Copper Phthalocyanine Chemiresistors as Industrial NO2 Alarms
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemiresistor Preparation and Characterisation
2.2. Generation of Pollutant Atmospheres for Calibration
2.3. Resistance Measurement and Quantification of Sensor Response
3. Results and Discussion
3.1. CuPc Film Morphology
3.2. CuPc Chemiresistor Response to H2S and NH3
3.3. CuPc Chemiresistor Response to SO2 and NO2
3.4. Recovery and Resilience
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EU Air Quality Standards. Available online: https://environment.ec.europa.eu/topics/air/air-quality/eu-air-quality-standards_en (accessed on 18 March 2025).
- Copernicus. Available online: https://atmosphere.copernicus.eu/ (accessed on 4 May 2025).
- European Union. Commission Directive (EU) 2017/164 of 31 January 2017 Establishing a Fourth List of Indicative Occupational Exposure Limit Values Pursuant to Council Directive 98/24/EC, and Amending Commission Directives 91/322/EEC, 2000/39/EC and 2009/161/EU (Text with EEA Relevance.). Off. J. Eur. Union 2017, 27, 115–120. [Google Scholar]
- Nitrogen Dioxide. Available online: https://www.cdc.gov/niosh/idlh/10102440.html (accessed on 4 May 2025).
- Noh, H.L.; Oh, B.M.; Park, Y.K.; Chun, H.W.; Lee, J.; Kim, J.K.; Zheng, J.; Jung, D.; Lee, W.; Kim, J.H. Chromogenic detection of hydrogen sulfide using squarylium-based chemosensors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 239, 118457. [Google Scholar] [CrossRef] [PubMed]
- Wedge, D.C.; Das, A.; Dost, R.; Kettle, J.; Madec, M.-B.; Morrison, J.J.; Grell, M.; Kell, D.B.; Richardson, T.H.; Yeates, S.; et al. Real-time vapour sensing using an OFET-based electronic nose and genetic programming. Sens. Actuators B Chem. 2009, 143, 365–372. [Google Scholar] [CrossRef]
- Hague, L.; Puzzovio, D.; Dragoneas, A.; Grell, M. Simplified Real-Time Organic Transistor Characterisation Schemes for Sensing Applications. Sci. Adv. Mater. 2011, 3, 907–911. [Google Scholar] [CrossRef]
- Das, A.; Dost, R.; Richardson, T.; Grell, M.; Morrison, J.J.; Turner, M.L. A Nitrogen Dioxide Sensor Based on an Organic Transistor Constructed from Amorphous Semiconducting Polymers. Adv. Mater. 2007, 19, 4018–4023. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, L.; Zhu, Y.; Zhang, Y.; Wang, L.J. Solution-processed filamentous copper phthalocyanine films for enhanced NO2 gas sensing at room temperature. New J. Chem. 2024, 48, 1254–1263. [Google Scholar] [CrossRef]
- Anisimov, D.S.; Chekusova, V.P.; Trul, A.A.; Abramov, A.A.; Borshchev, O.V.; Agina, E.V.; Ponomarenko, S.A. Fully integrated ultra-sensitive electronic nose based on organic field-effect transistors. Sci. Rep. 2021, 11, 10683. [Google Scholar] [CrossRef] [PubMed]
- Trul, A.A.; Agina, E.V.; Ponomarenko, S.A. Gas Sensors Based on Conjugated Oligomers and Polymers as Promising Sensitive Elements for Toxic Gases Monitoring in the Atmosphere. Polym. Sci. Ser. B 2021, 63, 443–458. [Google Scholar] [CrossRef]
- Lonergan, M.C.; Severin, E.J.; Doleman, B.J.; Beaber, S.A.; Grubbs, R.H.; Lewis, N.S. Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black−Polymer Resistors. Chem. Mater. 1996, 8, 2298–2312. [Google Scholar] [CrossRef]
