Integrated Polarimetric Spectral Imaging Sensor Combining Spectral Imaging and Polarization Modulation Techniques
Highlights
- The proposed integration of polarization modulation with push-broom scanning reduces the system volume by approximately 70% and achieves a total weight of around 1.5 kg, compared with traditional technology.
- The developed Fourier transform-based demodulation algorithm achieves accurate reconstruction of polarimetric spectral image information, with a linear polarization measurement error of less than 2.87% verified by experiments.
- Retrieval of Earth’s atmospheric composition and optical parameters
- The identification of sensitive bands reduces the number of redundant experiments and guides polarization-based material discrimination.
Abstract
1. Introduction
2. Materials and Methods
2.1. Principle of System Composition
2.2. Principle of Information Reconstruction
3. Results
3.1. Indoor Validation of the Integrated Sphere Polarization Measurement
- A calibration laboratory with walls covered in light-absorbing material was used to minimize stray light interference.
- The Labsphere USLR-A12F-XAN2-P integrated sphere light source offers a spectral output range of 300–2400 nm. After 30 min of preheating with three xenon lamps, it stabilized at 175 W, with fluctuations <0.5%.
- An Edmund linear polarizer (extinction ratio of 10,000:1) was mounted on a THOR LABS PRM1 high-precision rotation stage, featuring a 5 arc-min Vernier resolution and ±7° fine adjustment capability (angular repositioning error ±0.1°) for precise polarization control.
- The AHG-101 hyperspectral imager operated at the following imaging parameters: aperture of f/5.6, integration time of 5 ms, spectral resolution of 1 nm, and spatial resolution of 960 × 960 pixels.
- 1.
- Construction, Measurement, and Reconstruction of Horizontally Polarized Light Spots
- 2.
- Construction, Measurement, and Reconstruction of Vertically Polarized Light Spots
- 3.
- Analysis Results
3.2. Outdoor Polarization Measurement Experiment
3.2.1. Experimental Setup and Measurement Protocols
3.2.2. Experimental Objects and Measurement Parameters
- 1.
- Car (Metallic Surface)
- Measurement time: 10:00 A.M.
- Geometric configuration: Vertical shooting from a rooftop at 50 m altitude toward a parking lot 200 m away
- Illumination conditions: Diffuse sunlight (solar elevation angle of 49.2° and azimuth angle of 123.4°)
- 2.
- Rubber Waterproof Stickers
- Measurement time: 10:15 A.M.
- Geometric configuration: Close-range shooting at 3 m distance with normal incidence
- Surface properties: Nonmetallic, diffuse reflection dominant
- 3.
- Military Camouflage Nets
- Group 1 (Sun-facing Shooting):
- Group 2 (Sun-back Shooting):
3.2.3. Data Reconstruction and Results
- Parking Lot Scene: Cars and Parking White Lines
- 2.
- Rubber Waterproof Sticker Scene: Discrimination from Metal Cables
- 3.
- Military Camouflage Net Scene: Sun-Facing vs. Sun-Back Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tuchin, V.V. Polarized light interaction with tissues. J. Biomed. Opt. 2016, 21, 071114. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, V.C.; Grant, L.; Daughtry, C.S. Polarization of light scattered by vegetation. Proc. IEEE 2005, 73, 1012–1024. [Google Scholar] [CrossRef]
- Jones, A.R. Light scattering for particle characterization. Prog. Energy Combust. Sci. 1999, 25, 1–53. [Google Scholar] [CrossRef]
- Tukimin, S.N.; Karman, S.B.; Ahmad, M.Y.; Zaman, W.S.W.K. Polarized light-based cancer cell detection techniques: A review. IEEE Sensors J. 2019, 19, 9010–9025. [Google Scholar] [CrossRef]
