Evaluation of the Anti-Tumor Activity of Small Molecules Targeting Eph/Ephrins in APC min/J Mice
Abstract
:1. Introduction
2. Results
2.1. Toxicity
2.2. Effects of Eph-Ephrin Antagonists on the Number of Adenomas: “Statistical Considerations”
2.3. Effect of UniPR129 on Adenomas
3. Discussion
4. Materials and Methods
4.1. APC min/J Mice
- Control group: Oral administration of Methocel 0.5% every other day;
- Three treatment groups: oral administration of UniPR129, UniPR139 or UniPR1331 30 mg/kg in Methocel 0.5% every other day.
4.2. Histological Analysis
4.3. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Brody, H. Colorectal Cancer. Nature 2015, 521, S1. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquale, E.B. The Eph Family of Receptors. Curr. Opin. Cell Biol. 1997, 9, 608–615. [Google Scholar] [CrossRef]
- Mosch, B.; Reissenweber, B.; Neuber, C.; Pietzsch, J. Eph Receptors and Ephrin Ligands: Important Players in Angiogenesis and Tumor Angiogenesis. J. Oncol. 2010, 2010, 1–12. [Google Scholar] [CrossRef]
- Kania, A.; Klein, R. Mechanisms of Ephrin–Eph Signalling in Development, Physiology and Disease. Nat. Rev. Mol. Cell Biol. 2016, 17, 240–256. [Google Scholar] [CrossRef]
- Kataoka, H.; Igarashi, H.; Kanamori, M.; Ihara, M.; Wang, J.-D.; Wang, Y.-J.; Li, Z.-Y.; Shimamura, T.; Kobayashi, T.; Maruyama, K.; et al. Correlation of EPHA2 Overexpression with High Microvessel Count in Human Primary Colorectal Cancer. Cancer Sci. 2004, 95, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Dunne, P.D.; Dasgupta, S.; Blayney, J.K.; McArt, D.G.; Redmond, K.L.; Weir, J.-A.; Bradley, C.A.; Sasazuki, T.; Shirasawa, S.; Wang, T.; et al. EphA2 Expression Is a Key Driver of Migration and Invasion and a Poor Prognostic Marker in Colorectal Cancer. Clin. Cancer Res. 2016, 22, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Herath, N.I.; Doecke, J.; Spanevello, M.D.; Leggett, B.A.; Boyd, A.W. Epigenetic Silencing of EphA1 Expression in Colorectal Cancer Is Correlated with Poor Survival. Br. J. Cancer 2009, 100, 1095–1102. [Google Scholar] [CrossRef]
- Kumar, S.R.; Scehnet, J.S.; Ley, E.J.; Singh, J.; Krasnoperov, V.; Liu, R.; Manchanda, P.K.; Ladner, R.D.; Hawes, D.; Weaver, F.A.; et al. Preferential Induction of EphB4 over EphB2 and Its Implication in Colorectal Cancer Progression. Cancer Res. 2009, 69, 3736–3745. [Google Scholar] [CrossRef] [Green Version]
- Batlle, E.; Bacani, J.; Begthel, H.; Jonkheer, S.; Jonkeer, S.; Gregorieff, A.; van de Born, M.; Malats, N.; Sancho, E.; Boon, E.; et al. EphB Receptor Activity Suppresses Colorectal Cancer Progression. Nature 2005, 435, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Moser, A.R.; Luongo, C.; Gould, K.A.; McNeley, M.K.; Shoemaker, A.R.; Dove, W.F. ApcMin: A Mouse Model for Intestinal and Mammary Tumorigenesis. Eur. J. Cancer 1995, 31A, 1061–1064. [Google Scholar] [CrossRef]
