Vision-Based Hand Function Evaluation with Soft Robotic Rehabilitation Glove
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Vision-Based Evaluation System
2.2. Data Collection
2.3. Training and Fine-Tuning
2.4. Implementation Details
3. Results
3.1. Joint Angle Accuracy
3.2. Qualitative Results
3.3. Ablation Study: 3D Joint Accuracy and Kinematic Smoothness
- Mean per Joint Angular Velocity Error MPJAVE This was computed as the mean absolute difference between the predicted and ground-truth angular velocities (in °/s) of each joint. This metric reflects how well the model captured the motion dynamics, i.e., the speed consistency of each finger joint during flexion and extension. A smaller MPJAVE indicates more temporally stable motion estimation.
- Angular SPARC Error: This is derived from the spectral arc length SPARC metric, a frequency-domain measure of motion smoothness [26]. The SPARC quantifies how smoothly a joint angle trajectory evolves over time by integrating the curvature of its amplitude spectrum. Here, we report the absolute SPARC difference between the estimated and ground-truth trajectories, where lower values denote higher smoothness consistency.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HaMeR | Hand mesh reconstruction |
| ROM | Range of motion |
| MPJAE | Mean per joint angle error |
| MPJAVE | Mean per joint angular velocity error |
| FMA | Fugl-Meyer Assessment |
| MMIB | Mesh-Mano interaction block |
| CNN | Convolutional neural network |
| GCN | Graph convolutional network |
| MCP | Metacarpophalangeal joint |
| PIP | Proximal interphalangeal joint |
| DIP | Distal interphalangeal joint |
| TM | Trapeziometacarpal joint |
| IP | Interphalangeal joint |
| PCK | Percentage of correct keypoints |
| APCK | Angle percentage of correct keypoints |
| AUC | Area under the curve |
| SPARC | Spectral arc length |
References
- Meng, F.; Liu, C.; Li, Y.; Hao, H.; Li, Q.; Lyu, C.; Wang, Z.; Ge, G.; Yin, J.; Ji, X.; et al. Personalized and Safe Soft Glove for Rehabilitation Training. Electronics 2023, 12, 2531. [Google Scholar] [CrossRef]
- Zhang, Y.; Orban, M.; Wu, Y.; Liu, C.; Wang, J.; Elsamanty, M.; Yang, H.; Guo, K. A review of soft robotics and soft rehabilitation gloves: Exploring alternative soft robots actuation techniques. Int. J. Intell. Robot. Appl. 2025, 9, 1368–1393. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, K.; Tao, H.; Liu, J. A Soft Wearable Modular Assistive Glove Based on Novel Miniature Foldable Pouch Motor Unit. Adv. Intell. Syst. 2025, 7, 2500274. [Google Scholar] [CrossRef]
- Proulx, C.E.; Beaulac, M.; David, M.; Deguire, C.; Haché, C.; Klug, F.; Kupnik, M.; Higgins, J.; Gagnon, D.H. Review of the effects of soft robotic gloves for activity-based rehabilitation in individuals with reduced hand function and manual dexterity following a neurological event. J. Rehabil. Assist. Technol. Eng. 2020, 7, 2055668320918130. [Google Scholar] [CrossRef] [PubMed]
- Kottink, A.I.; Nikamp, C.D.; Bos, F.P.; Sluis, C.K.v.d.; Broek, M.v.d.; Onneweer, B.; Stolwijk-Swüste, J.M.; Brink, S.M.; Voet, N.B.; Rietman, J.S.; et al. Therapy effect on hand function after home use of a wearable assistive soft-robotic glove supporting grip strength. PLoS ONE 2024, 19, e0306713. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Xiao, Y.; Wu, C.; Zhang, M.; Zheng, J.; Cao, Z.; Zhou, J.T. A2j-transformer: Anchor-to-joint transformer network for 3d interacting hand pose estimation from a single rgb image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 8846–8855. [Google Scholar]
- Pavlakos, G.; Shan, D.; Radosavovic, I.; Kanazawa, A.; Fouhey, D.; Malik, J. Reconstructing hands in 3D with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–20 June 2024; pp. 9826–9836. [Google Scholar]
