Deep Learning-Based Multimode Fiber Distributed Temperature Sensing
Abstract
:Highlights
- We developed a fiber-optic temperature sensing method using Convolutional Neural Networks (CNNs). By inputting a speckle pattern into the CNN, we can determine the temperature at different locations of the fiber simultaneously;
- The network training was divided into three steps: first, training for temperature prediction; second, training for heating location prediction; and third, combined training for both temperature and heating location using all datasets; We tested the model with two types of optical fibers and achieved a satisfactory prediction accuracy.
- This method addresses the high cost, complex installation, and limited accuracy of traditional fiber-optic temperature sensing technologies. It simplifies the measurement process, bypassing the need for complex physical models and offering a new efficient solution for fiber-optic sensing;
- Suitable for hazardous environments and other complex scenarios, this method allows the accurate acquisition of temperature and location information without direct contact with the target object.
Abstract
1. Introduction
2. Principle
2.1. Structure of Fiber
2.2. Principle of MMF Speckle Pattern Sensor
2.3. Ray Theory and Modal Theory
2.4. Speckle Patterns and Perturbations
3. Methods
3.1. Experimental Setup
3.2. Construction of Temperature and Position Datasets
3.3. Data Preprocessing and CNN Model Design
4. Results and Discussion
4.1. Results of the First Group of Experiments
4.2. Second Group of Experiment Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vangety, N.; Dey, K.; Roy, S. Weight-Location Recognition in a Plastic Optical Fiber Using a Convolutional Neural Network. Opt. Fiber Technol. 2023, 75, 103166. [Google Scholar] [CrossRef]
- Meng, Q.; Dong, X.; Ni, K.; Li, Y.; Xu, B.; Chen, Z. Optical Fiber Laser Salinity Sensor Based on Multimode Interference Effect. IEEE Sens. J. 2014, 14, 1813–1816. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Marques, C.; Pontes, M.J. Optical Fiber Specklegram Sensors for Mechanical Measurements: A Review. IEEE Sens. J. 2019, 20, 569–576. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Zhao, Q. Review of No-Core Optical Fiber Sensor and Applications. Sens. Actuators A Phys. 2020, 313, 112160. [Google Scholar] [CrossRef]
- Plöschner, M.; Tyc, T.; Čižmár, T. Seeing through Chaos in Multimode Fibres. Nat. Photonics 2015, 9, 529–535. [Google Scholar] [CrossRef]
- Gui, Y.; Shu, Q.; Lu, P.; Peng, J.; Zhang, J.; Liu, D. Optical Fiber Sensor for Curvature and Temperature Measurement Based on Anti-Resonant Effect Cascaded with Multimode Interference. Sensors 2022, 22, 8457. [Google Scholar] [CrossRef]
- Xu, L.; Wen, Z.; Su, H.; Cola, S.; Fabbian, N.; Feng, Y.; Yang, S. An Innovative Method Integrating Two Deep Learning Networks and Hyperparameter Optimization for Identifying Fiber Optic Temperature Measurements in Earth-Rock Dams. Adv. Eng. Softw. 2025, 199, 103802. [Google Scholar] [CrossRef]
- Glover, H.E.; Wengrove, M.E.; Holman, R. Measuring Hydrodynamics and Exploring Nearshore Processes Using Distributed Sensing of Fiber-Optic Cable Strain. Coast. Eng. 2024, 190, 104487. [Google Scholar] [CrossRef]
- Lin, S.; Tang, F.; Dang, J.; Li, X. Automatic Detection of Steel Rebar Corrosion Based on Machine Learning and Light Spectrum of Fiber Optic Corrosion Sensors. Opt. Fiber Technol. 2023, 79, 103379. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Liu, T.; Shui, Q.; Wang, X.; Yao, G.; Wang, C. A Novel Deep-Learning Model for Detecting Small-Scale Anomaly Temperature Zones in RDTS Based on Attention Mechanism and K-Means Clustering. Opt. Fiber Technol. 2024, 88, 103969. [Google Scholar] [CrossRef]
- Ruan, Z.; Pei, L.; Ning, T.; Wang, J.; Wang, J.; Li, J.; Xie, Y.; Zhao, Q.; Zheng, J. Simple Structure of Tapered FBG Filled with Magnetic Fluid to Realize Magnetic Field Sensor. Opt. Fiber Technol. 2021, 67, 102698. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, L. Low-Cost High-Sensitivity Strain and Temperature Sensing Using Graded-Index Multimode Fibers. Appl. Opt. 2007, 46, 2516–2519. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Mohammed, W.; Johnson, E.G. Multimode Interference-Based Fiber-Optic Displacement Sensor. IEEE Photonics Technol. Lett. 2003, 15, 1129–1131. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, X.; Zhang, M.; Wang, X.; Chen, Z.; Zhang, Y.; Pu, J. High-Fidelity Imaging through Multimode Fibers via Deep Learning. J. Phys. Photonics 2021, 3, 015003. [Google Scholar] [CrossRef]
