A Score-Fusion Method Based on the Sine Cosine Algorithm for Enhanced Multimodal Biometric Authentication
Abstract
1. Introduction
- Simplicity: Score-level fusion is relatively simple to implement in terms of the algorithms required and the amount of data needed. This makes it a good choice for applications where resources are limited.
- Efficiency: Score-level fusion is also very efficient, meaning that it can be implemented to run quickly on low-powered devices. This is important for applications where real-time performance is critical.
- Robustness: Score-level fusion is robust to noise and environmental variations, meaning it can still perform well even when the biometric data is of poor quality or the system operates in a challenging environment.
- Flexibility: Score-level fusion can combine the matching scores from any biometric modality, making it a very flexible fusion method.
Problem Statement
- 1-
- Proposes a novel SCA-based adaptive score fusion framework for multimodal biometrics;
- 2-
- Demonstrates superior performance over PSO and GWO using various performance metrics.
- 3-
- Validates the approach on realistic iris-face combinations using CASIA and ORL datasets
2. Related Works
2.1. Feature-Level Fusion
2.2. Score-Level
2.3. Decision-Level Fusion
3. Methodology
| Algorithm 1. SCA-based score fusion algorithm |
| Input: Population size , number of iterations , the mean intra/inter scores (), the maximum intra/inter scores (), the minimum intra/inter scores (), the median intra/inter scores (), the sum intra/inter scores (), and tanh intra/inter scores (). Output: The best score fusion parameters .
|
4. Result Evaluation and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dargan, S.; Kumar, M. A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Syst. Appl. 2020, 143, 113114. [Google Scholar] [CrossRef]
- Sarangi, P.P.; Nayak, D.R.; Panda, M.; Majhi, B. A feature-level fusion-based improved multimodal biometric recognition system using ear and profile face. J. Ambient Intell. Humaniz. Comput. 2021, 13, 1867–1898. [Google Scholar] [CrossRef]
- Srivastava, R.; Bhardwaj, V.P.; Othman, M.T.; Pushkarna, M.; Anushree Mangla, A.; Bajaj, M.; Rehman, A.U.; Shafiq, M.; Hamam, H. Match-Level Fusion of Finger-Knuckle Print and Iris for Human Identity Validation Using Neuro-Fuzzy Classifier. Sensors 2022, 22, 3620. [Google Scholar] [CrossRef] [PubMed]
- Devi, D.V.; Rao, K.N. Decision-level fusion schemes for a Multimodal Biometric System using local and global wavelet features. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Virtual, 2–4 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Waisy, A.; Qahwaji, R.; Ipson, S.; Al-Fahdawi, S.; Nagem, T.A.M. A Multi-biometric iris recognition system based on a deep learning approach. Pattern Anal. Appl. 2018, 21, 783–802. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Omar, B.; Majeed, H.; Hashim, S.Z.; Al-Ani, M.S. New Feature-level Algorithm for a Face-fingerprint Integral Multi-biometrics Identification System. UHD J. Sci. Technol. 2022, 6, 12–20. [Google Scholar] [CrossRef]
- Kumar, T.; Bhushan, S.; Jangra, S. Ann trained and WOA optimized feature-level fusion of iris and Fingerprint. Mater. Today Proc. 2021, 51, 1–11. [Google Scholar] [CrossRef]
- Sengar, S.S.; Rajkumar, K. Multimodal Biometric Authentication System Using Deep Learning Method. In Proceedings of the 2020 International Conference on Emerging SmartComputing and Informatics (ESCI), Pune, India, 12–14 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 309–312. [Google Scholar] [CrossRef]