- Rath, R.J.; Farajikhah, S.; Oveissi, F.; Dehghani, F.; Naficy, S. Chemiresistive Sensor Arrays for Gas/Volatile Organic Compounds Monitoring: A Review. Adv. Eng. Mater. 2023, 25, 2200830. [Google Scholar] [CrossRef]
- Chia, L.S.; Du, Y.H.; Palale, S.; Lee, P.S. Interaction of Copper Phthalocyanine with Nitrogen Dioxide and Ammonia Investigation Using X-ray Absorption Spectroscopy and Chemiresistive Gas Measurements. ACS Omega 2019, 4, 10388–10395. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, Y.; Xie, G.; Tai, H.; Sun, P.; Zhang, B. Copper phthalocyanine thin film transistors for hydrogen sulfide detection. Sens. Actuators B Chem. 2013, 176, 1191–1196. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, Q.; Sun, Y.; Wang, L.; Sun, Q.; Wang, L. High-Performance NO2 Sensors Based on Ultrathin Heterogeneous Interface Layers. Adv. Mater. Interfaces 2020, 7, 1901579. [Google Scholar] [CrossRef]
- Liu, C.J.; Wang, S.Y.; Hsieh, J.C.; Ju, Y.H. Gas sensing properties of vacuum-deposited titanyl phthalocyanine film. Sens. Actuators B Chem. 2000, 65, 371–374. [Google Scholar] [CrossRef]
- AD8244. Available online: https://www.analog.com/en/products/ad8244.html (accessed on 4 May 2025).
- Pindolia, G.; Pandya, J.; Shinde, S.; Jha, P.K. Fluorinated copper phthalocyanine as an electron transport material in perovskite solar cell. Int. J. Energy Res. 2022, 46, 15127–15142. [Google Scholar] [CrossRef]
- ImageJ. Available online: https://imagej.net/ij/ (accessed on 4 May 2025).
- GSM 3000. Available online: https://phocos.creatorlink.net/ (accessed on 4 May 2025).
- Das, S.; Neogi, S.; Mukherjee, M. Effect of temperature and deposition rate on the surface morphology of thin Al metal films on glass substrate: Application in Solar Cell. J. Phys. Conf. Ser. 2020, 1579, 012019. [Google Scholar] [CrossRef]
- Virkar, A.A.; Mannsfeld, S.; Bao, Z.; Stingelin, N. Organic Semiconductor Growth and Morphology Considerations for Organic Thin-Film Transistors. Adv. Mater. 2010, 22, 3857–3875. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Asare-Yeboah, K.; Zhang, Z.; Bi, S. Manipulate organic crystal morphology and charge transport. Org. Electron. 2022, 103, 106448. [Google Scholar] [CrossRef]
MPc | Transducer | Analyte Vapour(s) | Ref. |
---|---|---|---|
CuPc | Transistor | NO2 | [9] |
CuPc | Chemiresistor | NO2, NH3 | [14] |
CuPc | Transistor | H2S, SO2 | [15] |
ZnPc | Chemiresistor | NO2, NH3 | [16] |
TiOPc | Chemiresistor | NO2 | [17] |
CuPc | Chemiresistor | NO2 | Here |
Gas | c [ppm] | τ [min] | M |
---|---|---|---|
H2S | 0.44 | 63.1 | 0.31 |
NH3 | 2 | 28.2 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlQahtani, H.; Alshammari, M.; Kamal, A.M.; Grell, M. Copper Phthalocyanine Chemiresistors as Industrial NO2 Alarms. Sensors 2025, 25, 2955. https://doi.org/10.3390/s25092955
AlQahtani H, Alshammari M, Kamal AM, Grell M. Copper Phthalocyanine Chemiresistors as Industrial NO2 Alarms. Sensors. 2025; 25(9):2955. https://doi.org/10.3390/s25092955
Chicago/Turabian StyleAlQahtani, Hadi, Mohammad Alshammari, Amjad M. Kamal, and Martin Grell. 2025. "Copper Phthalocyanine Chemiresistors as Industrial NO2 Alarms" Sensors 25, no. 9: 2955. https://doi.org/10.3390/s25092955
APA StyleAlQahtani, H., Alshammari, M., Kamal, A. M., & Grell, M. (2025). Copper Phthalocyanine Chemiresistors as Industrial NO2 Alarms. Sensors, 25(9), 2955. https://doi.org/10.3390/s25092955