High-Precision Detection of Earth’s Free Oscillation Signals with Consideration of Phase Consistency
Abstract
1. Introduction
2. Normal Modes Frequency and Phase Detection Methods
2.1. Stacking Methods
2.2. Unbiased Phase Detection Based on NTFT
- (1)
- NTFT Theory
- (2)
- Unbiased Phase Detection
3. Asynchronous Oscillation Verification
3.1. Data Preparation
3.2. OSE Method’s Dependence on the Number and Combination of Stations
3.3. NTFT Unbiased Phase Information Extraction
4. Normal Models Detection Considering Phase Consistency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NTFT | Normal Time-Frequency Transform |
| OSE | Optimal Sequence Estimation |
References
- Melchior, P. The Tides of the Planet Earth; Pergamon Press: New York, NY, USA, 1983; pp. 81–200. [Google Scholar]
- Zhang, Y.; Xu, G.; Wang, C.; Zhao, Y.; Mu, Z.; Fan, Y.; Jing, C. Detection of Earth’s free oscillation and analysis of the non-synchronous oscillation phenomenon of normal modes. Geosci. Front. 2025, 16, 101957. [Google Scholar] [CrossRef]
- Emad, S.; Babak, S. Free oscillations of porous multi-graded graphene oxide nanocomposites coupled hemispherical-cylindrical shell-configuration structures under various edge constraints. Eng. Struct. 2023, 295, 116850. [Google Scholar]
- Sun, H.; Xu, J.; Cui, X. Research progress on Geodynamics and internal structure of gravitational fields. Acta Geod. Cartogr. Sin. 2017, 46, 1290–1299. [Google Scholar]
- Zhang, G.; Xu, J.; Chen, X.; Zhang, L.; Sun, H.; Gong, L. The low-frequency Earth ring free oscillation and its spectral peak splitting induced by the 2011 Tohoku earthquake in Japan were detected using borehole strain data. Chin. J. Geophys. 2024, 67, 1383–1397. [Google Scholar]
- Sun, H.; Chen, X.; Wei, Z.; Zhang, M.; Zhang, G.; Ni, S.; Chu, R.; Xu, J.; Cui, X.; Xing, L. A Preliminary Study on Deep Earth Ultra-Wideband Background Noise Based on Seismic and Gravity Observations. Chin. J. Geophys. 2022, 65, 4543–4554. [Google Scholar]
- Ge, T.; Zhou, X. A Brief Discussion on the Free Oscillation and Normal Mode of Elastic Earth. Innov. Sci. Technol. 2023, 12, 225–228. [Google Scholar]
- Wei, L.; Shen, W. Research Progress on translational oscillation modes of the Earth’s Core. Adv. Earth Sci. 2021, 36, 461–471. [Google Scholar]
- Zeng, S.; Shen, W. Detection of Ultra-Low Frequency Earth Free Oscillation Mode Splitting Signals using EEMD and Superconducting gravity Data: Detection Examples. Geod. Geodyn. 2016, 36, 698–702+707. [Google Scholar]
- Kang, Q.; Yu, Y.; Gu, Q.; Li, L.; Liu, F.; Wang, W.; Yang, Y.; Wang, J.; Xu, T.; Zhou, Y.; et al. Focal mechanism and seismogenic structure of the MS5.0 earthquake in Dafeng Sea Area, Jiangsu Province on 17 November 2021. Chin. J. Geophys. 2025, 68, 1884–1895. [Google Scholar]
- Qiu, Z.; Tang, L.; Zhao, S.; Guo, Y. The fundamental principle of solving the source moment tensor using strain seismic observation. Chin. J. Geophys. 2020, 63, 551–561. [Google Scholar]
- Ren, Y.; Yao, Z.; Wu, Q.; Wu, S.-C.; Vavrycuk, V.; Zhao, L. Inversion of the focal mechanism of small and micro earthquakes using P-wave initial motion amplitude. Chin. J. Geophys. 2020, 68, 1808–1825. [Google Scholar]
- Moulik, P.; Ekström, G. The relationships between large-scale variations in shear velocity, density, and compressional velocity in the Earth’s mantle. J. Geophys. Res. Solid Earth 2016, 121, 2737–2771. [Google Scholar] [CrossRef]