- Hampali, S.; Rad, M.; Oberweger, M.; Lepetit, V. Honnotate: A method for 3D annotation of hand and object poses. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3196–3206. [Google Scholar]
- Zimmermann, C.; Ceylan, D.; Yang, J.; Russell, B.; Argus, M.; Brox, T. Freihand: A dataset for markerless capture of hand pose and shape from single rgb images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 813–822. [Google Scholar]
- Hampali, S.; Sarkar, S.D.; Rad, M.; Lepetit, V. Keypoint transformer: Solving joint identification in challenging hands and object interactions for accurate 3D pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 11090–11100. [Google Scholar]
- Ge, L.; Liang, H.; Yuan, J.; Thalmann, D. Robust 3D hand pose estimation in single depth images: From single-view cnn to multi-view cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3593–3601. [Google Scholar]
- Oberweger, M.; Wohlhart, P.; Lepetit, V. Hands deep in deep learning for hand pose estimation. arXiv 2015, arXiv:1502.06807. [Google Scholar]
- Romero, J.; Kjellström, H.; Kragic, D. Hands in action: Real-time 3D reconstruction of hands in interaction with objects. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010; pp. 458–463. [Google Scholar]
- Zhang, B.; Wang, Y.; Deng, X.; Zhang, Y.; Tan, P.; Ma, C.; Wang, H. Interacting two-hand 3D pose and shape reconstruction from single color image. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 11354–11363. [Google Scholar]
- Gladstone, D.J.; Danells, C.J.; Black, S.E. The Fugl-Meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabilit. Neural Repair 2002, 16, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Tiboni, M.; Amici, C. Soft gloves: A review on recent developments in actuation, sensing, control and applications. Actuators 2022, 11, 232. [Google Scholar] [CrossRef]
- Hazman, M.A.W.; Nordin, I.; Noh, F.H.M.; Khamis, N.; Razif, M.; Faudzi, A.A.; Hanif, A.S.M. IMU sensor-based data glove for finger joint measurement. Indones. J. Electr. Eng. Comput. Sci. 2020, 20, 82–88. [Google Scholar] [CrossRef]
- Li, F.; Chen, J.; Ye, G.; Dong, S.; Gao, Z.; Zhou, Y. Soft robotic glove with sensing and force feedback for rehabilitation in virtual reality. Biomimetics 2023, 8, 425. [Google Scholar] [CrossRef]
- Zimmermann, C.; Brox, T. Learning to estimate 3D hand pose from single rgb images. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4903–4911. [Google Scholar]
- Cai, Y.; Ge, L.; Cai, J.; Yuan, J. Weakly-supervised 3D hand pose estimation from monocular rgb images. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 666–682. [Google Scholar]
- Romero, J.; Tzionas, D.; Black, M.J. Embodied hands: Modeling and capturing hands and bodies together. arXiv 2022, arXiv:2201.02610. [Google Scholar] [CrossRef]
- OpenMMLab. OpenMMlab Pose Estimation Toolbox and Benchmark, 2020. Available online: https://github.com/open-mmlab/mmpose (accessed on 22 December 2025).
- Dong, H.; Chharia, A.; Gou, W.; Vicente Carrasco, F.; De la Torre, F.D. Hamba: Single-view 3D hand reconstruction with graph-guided bi-scanning mamba. Adv. Neural Inf. Process. Syst. 2024, 37, 2127–2160. [Google Scholar]
- Martinez, J.; Hossain, R.; Romero, J.; Little, J.J. A simple yet effective baseline for 3D human pose estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2640–2649. [Google Scholar]
