Biocompatible and Flexible Cellulose Film for the Reversible Colourimetric Monitoring of pH and Mg (II)
Highlights
- Fast, reversible colourimetric sensing of pH and Mg2+ with high selectivity over Ca2+ and common physiological ions.
- Transparent, flexible, and biocompatible cellulose-based thin film material suitable for continuous real-time and wearable optical sensing.
- Covalent immobilisation of Hyphan I chromophore on cellulose via vinylsulfonyl chemistry.
- Stable, non-leaching sensor platform enabling scalable and cost-effective fabrication.
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of the Chromoionophore Hyphan I
2.3. Fabrication of Sensor Layers
2.4. Measurements
3. Results and Discussion
3.1. Choice of Sensing Material
3.2. pH Sensitivity of the CFH Sensing Layer
3.3. Response to Metal Ions
3.4. Response to Mg2+
3.4.1. Effect of pH on Mg2+ Response
3.4.2. Effect of Na+, K+, Ca2+ on Mg2+ Response
3.4.3. Dynamic Range and Calibration Plots
3.4.4. Reversibility
3.4.5. Real Sample Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, Z.; Yim, W.; Retout, M.; Housel, E.; Zhong, W.; Zhou, J.; Strano, M.S.; Jokerst, J.V. Colorimetric sensing for translational applications: From colorants to mechanisms. Chem. Soc. Rev. 2024, 53, 7681–7741. [Google Scholar] [CrossRef]
- Krishnan, S.; Syed, Z.U.Q. Colorimetric Visual Sensors for Point-of-needs Testing. Sens. Actuators Rep. 2022, 4, 100078. [Google Scholar] [CrossRef]
- Wu, Y.; Feng, J.; Hu, G.; Zhang, E.; Yu, H.-H. Colorimetric sensors for chemical and biological sensing applications. Sensors 2023, 23, 2749. [Google Scholar] [CrossRef]
- Magnaghi, L.R.; Zanoni, C.; Alberti, G.; Biesuz, R. The colorful world of sulfonephthaleins: Current applications in analytical chemistry for “old but gold” molecules. Anal. Chim. Acta 2023, 1281, 341807. [Google Scholar] [CrossRef]
- Tao, K.J.; Castleman, M.D.; Tao, S. Reagent-Loaded Annulus-Shaped Reactor on Filter-Paper with Virtual Colorimeter for Onsite Quick Detection of Chlorogenic Acid. J. Anal. Test. 2023, 7, 25–32. [Google Scholar] [CrossRef]
- Narasimhan, A.; Jain, H.; Muniandy, K.; Chinnappan, R.; Mani, N.K. Bio-analysis of Saliva Using Paper Devices and Colorimetric Assays. J. Anal. Test. 2024, 8, 114–132. [Google Scholar] [CrossRef]
- Li, M.; Shi, Q.; Song, N.; Xiao, Y.; Wang, L.; Chen, Z.; James, T.D. Current trends in the detection and removal of heavy metal ions using functional materials. Chem. Soc. Rev. 2023, 52, 5827–5860. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Lai, Q.T.; Fan, W.; Zhang, Y.K.; Liu, Z.C. Advances in Portable Heavy Metal Ion Sensors. Sensors 2023, 23, 4125. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.A.; Castiglioni, S.; Locatelli, L.; Zocchi, M.; Mazur, A. Magnesium and inflammation: Advances and perspectives. Semin. Cell Dev. Biol. 2021, 115, 37–44. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Khodadoost, F. Effects of detergents on natural ecosystems and wastewater treatment processes: A review. Environ. Sci. Pollut. Res. 2019, 26, 26439–26448. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Bozdar, B.; Chachar, S.; Rai, M.; Li, J.; Li, Y.; Hayat, F.; Chachar, Z.; Tu, P. The power of magnesium: Unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops. Front. Plant Sci. 2023, 14, 2023. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Ying, Y.; Ping, J. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef] [PubMed]