- Vinothkanna, R.; Wahi, A. A multimodal biometric approach for the recognition of Fingerprint, palm print and hand vein using fuzzy vault. Int. J. Biomed. Eng. Technol. 2020, 33, 54–76. [Google Scholar] [CrossRef]
- Mahmoud, R.O.; Selim, M.M.; Muhi, O.A. Fusion Time Reduction of a Feature Level Based Multimodal Biometric Authentication System. Int. J. Sociotechnol. Knowl. Dev. 2020, 12, 67–83. [Google Scholar] [CrossRef]
- Garg, M.; Arora, A.S.; Gupta, S. A novel feature biometric fusion approach for iris, speech, and signature. Comput. Methods Mater. Sci. 2020, 20, 63–71. [Google Scholar] [CrossRef]
- Tharewal, S.; Malche, T.; Tiwari, P.K.; Jabarulla, M.Y.; Alnuaim, A.A.; Mostafa, A.M.; Ullah, M.A. Score-Level Fusion of 3D Face and 3D Ear for Multimodal Biometric Human Recognition. Comput. Intell. Neurosci. 2022, 2022, 3019194. [Google Scholar] [CrossRef]
- Joseph, A.A.; Ho Lian, A.N.; Kipli, K.; Lee Chin, K.; Awang Mat, D.A.; Chin Voon, C.S.; Sing Ngie, D.C.; Sze Song, N. Person Verification Based on Multimodal Biometric Recognition. Pertanika J. Sci. Technol. 2021, 30, 161–183. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, D.; Jia, P.; Dai, Y.; Xu, X. An Efficient Android-Based Multimodal Biometric Authentication System with Face and Voice. IEEE Access 2020, 8, 102757–102772. [Google Scholar] [CrossRef]
- Herbadji, A.; Guermat, N.; Ziet, L.; Akhtar, Z.; Dasgupta, D. Weighted quasi-arithmetic mean-based score level fusion for Multi-biometric systems. IET Biom 2020, 9, 91–99. [Google Scholar] [CrossRef]
- Rane, M.E.; Bhadade, U.S. Multimodal score level fusion for recognition using Face and palmprint. Int. J. Electr. Eng. Educ. 2025, 62, 37–55. [Google Scholar] [CrossRef]
- Aizi, K.; Ouslim, M. Score level fusion in Multi-biometric identification based on zones of interest. J. King Saud Univ. Comput. Inf. Sci. 2019, 34, 1498–1509. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zhang, Q. Gated Multimodal Fusion for Biometric Authentication. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2105–2116. [Google Scholar]
- Zhang, L.; Chen, X.; Li, W. Transformer-Based Score Fusion for Multimodal Biometrics. Pattern Recognit. Lett. 2023, 175, 45–52. [Google Scholar]
- Iloanusi, O.N.; Ejiogu, U.C. Gender classification from fused multi-fingerprint types. Inf. Secur. J. A Glob. Perspect. 2020, 29, 209–219. [Google Scholar] [CrossRef]
- Naik, A.K.; Holambe, R.S. Joint Encryption and Compression scheme for a multimodal tele biometric system. Neurocomputing 2016, 191, 69–81. [Google Scholar] [CrossRef]
- Sharifi, O.; Eskandari, M. Optimal Face-Iris Multimodal Fusion Scheme. Symmetry 2020, 8, 48. [Google Scholar] [CrossRef]
- Li, C.; Hu, J.; Pieprzyk, J.; Susilo, W. A New Bio Cryptosystem-Oriented Security Analysis Framework and Implementation of Multi-biometric Cryptosystems Based on Decision Level Fusion. IEEE Trans. Inf. Forensics Secur. 2015, 10, 1193–1206. [Google Scholar] [CrossRef]
- Azom, V.; Adewumi, A.O.; Tapamo, J. Face and Iris biometrics person identification using hybrid fusion at feature and score-level. In Proceedings of the 2015 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech), Grahamstown, South Africa, 26–27 November 2015; pp. 207–212. [Google Scholar] [CrossRef]
- Balraj, E.; Abirami, T. Performance Improvement of Multi-biometric Authentication System Using Score Level Fusion with Ant Colony Optimization. Wirel. Commun. Mob. Comput. 2022, 2022, 4145785. [Google Scholar] [CrossRef]
- CASIA. Chinese Academy of Sciences, 2020. CASIA Iris Image Database, v3. Available online: http://english.ia.cas.cn/db/201610/t20161026_169399.html (accessed on 24 December 2025).