- Yang, Y.; Ramanan, D. Articulated human detection with flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 2878–2890. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Melendez-Calderon, A.; Burdet, E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans. Biomed. Eng. 2011, 59, 2126–2136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, L.; Sun, P.; Hui, P.; Yao, A. Analyzing the Synthetic-to-Real Domain Gap in 3D Hand Pose Estimation. In Proceedings of the Computer Vision and Pattern Recognition Conference, Seattle, WA, USA, 16–20 June 2025; pp. 12255–12265. [Google Scholar]
- Roumaissa, B.; Mohamed Chaouki, B. Deep learning based on hand pose estimation methods: A systematic literature review. Multimed. Tools Appl. 2025, 84, 38121–38158. [Google Scholar] [CrossRef]




| Joint | Method | MPJAE (°) | APCK@5 | APCK@10 |
|---|---|---|---|---|
| MCP | HaMeR | 29.76 ± 17.78 | 0.071 | 0.126 |
| Hamba | 25.62 ± 15.61 | 0.082 | 0.137 | |
| HaMeR-F | 9.39 ± 8.58 | 0.288 | 0.514 | |
| PIP | HaMeR | 15.44 ± 10.30 | 0.176 | 0.361 |
| Hamba | 12.28 ± 11.76 | 0.183 | 0.376 | |
| HaMeR-F | 3.32 ± 2.89 | 0.783 | 0.957 | |
| DIP | HaMeR | 12.85 ± 9.97 | 0.263 | 0.493 |
| Hamba | 10.67 ± 13.58 | 0.290 | 0.519 | |
| HaMeR-F | 2.74 ± 2.83 | 0.861 | 0.969 | |
| Overall | HaMeR | 19.35 ± 15.14 | 0.170 | 0.326 |
| Hamba | 16.19 ± 15.98 | 0.185 | 0.344 | |
| HaMeR-F | 5.48 ± 6.17 | 0.644 | 0.814 |
| Finger | Result | MCP | PIP | DIP |
|---|---|---|---|---|
| Thumb | GT | 100.6∼108.7 | 130.0∼174.5 | 143.8∼179.4 |
| HaMeR-F | 100.0∼109.6 | 131.2∼170.2 | 151.9∼176.5 | |
| Index | GT | 155.9∼176.4 | 120.4∼152.9 | 154.8∼172.4 |
| HaMeR-F | 150.3∼169.4 | 126.8∼151.0 | 151.8∼169.0 | |
| Middle | GT | 148.0∼179.3 | 123.7∼155.7 | 164.4∼172.1 |
| HaMeR-F | 140.0∼169.3 | 129.7∼148.1 | 161.1∼169.0 | |
| Ring | GT | 126.3∼157.5 | 143.2∼150.9 | 158.8∼174.1 |
| HaMeR-F | 120.8∼159.6 | 145.0∼153.9 | 158.0∼165.3 | |
| Pinky | GT | 150.0∼163.4 | 129.8∼151.5 | 159.2∼172.7 |
| HaMeR-F | 140.0∼159.3 | 137.6∼152.0 | 158.0∼167.0 |
| Joint | Method | MPJPE (mm) | MPJAVE (°/s) | Angular SPARC Error |
|---|---|---|---|---|
| Wrist | HaMeR | 24.02 ± 5.68 | N/A | N/A |
| Hamba | 23.09 ± 4.77 | N/A | N/A | |
| HaMeR-F | 23.06 ± 2.00 | N/A | N/A | |
| MCP | HaMeR | 15.85 ± 3.71 | 40.49 ± 8.94 | 2.32 ± 2.29 |
| Hamba | 14.37 ± 3.68 | 38.95 ± 8.68 | 2.20 ± 2.27 | |
| HaMeR-F | 12.15 ± 1.57 | 30.47 ± 4.99 | 1.73 ± 2.25 | |
| PIP | HaMeR | 15.52 ± 3.45 | 78.98 ± 8.70 | 3.55 ± 1.22 |
| Hamba | 15.20 ± 3.38 | 75.23 ± 8.56 | 3.39 ± 1.20 | |
| HaMeR-F | 12.23 ± 1.63 | 63.71 ± 7.52 | 2.90 ± 0.96 | |
| DIP | HaMeR | 14.88 ± 3.35 | 62.12 ± 9.04 | 2.04 ± 2.05 |
| Hamba | 14.22 ± 2.99 | 58.98 ± 8.87 | 1.92 ± 1.95 | |
| HaMeR-F | 12.32 ± 1.74 | 46.78 ± 5.38 | 1.28 ± 1.73 | |
| Tip | HaMeR | 14.28 ± 3.31 | N/A | N/A |
| Hamba | 13.96 ± 3.20 | N/A | N/A | |
| HaMeR-F | 12.40 ± 1.86 | N/A | N/A | |
| Overall | HaMeR | 16.91 ± 4.39 | 60.53 ± 8.89 | 2.64 ± 1.91 |
| Hamba | 16.17 ± 3.74 | 57.72 ± 8.27 | 2.50 ± 1.85 | |
| HaMeR-F | 14.43 ± 2.24 | 46.99 ± 6.06 | 1.97 ± 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tong, M.; Cheung, M.; Lei, Y.; Villarroel, M.; He, L. Vision-Based Hand Function Evaluation with Soft Robotic Rehabilitation Glove. Sensors 2026, 26, 138. https://doi.org/10.3390/s26010138
Tong M, Cheung M, Lei Y, Villarroel M, He L. Vision-Based Hand Function Evaluation with Soft Robotic Rehabilitation Glove. Sensors. 2026; 26(1):138. https://doi.org/10.3390/s26010138
Chicago/Turabian StyleTong, Mukun, Michael Cheung, Yixing Lei, Mauricio Villarroel, and Liang He. 2026. "Vision-Based Hand Function Evaluation with Soft Robotic Rehabilitation Glove" Sensors 26, no. 1: 138. https://doi.org/10.3390/s26010138
APA StyleTong, M., Cheung, M., Lei, Y., Villarroel, M., & He, L. (2026). Vision-Based Hand Function Evaluation with Soft Robotic Rehabilitation Glove. Sensors, 26(1), 138. https://doi.org/10.3390/s26010138