- Lvova, L.; Gonçalves, C.G.; Di Natale, C.; Legin, A.; Kirsanov, D.; Paolesse, R. Recent advances in magnesium assessment: From single selective sensors to multisensory approach. Talanta 2018, 179, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Majidi, B.; Amiri, A.; Badiei, A.; Shayesteh, A. Dual mode colorimetric-fluorescent sensor for highly sensitive and selective detection of Mg2+ ion in aqueous media. J. Mol. Struct. 2020, 1213, 128156. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Shinde, S.; Ghodake, G. Colorimetric detection of magnesium (II) ions using tryptophan functionalized gold nanoparticles. Sci. Rep. 2017, 7, 3966. [Google Scholar] [CrossRef]
- Brady, M.; Shchepetkina, V.I.; González-Recio, I.; Martínez-Chantar, M.L.; Buccella, D. Ratiometric Fluorescent Sensors Illuminate Cellular Magnesium Imbalance in a Model of Acetaminophen-Induced Liver Injury. J. Am. Chem. Soc. 2023, 145, 21841–21850. [Google Scholar] [CrossRef]
- Liu, M.; Yu, X.; Li, M.; Liao, N.; Bi, A.; Jiang, Y.; Liu, S.; Gong, Z.; Zeng, W. Fluorescent probes for the detection of magnesium ions (Mg2+): From design to application. RSC Adv. 2018, 8, 12573–12587. [Google Scholar] [CrossRef]
- Paderni, D.; Macedi, E.; Lvova, L.; Ambrosi, G.; Formica, M.; Giorgi, L.; Paolesse, R.; Fusi, V. Selective Detection of Mg2+ for Sensing Applications in Drinking Water. Chem.–A Eur. J. 2022, 28, e202201062. [Google Scholar] [CrossRef]
- Amirjani, A.; Salehi, K.; Sadrnezhaad, S.K. Simple SPR-based colorimetric sensor to differentiate Mg2+ and Ca2+ in aqueous solutions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 268, 120692. [Google Scholar] [CrossRef]
- Kant, T.; Shrivas, K.; Tejwani, A.; Tandey, K.; Sharma, A.; Gupta, S. Progress in the design of portable colorimetric chemical sensing devices. Nanoscale 2023, 15, 19016–19038. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, J.; Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Nguyen, N.A.; Hendricks, A.; Montoya, E.; Mayers, A.; Rajmohan, D.; Morrin, A.; McCaul, M.; Dunne, N.; O’Connor, N.; Spanias, A. New Imaging Method of Mobile Phone-Based Colorimetric Sensor for Iron Quantification. Sensors 2025, 25, 4693. [Google Scholar] [CrossRef]
- Kim, D.; Concepcion, R.S.; Sta. Agueda, J.R.H.; Marquez, J.C. Optimization of Dye and Plasticizer Concentrations in Halochromic Sensor Films for Rapid pH Response Using Bird-Inspired Metaheuristic Algorithms. Sensors 2025, 25, 3494. [Google Scholar] [CrossRef]
- Tarara, M.; Tzanavaras, P.D.; Tsogas, G.Z. Development of a paper-based analytical method for the colorimetric determination of calcium in saliva samples. Sensors 2022, 23, 198. [Google Scholar] [CrossRef]
- LaGasse, M.K.; Rankin, J.M.; Askim, J.R.; Suslick, K.S. Colorimetric sensor arrays: Interplay of geometry, substrate and immobilization. Sens. Actuators B Chem. 2014, 197, 116–122. [Google Scholar] [CrossRef]
- Xie, X.J.; Bakker, E. Ion selective optodes: From the bulk to the nanoscale. Anal. Bioanal. Chem. 2015, 407, 3899–3910. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Zanoni, C.; Magnaghi, L.R.; Biesuz, R. Gold and silver nanoparticle-based colorimetric sensors: New trends and applications. Chemosensors 2021, 9, 305. [Google Scholar] [CrossRef]