- Tonatiuh, R.; Héctor, L.; Gabriel, D.; Luis, R.; Armando, A.-M.; Héctor, L. Source parameters, focal mechanisms and stress tensor inversion from moderate earthquakes and its relationship with subduction Zone. Geofís. Int. 2019, 58, 127–137. [Google Scholar]
- Jiang, Y.; Liu, Z.; Zhang, X. Constraint of focal parameters of the Illapel MW8.3 earthquake in Chile on September 16, 2015 using superconducting gravity data. Geod. Geodyn. 2020, 40, 1223–1227. [Google Scholar]
- Mustać, M.; Tkalčić, H. Point source moment tensor inversion through a Bayesian hierarchical model. Geophys. J. Int. 2016, 204, 311–323. [Google Scholar] [CrossRef]
- Courtier, N.; Ducarme, B.; Goodkind, J.; Hinderer, J.; Imanishi, Y.; Seama, N.; Sun, H.; Merriam, J.; Bengert, B.; Smylie, D.E. Global superconducting gravimeter observations and the search for the translational modes of the inner core. Phys. Earth Planet. Inter. 2000, 117, 3–20. [Google Scholar] [CrossRef]
- Buland, R.; Berger, J.; Gilbert, F. Observations from the IDA network of attenuation and splitting during a recent earthquake. Nature 1979, 277, 358–362. [Google Scholar] [CrossRef]
- Ding, H.; Shen, W. Comparative Study of MSE Technology and SHS Method for Detecting First-Order Modal Triple Splitting. Chin. J. Geophys. 2013, 56, 3313–3323. [Google Scholar]
- Ding, H.; Shen, W. Search for the Slichter modes based on a new method: Optimal sequence estimation. J. Geophys. Res. Solid Earth 2013, 118, 5018–5029. [Google Scholar] [CrossRef]
- Shen, W.; Wei, L. Detection of Slichter Mode Triple Splitting Signals using Superconducting Gravity Data. Chin. J. Geophys. 2016, 59, 840–851. [Google Scholar]
- Josipa, M.; Séverine, R.; Sophie, L.; Yves, R. Testing performances of the optimal sequence estimation and autoregressive method in the frequency domain for estimating eigenfrequencies and zonal structure coefficients of low-frequency normal modes. Geophys. J. Int. 2019, 216, 1157–1176. [Google Scholar]
- Chao, F.B.; Gilbert, F. Autoregressive estimation of complex eigenfrequencies in low frequency seismic spectra. Geophys. J. Int. 1980, 63, 641–657. [Google Scholar] [CrossRef]
- Roult, G.; Roch, J.; Clévédé, E. Observation of split modes from the 26th December 20o4 Sumatra-Andaman mega-event. Phys. Earth Planet. Int. 2010, 179, 45–59. [Google Scholar] [CrossRef]
- Shen, W.B.; Wu, B. A case study of detecting the triplet of 3S1 using superconducting gravimeter records with an alternative data preprocessing technique. Ann. Geophys. 2012, 55, 293–300. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, G.; Wang, C.; Mu, Z.; Zhao, Y. Earth Free Oscillation Model Detection Based on NTFT. Geod. Geodyn. 2025, 45, 86–90. [Google Scholar]
- Liu, L.T.; Hsu, H. Time-Frequency Transform: Inversion and Normalization; Hubei Science and Technology Press: Wuhan, China, 2009; pp. 15–19.
- Liu, L.T.; Hsu, H. Inversion and normalization of time-frequency transform. Appl. Math. Inf. Sci. 2012, 6, 67–74. [Google Scholar]
- Liu, L.; Su, X.; Wang, G. Discussion on Standard Time-Frequency Transformation. J. Navig. Position. 2016, 4, 1–4+23. [Google Scholar]
- Boy, J.P.; Rosat, S.; Hinderer, J.; Littel, F. Superconducting Gravimeter Data from Strasbourg-Level 1. GFZ Data Services. 2017. Available online: https://dataservices.gfz-potsdam.de/igets/showshort.php?id=escidoc:2308899 (accessed on 2 November 2024).
