Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell
Abstract
:1. Introduction
2. Methodology
2.1. Theory of Thermal Sensors and Characteristics of Platinum
2.2. Flow Field Design
2.3. Standard Deviation of the Experiment
3. Fabrication
4. Experimental
5. Results and Discussion
5.1. In-situ measurement of temperature
5.2. Fuel cell performance
6. Conclusions
Acknowledgments
References
- Pichonat, T.; Gauthier-Manuel, B. Realization of porous silicon based miniature fuel cells. J. Power Sources 2006, 15, 198–201. [Google Scholar]
- Zhang, Y.; Lu, J.; Zhou, H.; Itoh, T.; Maeda, R. Effects of the nanoimprint pattern on the performance of a MEMS-based micro direct methanol fuel cell. J. Micromech. Microeng 2009, 19, 15003–15009. [Google Scholar]
- Balarin, M.; Gamulin, O.; Ivanda, M.; Djerek, V.; Celan, O.; Music, S.; Ristic, M.; Furic, K. Structure and optical properties of porous silicon prepared on thin epitaxial silicon layer on silicon substrates. J. Mol. Struct 2007, 834–836, 465–470. [Google Scholar]
- Meyers, J.P.; Maynard, H.L. Design considerations for miniaturized PEM fuel cells. J. Power Sources 2002, 109, 76–88. [Google Scholar]
- D’Arrigo, G.; Spinella, C.; Arena, G.; Lorenti, S. Fabrication of miniaturized Si-based electrocatalytic membranes. Mat. Sci. Eng. C 2003, 23, 13–18. [Google Scholar]
- Pichonat, T.; Manuel, B.G. Development of porous silicon-based miniature fuel cells. J. Micromech. Microeng 2005, 15, 179–184. [Google Scholar]
- Lehmann, V.; Gösele, U. Porous silicon formation: A quantum wire effect. Appl. Phys. Lett 1991, 58, 856–858. [Google Scholar]
- Lehmann, V. Porous silicon- a new material for MEMS. In Micro Electro Mechanical Systems, 1996 (MEMS’96); San Diego, CA, USA, 1996; pp. 1–6. [Google Scholar]
- Kleimann, P.; Linnors, J.; Petersson, S. Formation of wide and deep holes in silicon by electrochemical etching. Mat. Sci. Eng 2000, B69-70, 29–33. [Google Scholar]
- McIntyre, T.J.; Allison, S.W.; Maxey, L.C.; Cates, M.R. Fiber optic temperature sensors for PEM fuel cells hydrogen, fuel cells, and Infrastructure technologies. Progr. Rep 2003. [Google Scholar]
- Mench, M.M.; He, S.; Tadigadapa, S. Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell. Sens. Actuat. A 2006, 125, 170–177. [Google Scholar]
- Lee, C.Y.; Wu, G.W.; Hsieh, C.L. In situ diagnosis of micrometallic proton exchange membrane fuel cells using microsensors. J. Power Sources 2007, 172, 363–367. [Google Scholar]
- Lee, C.Y.; Hsieh, W.J.; Wu, G.W. Embedded flexible micro-sensors in MEA for measuring temperature and humidity in a micro-fuel cell. J. Power Sources 2008, 181, 237–243. [Google Scholar]
- Moser, Y.; Gijs, M.A.M. Miniaturized flexible temperature sensor. Solid-State Sens 2007, 10–14, 2279–2282. [Google Scholar]
- Wilson, J.S. Sensor technology handbook; Butterworth-Heinemann: Boston, 2004. [Google Scholar]
- Hero, A.O. Foundations and applications of sensor management; Springer Verlag: New York, 2007. [Google Scholar]
- Hoogers, G. Fuel cell technology handbook; CRC Press: New York, NY, 2003. [Google Scholar]
- Weisstein, E.W. CRC Concise Encyclopedia of Mathematics; Chapman & Hall/CRC: Florida, 2002. [Google Scholar]
- Lehmann, V. The physics of macrohole formation in low doped n-type silicon. J. Electrochem. Soc 1993, 140, 2826–2843. [Google Scholar]
At 15 °C (no humidity) with 30 SCCM | At 20 °C (humidity) with 30 SCCM | Without a micro thermal sensor at 15 °C (no humidity) with 30 SCCM | With a micro thermal sensor at 15 °C (no humidity) with 30 SCCM | |
---|---|---|---|---|
Voltage | 421 mV | 423 mV | 502 mV | 302 mV |
The maximum power density | 9.25 mW/cm2 | 8.13 mW/cm2 | 9.37 mW/cm2 | 2.15 mW/cm2 |
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lee, C.-Y.; Lee, S.-J.; Hu, Y.-C.; Shih, W.-P.; Fan, W.-Y.; Chuang, C.-W. Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell. Sensors 2009, 9, 1423-1432. https://doi.org/10.3390/s90301423
Lee C-Y, Lee S-J, Hu Y-C, Shih W-P, Fan W-Y, Chuang C-W. Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell. Sensors. 2009; 9(3):1423-1432. https://doi.org/10.3390/s90301423
Chicago/Turabian StyleLee, Chi-Yuan, Shuo-Jen Lee, Yuh-Chung Hu, Wen-Pin Shih, Wei-Yuan Fan, and Chih-Wei Chuang. 2009. "Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell" Sensors 9, no. 3: 1423-1432. https://doi.org/10.3390/s90301423
APA StyleLee, C.-Y., Lee, S.-J., Hu, Y.-C., Shih, W.-P., Fan, W.-Y., & Chuang, C.-W. (2009). Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell. Sensors, 9(3), 1423-1432. https://doi.org/10.3390/s90301423