- Kaur, B.; Kaur, N.; Kumar, S. Colorimetric metal ion sensors—A comprehensive review of the years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. [Google Scholar] [CrossRef]
- Weidgans, B.M.; Krause, C.; Klimant, I.; Wolfbeis, O.S. Fluorescent pH sensors with negligible sensitivity to ionic strength. Analyst 2004, 129, 645–650. [Google Scholar] [CrossRef]
- Khanjanzadeh, H.; Park, B.-D. Covalent immobilization of bromocresol purple on cellulose nanocrystals for use in pH-responsive indicator films. Carbohydr. Polym. 2021, 273, 118550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, L.; Tian, H.; Lu, A. Universal preparation of cellulose-based colorimetric sensor for heavy metal ion detection. Carbohydr. Polym. 2020, 236, 116037. [Google Scholar] [CrossRef]
- Guo, L.; Liu, H.; Peng, F.; Qi, H. Efficient and portable cellulose-based colorimetric test paper for metal ion detection. Carbohydr. Polym. 2021, 274, 118635. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Li, J.; Xie, Z.; Chang, G. Synthesis of a “Turn-On” Mg2+ fluorescent probe and its application in hydrogel adsorption. J. Mol. Struct. 2023, 1281, 135085. [Google Scholar] [CrossRef]
- Chalitangkoon, J.; Monvisade, P. Synthesis of chitosan-based polymeric dyes as colorimetric pH-sensing materials: Potential for food and biomedical applications. Carbohydr. Polym. 2021, 260, 117836. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and Their Role in Biosensing Applications. Adv. Healthc. Mater. 2021, 10, 2100062. [Google Scholar] [CrossRef]
- Azeman, N.H.; Arsad, N.; A Bakar, A.A. Polysaccharides as the sensing material for metal ion detection-based optical sensor applications. Sensors 2020, 20, 3924. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef] [PubMed]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Shigemori, H.; Maejima, K.; Shibata, H.; Hiruta, Y.; Citterio, D. Evaluation of cellophane as platform for colorimetric assays on microfluidic analytical devices. Microchim. Acta 2023, 190, 48. [Google Scholar] [CrossRef]
- Diehl, H.; Lindstrom, F. Eriochrome Black T and Its Calcium and Magnesium Derivatives. Anal. Chem. 1959, 31, 414–418. [Google Scholar] [CrossRef]
- Hamed, M.; Ismail, N.; Ibrahim, S. Solvent characteristics in the spectral behaviour of eriochrome black T. Dyes Pigments 1994, 26, 297–305. [Google Scholar] [CrossRef]
- Yappert, M.C.; DuPre, D.B. Complexometric Titrations: Competition of Complexing Agents in the Determination of Water Hardness with EDTA. J. Chem. Educ. 1997, 74, 1422. [Google Scholar] [CrossRef]
- Masoud, M.S.; Hammud, H.H.; Beidas, H. Dissociation constants of eriochrome black T and eriochrome blue black RC indicators and the formation constants of their complexes with Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II), under different temperatures and in presence of different solvents. Thermochim. Acta 2002, 381, 119–131. [Google Scholar]
- Burba, P. Hyphan—ein analytischer Azo-Chelatbildner zur Extraktion von Schwermetallspuren, speziell von Cu und U. Fresenius Z. Für Anal. Chem. 1981, 306, 233–239. [Google Scholar] [CrossRef]
- Burba, P. Labile/inert metal species in aquatic humic substances: An ion-exchange study. Fresenius J. Anal. Chem. 1994, 348, 301–311. [Google Scholar] [CrossRef]