- Hinoi, T.; Akyol, A.; Theisen, B.K.; Ferguson, D.O.; Greenson, J.K.; Williams, B.O.; Cho, K.R.; Fearon, E.R. Mouse Model of Colonic Adenoma-Carcinoma Progression Based on Somatic Apc Inactivation. Cancer Res. 2007, 67, 9721–9730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoemaker, A.R.; Gould, K.A.; Luongo, C.; Moser, A.R.; Dove, W.F. Studies of Neoplasia in the Min Mouse. Biochim. Biophys. Acta 1997, 1332, F25–F48. [Google Scholar] [CrossRef]
- Bogan, C.; Chen, J.; O’Sullivan, M.G.; Cormier, R.T. Loss of EphA2 Receptor Tyrosine Kinase Reduces Apc min/+ Tumorigenesis. Int. J. Cancer 2009, 124, 1366–1371. [Google Scholar] [CrossRef]
- Hassan-Mohamed, I.; Giorgio, C.; Incerti, M.; Russo, S.; Pala, D.; Pasquale, E.B.; Zanotti, I.; Vicini, P.; Barocelli, E.; Rivara, S.; et al. UniPR129 Is a Competitive Small Molecule Eph-Ephrin Antagonist Blocking in vitro Angiogenesis at Low Micromolar Concentrations: Eph Antagonist and Angiogenesis. Br. J. Pharmacol. 2014, 171, 5195–5208. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, C.; Incerti, M.; Corrado, M.; Rusnati, M.; Chiodelli, P.; Russo, S.; Callegari, D.; Ferlenghi, F.; Ballabeni, V.; Barocelli, E.; et al. Pharmacological Evaluation of New Bioavailable Small Molecules Targeting Eph/Ephrin Interaction. Biochem. Pharmacol. 2018, 147, 21–29. [Google Scholar] [CrossRef]
- Incerti, M.; Russo, S.; Callegari, D.; Pala, D.; Giorgio, C.; Zanotti, I.; Barocelli, E.; Vicini, P.; Vacondio, F.; Rivara, S.; et al. Metadynamics for Perspective Drug Design: Computationally Driven Synthesis of New Protein-Protein Interaction Inhibitors Targeting the EphA2 Receptor. J. Med. Chem. 2017, 60, 787–796. [Google Scholar] [CrossRef]
- Festuccia, C.; Gravina, G.L.; Giorgio, C.; Mancini, A.; Pellegrini, C.; Colapietro, A.; Delle Monache, S.; Maturo, M.G.; Sferra, R.; Chiodelli, P.; et al. UniPR1331, a Small Molecule Targeting Eph/Ephrin Interaction, Prolongs Survival in Glioblastoma and Potentiates the Effect of Antiangiogenic Therapy in Mice. Oncotarget 2018, 9, 24347–24363. [Google Scholar] [CrossRef] [Green Version]
- Castelli, R.; Tognolini, M.; Vacondio, F.; Incerti, M.; Pala, D.; Callegari, D.; Bertoni, S.; Giorgio, C.; Hassan-Mohamed, I.; Zanotti, I.; et al. Δ(5)-Cholenoyl-Amino Acids as Selective and Orally Available Antagonists of the Eph-Ephrin System. Eur. J. Med. Chem. 2015, 103, 312–324. [Google Scholar] [CrossRef]
- Giorgio, C.; Incerti, M.; Pala, D.; Russo, S.; Chiodelli, P.; Rusnati, M.; Cantoni, A.M.; Di Lecce, R.; Barocelli, E.; Bertoni, S.; et al. Inhibition of Eph/Ephrin Interaction with the Small Molecule UniPR500 Improves Glucose Tolerance in Healthy and Insulin-Resistant Mice. Pharmacol. Res. 2019, 141, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.B.; Forsythe, A.B. 372: The Anova and Multiple Comparisons for Data with Heterogeneous Variances. Biometrics 1974, 30, 719. [Google Scholar] [CrossRef]
