS and NMR Analysis of Chemical Constitutes in Bioactive Extract from the Root Nodule of Vaccinium emarginatum" Pharmaceuticals 14, no. 11: 1098. https://doi.org/10.3390/ph14111098
APA StyleHuang, H. -M., Ho, C. -Y., Chang, G. -R., Shia, W. -Y., Lai, C. -H., Chao, C. -H., & Wang, C. -M. (2021). HPLC/ESI-MS and NMR Analysis of Chemical Constitutes in Bioactive Extract from the Root Nodule of Vaccinium emarginatum. Pharmaceuticals, 14(11), 1098. https://doi.org/10.3390/ph14111098