- Rahmani, B.; Loterie, D.; Konstantinou, G.; Psaltis, D.; Moser, C. Multimode Optical Fiber Transmission with a Deep Learning Network. Light Sci. Appl. 2018, 7, 69. [Google Scholar] [CrossRef]
- Jin, X.; Liu, K.; Jiang, J.; Xu, T.; Ding, Z.; Hu, X.; Huang, Y.; Zhang, D.; Li, S.; Xue, K.; et al. Pattern Recognition of Distributed Optical Fiber Vibration Sensors Based on ResNet 152. IEEE Sens. J. 2023, 23, 19717–19725. [Google Scholar] [CrossRef]
- Liu, Y.; Bao, Y. Intelligent Monitoring of Spatially-Distributed Cracks Using Distributed Fiber Optic Sensors Assisted by Deep Learning. Measurement 2023, 220, 113418. [Google Scholar] [CrossRef]
- Pieracci, A.; Nanni, J.; Tartarini, G.; Lanzoni, M. A Novel Approach to Raman Distributed Temperature-Sensing System for Short-Range Applications. Sensors 2024, 24, 2669. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Huang, Z.; Huang, P.; Tang, X.; Liu, Z.; Zhang, Y.; Yuan, L. Simultaneous Measurement of Microdisplacement and Temperature Based on Balloon-Shaped Structure. Sensors 2023, 23, 8521. [Google Scholar] [CrossRef]
- Smith, D.L.; Nguyen, L.V.; Ottaway, D.J.; Cabral, T.D.; Fujiwara, E.; Cordeiro, C.M.d.B.; Warren-Smith, S. Machine Learning for Sensing with a Multimode Exposed Core Fiber Specklegram Sensor. Opt. Express 2022, 30, 10443–10455. [Google Scholar] [CrossRef]
- Gupta, R.K.; Bruce, G.D.; Powis, S.J.; Dholakia, K. Deep Learning Enabled Laser Speckle Wavemeter with a High Dynamic Range. Laser Photonics Rev. 2020, 14, 2000120. [Google Scholar] [CrossRef]
- Lu, S.; Tan, Z.; Ji, W.; Zhang, D. A Spatial Domain Multiplexing Technology for Fiber Specklegram Sensor. Opt. Fiber Technol. 2023, 81, 103505. [Google Scholar] [CrossRef]
- Shen, B.; Li, J. Displacement-Sensing Method Based on Residual Scaling for One-Shot MMF Specklegram Prediction. Sensors 2025, 25, 1434. [Google Scholar] [CrossRef] [PubMed]
- Inalegwu, O.C.; II, R.E.G.; Huang, J. A Machine Learning Specklegram Wavemeter (MaSWave) Based on a Short Section of Multimode Fiber as the Dispersive Element. Sensors 2023, 23, 4574. [Google Scholar] [CrossRef]
- Bender, D.; Çakır, U.; Yüce, E. Deep Learning-Based Fiber Bending Recognition for Sensor Applications. IEEE Sens. J. 2023, 23, 6956–6962. [Google Scholar] [CrossRef]
- Liu, J.; Ke, Y.; Yang, D.; Deng, Q.; Hei, C.; Han, H.; Peng, D.; Wen, F.; Feng, A.; Zhao, X. Deep Learning-Based Simultaneous Temperature- and Curvature-Sensitive Scatterplot Recognition. Sensors 2024, 24, 4409. [Google Scholar] [CrossRef]
- Sarkar, M.N.I.; Nguyen, L.V.; Kilpatrick, A.D.; Lancaster, D.G.; Warren-Smith, S.C. Dynamic Multimode Fiber Specklegram Sensor Smart Bed Enabled by Deep Learning. J. Light. Technol. 2024, 42, 6342–6350. [Google Scholar] [CrossRef]
- Imai, M.; Ohtsuka, Y. Speckle-pattern contrast of semiconductor laser propagating in a multimode optical fiber. Opt. Commun. 1980, 33, 4–8. [Google Scholar] [CrossRef]
- Hlubina, P. Spectral and dispersion analysis of laser sources and multimode fibres via the statistics of the intensity pattern. J. Mod. Opt. 1994, 41, 1001–1014. [Google Scholar] [CrossRef]
- Efendioglu, H.S. A Review of Fiber-Optic Modal Modulated Sensors: Specklegram and Modal Power Distribution Sensing. IEEE Sens. J. 2017, 17, 2055–2064. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
Location | D | E | F | G | H |
---|---|---|---|---|---|
Tolerance Accuracy | 99.38% | 98.75% | 99.38% | 98.12% | 95.00% |
Strict Accuracy | 95.62% | 95.62% | 91.38% | 98.12% | 86.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wang, X.; Wu, T.; Lin, H.; Luo, S.; Chen, Z.; Liu, Y.; Pu, J. Deep Learning-Based Multimode Fiber Distributed Temperature Sensing. Sensors 2025, 25, 2811. https://doi.org/10.3390/s25092811
Yang L, Wang X, Wu T, Lin H, Luo S, Chen Z, Liu Y, Pu J. Deep Learning-Based Multimode Fiber Distributed Temperature Sensing. Sensors. 2025; 25(9):2811. https://doi.org/10.3390/s25092811
Chicago/Turabian StyleYang, Luxuan, Xiaoyan Wang, Tong Wu, Huichuan Lin, Songjie Luo, Ziyang Chen, Yongxin Liu, and Jixiong Pu. 2025. "Deep Learning-Based Multimode Fiber Distributed Temperature Sensing" Sensors 25, no. 9: 2811. https://doi.org/10.3390/s25092811
APA StyleYang, L., Wang, X., Wu, T., Lin, H., Luo, S., Chen, Z., Liu, Y., & Pu, J. (2025). Deep Learning-Based Multimode Fiber Distributed Temperature Sensing. Sensors, 25(9), 2811. https://doi.org/10.3390/s25092811