- Wilcox, R.R.; Char1in, V.L.; Thompson, K.L. New Monte Carlo Results on the Robustness of the Anova f, w and f Statistics. Commun. Stat. Simul. Comput. 1986, 15, 933–943. [Google Scholar] [CrossRef]
- Ferlenghi, F.; Castelli, R.; Scalvini, L.; Giorgio, C.; Corrado, M.; Tognolini, M.; Mor, M.; Lodola, A.; Vacondio, F. Drug-Gut Microbiota Metabolic Interactions: The Case of UniPR1331, Selective Antagonist of the Eph-Ephrin System, in Mice. J. Pharm. Biomed. Anal. 2020, 180, 113067. [Google Scholar] [CrossRef]
- Cortina, C.; Palomo-Ponce, S.; Iglesias, M.; Fernández-Masip, J.L.; Vivancos, A.; Whissell, G.; Humà, M.; Peiró, N.; Gallego, L.; Jonkheer, S.; et al. EphB-Ephrin-B Interactions Suppress Colorectal Cancer Progression by Compartmentalizing Tumor Cells. Nat. Genet. 2007, 39, 1376–1383. [Google Scholar] [CrossRef]
- Dopeso, H.; Mateo-Lozano, S.; Mazzolini, R.; Rodrigues, P.; Lagares-Tena, L.; Ceron, J.; Romero, J.; Esteves, M.; Landolfi, S.; Hernández-Losa, J.; et al. The Receptor Tyrosine Kinase EPHB4 Has Tumor Suppressor Activities in Intestinal Tumorigenesis. Cancer Res. 2009, 69, 7430–7438. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.L.; Zhang, J.; Yuen, S.T.; Tsui, W.Y.; Chan, A.S.Y.; Ho, C.; Ji, J.; Leung, S.Y.; Chen, X. Reduced Expression of EphB2 That Parallels Invasion and Metastasis in Colorectal Tumours. Carcinogenesis 2006, 27, 454–464. [Google Scholar] [CrossRef]
- Chiu, S.-T.; Chang, K.-J.; Ting, C.-H.; Shen, H.-C.; Li, H.; Hsieh, F.-J. Over-Expression of EphB3 Enhances Cell-Cell Contacts and Suppresses Tumor Growth in HT-29 Human Colon Cancer Cells. Carcinogenesis 2009, 30, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Herath, N.I.; Spanevello, M.D.; Doecke, J.D.; Smith, F.M.; Pouponnot, C.; Boyd, A.W. Complex Expression Patterns of Eph Receptor Tyrosine Kinases and Their Ephrin Ligands in Colorectal Carcinogenesis. Eur. J. Cancer 2012, 48, 753–762. [Google Scholar] [CrossRef]
CTR | UniPR129 | UniPR139 | UniPR1331 | ||
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
White cells | 103/μL | 5.53 ± 1.67 | 4.83 ± 0.70 | 4.67 ± 1.19 | 4.70 ± 1.33 |
Neutrophils | % | 2.64 ± 1.54 | 6.20 ± 6.33 | 12.36 ± 12.2 * | 3.40 ± 0.87 |
Lymphocytes | % | 97.10 ± 1.56 | 93.29 ± 6.14 | 87.33 ± 12.16 * | 96.23 ± 0.83 |
Monocytes | % | 0.17 ± 0.08 | 0.43 ± 0.31 | 0.11 ± 0.11 | 0.3 ± 0.20 |
Eosinophils | % | 0.07 ± 0.05 | 0.10 ± 0.10 | 0.09 ± 0.09 | 0.07 ± 0.05 |
Basophils | % | 0.01 ± 0.04 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Red cells | 106/µL | 5.62 ± 1.05 | 5.01 ± 1.43 | 5.99 ± 1.45 | 5.22 ± 1.14 |
Haemoglobin | g/dL | 9.70 ± 1.49 | 8.71 ± 2.15 | 9.99 ± 1.79 | 9.20 ± 1.53 |