- Guan, L.; Li, S.; Zhai, L.; Liu, S.; Liu, H.; Lin, W.; Cui, Y.; Chu, J.; Xie, H. Study on skylight polarization patterns over the ocean for polarized light navigation application. Appl. Opt. 2018, 57, 6243–6251. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Le Teurnier, B.; Boffety, M.; Liu, T.; Hu, H.; Goudail, F. Theory of autocalibration feasibility and precision in full Stokes polarization imagers. Opt. Express 2020, 28, 15268–15283. [Google Scholar] [CrossRef]
- Chipman, R.; Lam, W.S.T.; Young, G. Polarized Light and Optical Systems; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Han, Y.; Zhao, K.; You, Z. Development of rapid rotary polarization imaging detection devices. Opt. Precis. Eng. 2018, 26, 7–16. [Google Scholar] [CrossRef]
- Gu, N.; Xiao, Y.; Huang, L.; Rao, C. Polarization imaging based on time-integration by a continuous rotating polarizer. Opt. Express 2022, 30, 3497–3515. [Google Scholar] [CrossRef]
- Kong, F.; Fan, X.; Guo, X.; Deng, X.; Chen, X.; Guo, Y. Design of an Imaging Polarized Skylight Compass Using Mechanical Rotation. IEEE Sensors J. 2024, 24, 37809–37821. [Google Scholar] [CrossRef]
- Voss, K.J.; Liu, Y. Polarized radiance distribution measurements of skylight. I. System description and characterization. Appl. Opt. 1997, 36, 6083–6094. [Google Scholar] [CrossRef] [PubMed]
- Gu, N.; Lian, B.; Xiao, Y.; Huang, L. Full-Stokes retrieving and configuration optimization in a time-integration imaging polarimeter. Sensors 2022, 22, 4733. [Google Scholar] [CrossRef]
- Zhang, C.; Nasir, A.; Ni, B.; Xu, B.; Xue, L.; Liu, X.; Xiong, J. Portable PIMI polarization imaging device based on automatic polarization recognition. Appl. Opt. 2023, 62, 3225–3232. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Lian, J.; Zhang, L.; Xian, Z.; Ma, T. Design of a device for sky light polarization measurements. Sensors 2014, 14, 14916–14931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, C.; Jiang, H.; Gu, H.; Chen, X.; Zhang, C.; Liu, S. Dynamic characteristics of nematic liquid crystal variable retarders investigated by a high-speed polarimetry. J. Opt. 2019, 21, 065605. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, R.; Lyu, X.; Cui, X.; Kong, F.; Guo, X.; Sun, H. A Measurement Angle Error Correction Method for Polarized Images Based on Levenberg-Marquardt. IEEE Trans. Instrum. Meas. 2024, 73, 1–8. [Google Scholar] [CrossRef]
- Wang, D.; Liang, H.; Zhu, H.; Zhang, S. A bionic camera-based polarization navigation sensor. Sensors 2014, 14, 13006–13023. [Google Scholar] [CrossRef]
- Sturzl, W. A lightweight single-camera polarization compass with covariance estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5353–5361. [Google Scholar]
- Serres, J.R.; Lapray, P.-J.; Viollet, S.; Kronland-Martinet, T.; Moutenet, A.; Morel, O.; Bigué, L. Passive polarized vision for autonomous vehicles: A review. Sensors 2024, 24, 3312. [Google Scholar] [CrossRef] [PubMed]
- Farlow, C.A.; Chenault, D.B.; Pezzaniti, J.L.; Spradley, K.D.; Gulley, M.G. Imaging polarimeter development and applications. In Proceedings of the Polarization Analysis and Measurement IV, San Diego, CA, USA, 9 January 2002; pp. 118–125. [Google Scholar]
- Horvath, G.; Barta, A.; Gal, J.; Suhai, B.; Haiman, O. Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection. Appl. Opt. 2002, 41, 543–559. [Google Scholar] [CrossRef]
- Fan, C.; Hu, X.; Lian, J.; Zhang, L.; He, X. Design and calibration of a novel camera-based bio-inspired polarization navigation sensor. IEEE Sensors J. 2016, 16, 3640–3648. [Google Scholar] [CrossRef]
- Qin, X.; Huang, W.; Xu, M.; Jia, S. Error analysis and calibration based on division-of-aperture bionic polarization navigation systems. Opt. Commun. 2024, 569, 130844. [Google Scholar] [CrossRef]