- ORL, AT&T Laboratories Cambridge, 2001, ORL Face Image Database, v1. Available online: http://cam-orl.co.uk/facedatabase.html (accessed on 24 December 2025).
- Libor, M.; Peter, K. MATLAB Source Code for a Biometric Identification System Based on Iris Patterns. Bachelor’s Thesis, The School of Computer Science and Software Engineering, The University of Western Australia, Crawley, WA, USA, 2003. [Google Scholar]
- Hamouda, E.; Ouda, O.; Yuan, X.; Hamza, T. Optimizing Discriminability of Globally Binarized Face Templates. Arab. J. Sci. Eng. 2016, 41, 2837–2846. [Google Scholar] [CrossRef]
- Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M. Lewis A Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Jain, A.; Ross, A.; Prabhakar, S. An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 4–20. [Google Scholar] [CrossRef]




| Biometric Trait Used | Algorithm | Database | Size | Recognition Accuracy |
|---|---|---|---|---|
| Face & Fingerprint | Dis-Eigen [7] | AUMI | 160 | 93.7% |
| Iris& Fingerprint | ANN Trained and WOA optimized [8] | CASIA V1.0 & FVC2004 DB1 | 100 | 98.3% |
| Ear & profile face | CNN (Alex Net, VGG16 and Google Net) [2] | UND-E & UND-j2 | 114; 273 | 99% |
| Fingerprint & Palmprint | DNN [9] | Chimeric | NM | 97.6% |
| Fingerprint, Palmprint &Hand-vein | Fuzzy Vault [10] | CASIA | NM | 98.5% |
| Iris & Face | R-HoG [11] | SDUMLA-HMT | NM | 99% |
| Iris, Speech & Signature | 2D PCA, SIFT, ANN Classifier [12] | A mixture of standard and real-time data set | 500 | 96–98% |
| Biometric Trait Used | Algorithm | Database | Size | Recognition Accuracy |
|---|---|---|---|---|
| 3D-face & 3D-ear | PCA for 3D face & ICP for 3D ear [13] | FRGC & UND-F, G | 557; 302; 235 | 99.25% |
| Iris & finger-knuckle-print | SIFT, PCA, neuro-fuzzy neural network [3] | CASIA & Poly-U | NM | 98% |
| Face & Fingerprint | CNN & ORB [14] | UCI Database | 400; 120 | 99.38% |
| Face & Voice | LBP & VAD [15] | XJTU Database | 102 | 98% |
| Fingerprint & Face | WQAM [16] | NIST-BSSR1 | 517 | 97.22% |
| Palm print & Face | ROI- t-norm [17] | Face 94, Face 95, Face 96, FERET, FRGC & IITD | 600 | 99.7% |
| Iris & Fingerprint | BCC, BFL, K-means, Decision Tree and Fuzzy Logic [18] | CASIA Iris V4 & CASIA Fingerprint V5 | 1100 | 94.4–95% |
| Biometric Trait Used | Algorithm | Database | Size | Recognition Accuracy |
|---|---|---|---|---|
| Palmprint & Face | Wavelet sub-bands, Nearest Neighbor Classifier [4] | ORL & Yale & ILT-Delhi | 330 | 98.12% |
| Multiple Fingerprint | CNN [21] | Novel dataset | 500 | 94.7% |
| Face & fingerprint | Joint Encryption and Compression technique [22] | FEI & NIST | 400 | 97% |
| Face & Iris | OR rule [23] | CASIA-Iris-Distance | 1420 | 98.9% |
| Fingerprints of different fingers | Multi-finger feature encrypted by a hash function [24]. | Novel dataset | 1500 | 95.76% |
| Face & Iris | Majority voting [25] | ORL & CASIA | 400 | 98.75% |
| Parameters | Value | Algorithm |
|---|---|---|
| Pop size | 150 | SCA + PSO + GWO |