Haematocrit | % | 29.59 ± 4.06 | 26.69 ± 6.56 | 30.11 ± 4.44 | 27.83 ± 4.25 |
Mean cellular Volume | fL | 52.99 ± 2.85 | 53.87 ± 2.62 | 51.57 ± 6.6 | 54.1 ± 4.99 |
Platelets | 103/µL | 1148 ± 244.71 | 1191 ± 186.77 | 993.29 ± 344.17 | 1224.29 ± 220.88 |
Mean platelet Volume | fL | 5.01 ± 0,42 | 4.91 ± 0.43 | 5 ± 0.21 | 4.97 ± 0.39 |
Creatinine | mg/dL | 0.25 ± 0.07 | 0.22 ± 0.08 | 0.19 ± 0.02 | 0.24 ± 0.05 |
AST/GOT | UI | 118.14 ± 55.82 | 108.86 ± 47.11 | 91.29 ± 20.70 | 100.71 ± 22.90 |
ALT | UI | 30 ± 11.87 | 23.43 ± 3.78 | 22.29 ± 4.54 | 22.71 ± 5.71 |
Glucose | mg/dL | 155.22 ± 27.98 | 161.10 ± 21.18 | 122.05 ± 27.52 | 132.92 ± 21.95 |
Triglycerides | mg/dL | 156.3 ± 51.70 | 145.10 ± 38.6 | 200.61 ± 173.26 | 133.27 ± 88.98 |
Overall Intestine Adenomas | Ileum Adenomas | ||||
---|---|---|---|---|---|
Obs | Mean | SD | Mean | SD | |
CTR | 7 | 19.71 | 6.10 | 13.14 | 5.05 |
UniPR129 | 7 | 14.00 | 2.31 | 7.57 | 2.07 |
UniPR139 | 7 | 15.57 | 15.22 | 10.14 | 9.41 |
UniPR1331 | 7 | 18.71 | 6.15 | 9.86 | 5.49 |
Overall Intestine | Ileum | |||
---|---|---|---|---|
Equal Variance | Unequal Variances | Equal Variance | Unequal Variances | |
CTR—UniPR129 | 0.039 | 0.050 | 0.019 | 0.027 |
CTR—UniPR139 | 0.517 | 0.523 | 0.472 | 0.476 |
CTR—UniPR1331 | 0.765 | 0.765 | 0.266 | 0.267 |
Treatment | Very Small | Small | Medium | Large | Very Large |
---|---|---|---|---|---|
CTR | 10% | 45% | 38% | 4% | 3% |
UniPR129 | 28% | 51% | 21% | 0% | 0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrado, M.; Giorgio, C.; Barocelli, E.; Marzetti, G.V.; Cantoni, A.M.; Di Lecce, R.; Incerti, M.; Castelli, R.; Lodola, A.; Tognolini, M. Evaluation of the Anti-Tumor Activity of Small Molecules Targeting Eph/Ephrins in APC min/J Mice. Pharmaceuticals 2020, 13, 69. https://doi.org/10.3390/ph13040069
Corrado M, Giorgio C, Barocelli E, Marzetti GV, Cantoni AM, Di Lecce R, Incerti M, Castelli R, Lodola A, Tognolini M. Evaluation of the Anti-Tumor Activity of Small Molecules Targeting Eph/Ephrins in APC min/J Mice. Pharmaceuticals. 2020; 13(4):69. https://doi.org/10.3390/ph13040069
Chicago/Turabian StyleCorrado, Miriam, Carmine Giorgio, Elisabetta Barocelli, Giuseppe Vittucci Marzetti, Anna Maria Cantoni, Rosanna Di Lecce, Matteo Incerti, Riccardo Castelli, Alessio Lodola, and Massimiliano Tognolini. 2020. "Evaluation of the Anti-Tumor Activity of Small Molecules Targeting Eph/Ephrins in APC min/J Mice" Pharmaceuticals 13, no. 4: 69. https://doi.org/10.3390/ph13040069
APA StyleCorrado, M., Giorgio, C., Barocelli, E., Marzetti, G. V., Cantoni, A. M., Di Lecce, R., Incerti, M., Castelli, R., Lodola, A., & Tognolini, M. (2020). Evaluation of the Anti-Tumor Activity of Small Molecules Targeting Eph/Ephrins in APC min/J Mice. Pharmaceuticals, 13(4), 69. https://doi.org/10.3390/ph13040069