- Ono, S. Snapshot multispectral imaging using a pixel-wise polarization color image sensor. Opt. Express 2020, 28, 34536–34573. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Yang, J.; Tian, X.; Liu, L. Three-stage interpolation method for demosaicking monochrome polarization DoFP images. Sensors 2024, 24, 3018. [Google Scholar] [CrossRef]
- Pengwei, H.; Jian, Y.; Lei, G.; Xiang, Y.; Wenshuo, L. Solar-tracking methodology based on refraction-polarization in Snell’s window for underwater navigation. Chin. J. Aeronaut. 2022, 35, 380–389. [Google Scholar]
- Sasagawa, K.; Shishido, S.; Ando, K.; Matsuoka, H.; Noda, T.; Tokuda, T.; Kakiuchi, K.; Ohta, J. Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology. Opt. Express 2013, 21, 11132–11140. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Edmiston, C.; Marinov, R.; Vail, A.; Gruev, V. Bio-inspired color-polarization imager for real-time in situ imaging. Optica 2017, 4, 1263–1271. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Li, Y.; Guan, C.; Liu, R.; Fu, J.; Chu, J. A bio-inspired polarization navigation sensor based on artificial compound eyes. Bioinspir. Biomim. 2022, 17, 046017. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, S.; Jin, W.; Xue, F. Temporal and spatial error model for estimating the measurement precision of the division of focal plane polarimeters. Opt. Express 2021, 29, 20808–20828. [Google Scholar] [CrossRef]
- Maruyama, Y.; Terada, T.; Yamazaki, T.; Uesaka, Y.; Nakamura, M.; Matoba, Y.; Komori, K.; Ohba, Y.; Arakawa, S.; Hirasawa, Y.; et al. 3.2-MP back-illuminated polarization image sensor with four-directional air-gap wire grid and 2.5-µm pixels. IEEE Trans. Electron Devices 2018, 65, 2544–2551. [Google Scholar] [CrossRef]
- Liu, Z.; Chu, J.; Zhang, R.; Guan, C.; Fan, Y. Preparation of an integrated polarization navigation sensor via a nanoimprint photolithography process. Photonics 2022, 9, 806. [Google Scholar] [CrossRef]
- Guan, C.; Zhang, R.; Chu, J.; Liu, Z.; Fan, Y.; Liu, J.; Yi, Z. Integrated real-time polarization image sensor based on UV-NIL and calibration method. IEEE Sensors J. 2022, 22, 3157–3163. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, R.; Chu, J.; Zhang, Z.; Yu, H. High-precision measurement on the extinction ratio of linear polarizers. J. Mod. Opt. 2022, 69, 1142–1148. [Google Scholar] [CrossRef]











| Polarization Direction | Wavelength (nm) | Wavenumber (cm−1) | |||
|---|---|---|---|---|---|
| 0° | 559.77 | 17,863.1 | 1.0059 ± 0.03 | 0.0101 ± 0.005 | 0.0274 ± 0.01 |
| 639.76 | 15,631.0 | 0.9798 ± 0.02 | 0.0253 ± 0.01 | 0.0017 ± 0.005 | |
| 719.83 | 13,892.2 | 1.0212 ± 0.04 | 0.0165 ± 0.008 | -0.0102 ± 0.02 | |
| 90° | 559.77 | 17,863.1 | −0.9750 ± 0.03 | −0.0287 ± 0.006 | −0.0057 ± 0.015 |
| 639.76 | 15,631.0 | −0.9467 ± 0.02 | −0.0109 ± 0.004 | 0.0070 ± 0.002 | |
| 719.83 | 13,892.2 | −0.9773 ± 0.03 | −0.0259 ± 0.007 | 0.0256 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, Z.; Song, Z.; Li, Z.; Li, L. Integrated Polarimetric Spectral Imaging Sensor Combining Spectral Imaging and Polarization Modulation Techniques. Sensors 2026, 26, 144. https://doi.org/10.3390/s26010144
Liu Z, Song Z, Li Z, Li L. Integrated Polarimetric Spectral Imaging Sensor Combining Spectral Imaging and Polarization Modulation Techniques. Sensors. 2026; 26(1):144. https://doi.org/10.3390/s26010144
Chicago/Turabian StyleLiu, Zihao, Zhiping Song, Zhengqiang Li, and Li Li. 2026. "Integrated Polarimetric Spectral Imaging Sensor Combining Spectral Imaging and Polarization Modulation Techniques" Sensors 26, no. 1: 144. https://doi.org/10.3390/s26010144
APA StyleLiu, Z., Song, Z., Li, Z., & Li, L. (2026). Integrated Polarimetric Spectral Imaging Sensor Combining Spectral Imaging and Polarization Modulation Techniques. Sensors, 26(1), 144. https://doi.org/10.3390/s26010144