- Mohr, G.J.; Wolfbeis, O.S. Optical sensors for a wide pH range based on azo dyes immobilized on a novel support. Anal. Chim. Acta 1994, 292, 41–48. [Google Scholar] [CrossRef]
- Mohr, G.J.; Kassal, P.; Žuvić, I.; Krawczyk, K.K.; Steinberg, M.D.; Steinberg, I.M. Design of halochromic cellulosic materials and smart textiles for continuous wearable optical monitoring of epidermal pH. Microchim. Acta 2025, 192, 405. [Google Scholar] [CrossRef]
- Arroyo, M.J.; Orbe-Payá, I.D.; Ortega-Muñoz, M.; Vilar-Tenorio, J.; Gallego, D.; Mohr, G.J.; Capitán-Vallvey, L.F.; Erenas, M.M. Capillary microfluidic platform for sulfite determination in wines. Sens. Actuators B Chem. 2022, 359, 131549. [Google Scholar] [CrossRef]
- Schaude, C.; Meindl, C.; Fröhlich, E.; Attard, J.; Mohr, G.J. Developing a sensor layer for the optical detection of amines during food spoilage. Talanta 2017, 170, 481–487. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Y.; Zhou, Z.; Xiao, J.; Xu, T.; Zhang, X. Epidermal wearable optical sensors for sweat monitoring. Commun. Mater. 2024, 5, 77. [Google Scholar] [CrossRef]
- Vavrinsky, E.; Esfahani, N.E.; Hausner, M.; Kuzma, A.; Rezo, V.; Donoval, M.; Kosnacova, H. The Current State of Optical Sensors in Medical Wearables. Biosensors 2022, 12, 217. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Martinez-Hurtado, J.L.; Ünal, B.; Khademhosseini, A.; Butt, H. Wearables in Medicine. Adv. Mater. 2018, 30, 1706910. [Google Scholar] [CrossRef]
- Cisneros-García, Z.N.; Nieto-Delgado, P.G.; Rodríguez-Zavala, J.G. Conformational analysis on protonation and deprotonation of calmagite in protic solvents and its reactivity through Fukui function. Dyes Pigments 2015, 121, 188–198. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Persson, I.J.P.; Chemistry, A. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 2010, 82, 1901–1917. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Found. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Oral, I.; Ott, F.; Abetz, V. Thermodynamic study of crown ether–lithium/magnesium complexes based on benz-1, 4-dioxane and its homologues. Phys. Chem. Chem. Phys. 2022, 24, 11687–11695. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.S.; Ismail, N.S.; Gaber, N.S.; Elzanfaly, E.S. A chemically modified solid-state sensor for magnesium (ii) ions and esomeprazole magnesium potentiometric assay. RSC Adv. 2023, 13, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Farahani, S.; Glasco, D.L.; Elhassan, M.M.; Sireesha, P.; Bell, J.G. Integration of 3D printed Mg2+ potentiometric sensors into microfluidic devices for bioanalysis. Lab A Chip 2024, 24, 4096–4104. [Google Scholar] [CrossRef]
- Ataş, H.B.; Kenar, A.; Taştekin, M. An electronic tongue for simultaneous determination of Ca2+, Mg2+, K+ and NH4+ in water samples by multivariate calibration methods. Talanta 2020, 217, 121110. [Google Scholar] [CrossRef]
- Lewińska, I.; Ścibisz, M.; Tymecki, Ł. Microfluidic paper-based analytical device for simultaneous determination of calcium and magnesium ions in human serum. Anal. Chim. Acta 2024, 1308, 342639. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, L.; Yang, C.; Shen, N.; Gao, J.; Ma, Z.; Kong, W.; Liu, L.; Li, B.; He, J. Flexible Wearable Microfluidic Colorimetric Sensor for Multiplex Bioenzyme-Free Detection of Creatinine, Urea, and Magnesium Ions in Sweat. ACS Appl. Mater. Interfaces 2025, 17, 36444–36454. [Google Scholar] [CrossRef] [PubMed]