- Masters, G.; Gilbert, F. Attenuation in the earth at low frequencies Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1983, 308, 479–522. [Google Scholar]
- Dahlen, F.A. The effect of data windows on the estimation of free oscillations parameters. Geophys. J. R. Astron. Soc. 1982, 69, 537–549. [Google Scholar] [CrossRef]











| Station Name | Number | Instrument Name | Longitude (°) | Latitude (°) | Elevation (m) |
|---|---|---|---|---|---|
| Wettzell | WE-1 WE-2 | GWR CD029_U GWR CD029_L | 12.878 | 49.144 | 613.700 |
| Walferdange | WA | OSG-CT40 | 6.1528 | 49.6647 | 295.000 |
| Vienna | VI | GWR C025 | 16.3579 | 48.2493 | 192.440 |
| TIGO Concepcion | TC | GWR RT038 | −73.025649 | −36.84376 | 156.140 |
| Sutherland | SU-1 SU-2 | D037_U D037_L | 20.8109 | −32.3814 | 1791.000 |
| Ny-Alesund | NY | GWR C039 | 11.86717 | 78.93061 | 43.000 |
| Moxa | MO-1 MO-2 | CD034_U CD034_L | 11.6160 | 50.645 | 455.000 |
| Metsahovi | ME | GWR T020 | 24.3958 | 60.2172 | 55.600 |
| Strasbourg | ST | GWR C026 | 7.6838 | 48.6217 | 180.000 |
| Membach | MB | GWR C021 | 6.0066 | 50.6093 | 250.000 |
| Kamioka | KA | GWR T016 | 137.3084 | 36.4253 | 358.000 |
| Canberra | CB | GWR C031 | 149.00766 | −35.32064 | 762.749 |
| Bad Homburg | BH-1 BH-2 | GWR CD030_U GWR CD030_L | 8.6113 | 50.2285 | 190.000 |
| Splitting Modes | m = −1 (mHZ) | m = 0 (mHZ) | m = 1 (mHZ) |
|---|---|---|---|
| PREM | 0.942267 | 0.944215 | 0.945472 |
| Stations used in Figure 2a | 0.943 | \ | 0.9453 |
| Stations used in Figure 2b | 0.9424 | 0.944 | 0.9455 |
| Stations used in Figure 3a | 0.9427 | \ | 0.9455 |
| Stations used in Figure 3b | 0.9429 | 0.94467 | 0.94537 |
| Phase Difference Relative to the Reference Signal (°) | Frequency Deviation of OSE Results for Combinations with Reference Stations (μHz) |
|---|---|
| 0 | 0.0625 |
| 20 | 0.0966 |
| 40 | 0.1067 |
| 60 | 0.1087 |
| 80 | 0.1208 |
| 100 | 0.1167 |
| 120 | 0.1207 |
| 140 | 0.0966 |
| 160 | 0.0725 |
| 180 | 0.0621 |
| Seismic Events | Results for Stations with Nearly Identical Phases (mHz) | Results for Stations with Nearly Opposite Phases (mHz) | Deviations for Stations with Nearly Opposite Phases (μHz) | Results for Stations with Significant Phase Deviations (mHz) | Deviations for Stations with Significant Phase Deviations (μHz) |
|---|---|---|---|---|---|
| Japan Earthquake (11 March 2011) | 0.942251 | 0.942492 | 0.241 | 0.942565 | 0.314 |
| Chile Earthquake (27 February 2010) | 0.942251 | 0.942734 | 0.483 | 0.942395 | 0.144 |
| Sumatra Earthquake (26 December 2004) | 0.942202 | 0.942637 | 0.435 | 0.942561 | 0.359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, Y.; Xu, G.; Zhang, H.; Sun, X. High-Precision Detection of Earth’s Free Oscillation Signals with Consideration of Phase Consistency. Sensors 2026, 26, 492. https://doi.org/10.3390/s26020492
Zhao Y, Xu G, Zhang H, Sun X. High-Precision Detection of Earth’s Free Oscillation Signals with Consideration of Phase Consistency. Sensors. 2026; 26(2):492. https://doi.org/10.3390/s26020492
Chicago/Turabian StyleZhao, Yaxin, Gong Xu, Hanwei Zhang, and Xiuhua Sun. 2026. "High-Precision Detection of Earth’s Free Oscillation Signals with Consideration of Phase Consistency" Sensors 26, no. 2: 492. https://doi.org/10.3390/s26020492
APA StyleZhao, Y., Xu, G., Zhang, H., & Sun, X. (2026). High-Precision Detection of Earth’s Free Oscillation Signals with Consideration of Phase Consistency. Sensors, 26(2), 492. https://doi.org/10.3390/s26020492