| Iterations | 1000 | |
| Solution dimension | 7 | |
| a | 2.0 | SCA + GWO |
| Inertia weight(w) | 1.0 | PSO |
| Acceleration coefficients (c1) | 2.0 | PSO |
| Acceleration coefficients (c2) | 2.0 | PSO |
| Model | FAR (%) | FRR (%) | EER (%) |
|---|---|---|---|
| Left Iris | 1.64 | 12.58 | 7.11 |
| Right Iris | 8.54 | 15.00 | 11.77 |
| Face | 4.61 | 21.17 | 12.89 |
| Proposed (Left iris + Right iris) | 1.48 | 5.13 | 3.30 |
| Proposed (Left iris + Face) | 1.33 | 4.50 | 2.91 |
| Proposed (Right iris + Face) | 3.79 | 5.29 | 4.54 |
| Proposed (Left iris + Right iris + Face) | 0.76 | 1.25 | 1.003 |
| Model | SCA | GWO | PSO |
|---|---|---|---|
| Left iris + Right iris | 3.30 | 5.74 | 3.31 |
| Left iris + Face | 2.91 | 4.38 | 3.42 |
| Right iris + Face | 4.54 | 6.55 | 4.53 |
| Left iris + Right iris + Face | 1.003 | 3.41 | 1.49 |
| Model | SCA | GWO | PSO |
|---|---|---|---|
| Left iris + Right iris | 6.918 | 5.560 | 4.972 |
| Left iris + Face | 3.606 | 2.954 | 3.575 |
| Right iris + Face | 3.326 | 3.435 | 3.343 |
| Left iris + Right iris + Face | 5.683 | 4.429 | 5.582 |
| Model | SCA | GWO | PSO |
|---|---|---|---|
| Left iris +Right iris | 53.58 | 19.27 | 53.45 |
| Left iris + Face | 59.07 | 38.40 | 51.90 |
| Right iris + Face | 61.43 | 44.35 | 61.51 |
| Left iris + Right iris + Face | 85.89 | 52.03 | 79.04 |
| Method | Time (ms) |
|---|---|
| SCA | 9410 |
| GWO | 9800 |
| PSO | 10,940 |
| Reference | Year | Biometric Modality | Fusion Type | EER (%) |
|---|---|---|---|---|
| [12] | 2020 | Iris + Signature + Speech | Feature-Level | 4.00 |
| [25] | 2015 | Face + Iris | Decision-Level | 1.25 |
| [14] | 2021 | Face + Fingerprints | Score-Level | 0.62 |
| [16] | 2020 | Face + Fingerprints | Score-Level | 2.78 |
| Proposed | - | Left iris + Right iris | Score-Level | 3.30 |
| Proposed | - | Left iris + Face | Score-Level | 2.91 |
| Proposed | - | Right iris + Face | Score-Level | 4.54 |
| Proposed | - | Left iris + Right iris + Face | Score-Level | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hamouda, E.; Alaerjan, A.S.; Mostafa, A.M.; Tarek, M. A Score-Fusion Method Based on the Sine Cosine Algorithm for Enhanced Multimodal Biometric Authentication. Sensors 2026, 26, 208. https://doi.org/10.3390/s26010208
Hamouda E, Alaerjan AS, Mostafa AM, Tarek M. A Score-Fusion Method Based on the Sine Cosine Algorithm for Enhanced Multimodal Biometric Authentication. Sensors. 2026; 26(1):208. https://doi.org/10.3390/s26010208
Chicago/Turabian StyleHamouda, Eslam, Alaa S. Alaerjan, Ayman Mohamed Mostafa, and Mayada Tarek. 2026. "A Score-Fusion Method Based on the Sine Cosine Algorithm for Enhanced Multimodal Biometric Authentication" Sensors 26, no. 1: 208. https://doi.org/10.3390/s26010208
APA StyleHamouda, E., Alaerjan, A. S., Mostafa, A. M., & Tarek, M. (2026). A Score-Fusion Method Based on the Sine Cosine Algorithm for Enhanced Multimodal Biometric Authentication. Sensors, 26(1), 208. https://doi.org/10.3390/s26010208