- Jedrzejewski, W.; Skrzypek, S. The use of calmagite in the differential pulse polarographic-determination of magnesium. Chem. Anal. 1993, 38, 95–102. [Google Scholar]
- Kocyła, A.; Pomorski, A.; Krężel, A. Molar absorption coefficients and stability constants of metal complexes of 4-(2-pyridylazo) resorcinol (PAR): Revisiting common chelating probe for the study of metalloproteins. J. Inorg. Biochem. 2015, 152, 82–92. [Google Scholar] [CrossRef]








| Sensor Type | Transduction Mechanism | Ionophore/ Chromophore Used | LOD | Working Range | Selectivity | Response Time | Reversibility | Target Sample Matrix | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| ISE | Potentiometric | Esomeprazole–magnesium | 4.13 × 10−6 mol L−1 | 1.41 × 10−5 mol L−1 to 1 × 10−2 mol L−1 | Selective | 8–10 s | Reversible | Drug substance | [58] |
| Three-dimensional printed ISE | Potentiometric | Magnesium ionophore I (C49H94N6O6) | 0.039 mM | 0.039–10 mM | Selective | - | Reversible | Biofluids | [59] |
| ISE | Potentiometric | MgI-1 | - | 1 × 10−4 to 1 × 10−2 | Partially selective | - | Irreversible | Aqueous solutions | [60] |
| Optode | Fluorescence | 2-(2-hydroxy-3-naphthyl)-4-methylbenzoxazole (HNBO) fluorophore | 6.0 × 10−7 M | 0–1.2 × 10−5 M | Selective | - | - | Aqueous solutions | [18] |
| Microfluidic paper-based sensor | Colourimetric | Xylidyl Blue with EGTA | 0.04 mM | 0 to 1 mM | Selective | 10 min | Irreversible | Human serum | [61] |
| Wearable microfluidic colourimetric detection device | Colourimetric | Chrome Black T | 0.4 mM | 0.5–8 mM | Selective in the presence of Na+, K+ and Ca2+ | 10 min | Irreversible | Sweat | [62] |
| CFH (Present work) | Colourimetric | Hyphan I | 0.089 mM | 0.625–5 mM | Selective in the presence of Na+, K+ and Ca2+ Interference by Fe3+, Cu2+, Zn2+ | 2 min | Reversible | Aqueous solution |
| Sample | c(Mg2+)/mM Declared | c(Mg2+)/mM Measured with CFH | Relative Error/% |
|---|---|---|---|
| Laboratory-prepared sample | 0.625 | 0.622 | 0.5% |
| Rommerquelle® | 2.50 | 2.36 | 5.6% |
| Mg++ Mivela® | 4.70 | 4.50 | 4.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Karneluti, I.; Joshy, D.; Mohr, G.J.; Schaude, C.; Steinberg, M.D.; Steinberg, I.M. Biocompatible and Flexible Cellulose Film for the Reversible Colourimetric Monitoring of pH and Mg (II). Sensors 2026, 26, 880. https://doi.org/10.3390/s26030880
Karneluti I, Joshy D, Mohr GJ, Schaude C, Steinberg MD, Steinberg IM. Biocompatible and Flexible Cellulose Film for the Reversible Colourimetric Monitoring of pH and Mg (II). Sensors. 2026; 26(3):880. https://doi.org/10.3390/s26030880
Chicago/Turabian StyleKarneluti, Iva, Deepak Joshy, Gerhard J. Mohr, Cindy Schaude, Matthew D. Steinberg, and Ivana Murković Steinberg. 2026. "Biocompatible and Flexible Cellulose Film for the Reversible Colourimetric Monitoring of pH and Mg (II)" Sensors 26, no. 3: 880. https://doi.org/10.3390/s26030880
APA StyleKarneluti, I., Joshy, D., Mohr, G. J., Schaude, C., Steinberg, M. D., & Steinberg, I. M. (2026). Biocompatible and Flexible Cellulose Film for the Reversible Colourimetric Monitoring of pH and Mg (II). Sensors, 26(3), 880. https://doi.org/10.3390/s26030880

